
Validation of Reactive Software from Scenario-Based Models ∗

Óscar R. Ribeiro João M. Fernandes
Dep. Informática / CCTC, Universidade do Minho, Braga, Portugal

{orribeiro, jmf}@di.uminho.pt

Abstract

This thesis proposal suggests a model-based approach to
obtain, from a set of behavioural scenarios of a given reac-
tive software system, a graphical animation for reproducing
that set of scenarios for validation purposes.

The approach assumes that the requirements of the sys-
tem are described by a use case diagram, being the be-
haviour of each use case detailed by a collection of scenario
descriptions. These use cases and scenarios are trans-
formed into a Coloured Petri Net (CPN) model, which is
next complemented with animation-specific elements.

By executing the CPN model, it is possible to animate
the scenarios in a user-friendly way and thus ensuring an
effective involvement of the users in the system’s validation.

The CPN model is enforced to be (1) parametric, al-
lowing an easy modification of the initial conditions of the
scenarios, (2) environment-descriptive, meaning that it in-
cludes the state of the relevant elements of the environment,
and (3) animation-separated, implying that the elements
related to animation are clearly separated from the other
ones.

We validate our approach based on its application to two
examples of reactive systems.

1 Introduction

A reactive system “is a system that, when switched on, is
able to create desired effects in its environment by enabling,
enforcing or preventing events in the environment” [18].
In contrast, a transformational system computes the output
from the input and then terminates. When developing a re-
active system, which typically has an intensive behaviour
and a rich set of interactions with its environment, require-
ments validation, before any design and implementation de-
cisions are taken, is an important task.

Validation consists on checking if a model or a system
satisfies the user expectations. During the development of

∗This work has been supported by the grant with reference
SFRH/BD/19718/2004 from “Fundação para a Ciência e Tecnologia”.

software systems, validation is a crucial activity to allow
developers to be confident that they are building the right
system. One of the key issues to have a successful valida-
tion is to adopt a process where users can actively discuss
the requirements of the system under development.

To model software systems the Unified Modelling Lan-
guage (UML) is the standard notation used nowadays in in-
dustry. In this work, we adopt two UML diagrams: Use
Case Diagrams and Sequence Diagrams. Use cases specify
the set of functionalities presented by a system, and permit,
due their simplicity, the dialogue between clients and devel-
opers. A sequence diagram is used to capture a behavioural
scenario of a given system, which can be seen as a sequence
of steps describing interactions between the actors and that
system. In this work we consider that each use case is de-
scribed by a set of sequence diagrams.

The main goal of this work is to introduce novel methods
into the software development process to create a graphical
user-intuitive animation of the problem domain from a set
of scenario descriptions. In particular, we aim to study how
to translate models of behavioural scenarios, into a state-
based model that represents the global behaviour of the sys-
tem under development. The resulting model, which in this
work we propose to be written in the CPN modelling lan-
guage [9], is used to coordinate an animation of the problem
domain, in order to facilitate the validation activity.

CPNs constitute a graphical modelling language appro-
priate to describe the behaviour of systems with character-
istics like concurrency, resource sharing, and synchroniza-
tion. The CPN Tools [10, 19] is a well established tool sup-
porting the CPN modelling language and allowing the exe-
cution of animations in accordance with the CPN model.

In order to validate our approach, it is applied to two
examples of reactive systems, namely an elevator controller
and an automatic gas pump station.

This paper is structured as follows. Section 2 presents a
review of the literature about the main topics of this work.
In section 3, the research objectives are detailed and the
adopted approach is described. Section 4 introduces the cur-
rent state of the work. Section 5 shows the work plan we are
following. The conclusions are presented in Section 6.

Sixth International Conference on the Quality of Information and Communications Technology

0-7695-2948-8/07 $25.00 © 2007 IEEE
DOI 10.1109/QUATIC.2007.27

213

2 State-of-the-Art

The focus of our work is the transformation of models
of behavioural scenarios into state-based models. In par-
ticular we are interested in the translation of sequence di-
agrams into CPNs. Next we describe several approaches
which were already proposed to combine the usage of these
two types of models.

Krüger et al. suggest the usage of Message Sequence
Charts (MSCs) for scenario-based specifications of com-
ponent behaviour, especially during the requirements cap-
ture phase of the software process [13]. They discuss how
to schematically derive statecharts from MSCs, in order to
have a seamless development process.

Harel and Marelly propose the usage of scenario-based
programming, through UML use cases and play-in sce-
narios [7]. Harel’s play-in scenarios make it possible to
go from a high-level user-friendly requirements capture
method, via a rich language for describing message se-
quencing, to a full model of the system, and from there to
the final implementation.

Whittle and Schumann propose an algorithm to auto-
matically generate UML statecharts from a set of UML se-
quence diagrams [17]. This work also presents the usage of
the algorithm for a real application. Their main conclusion
is that it is possible to generate code mostly in an automatic
way from scenario-based specifications.

Hinchey et al. propose an approach, called requirements
to design to code, where designers write requirements as
scenarios in constrained (domain-specific) natural language
[8]. Other notations are however also possible, including
UML use cases. Based on the requirements, an equivalent
formal model, using CSP, is derived, which is then used as
a basis for code generation.

Uchitel and Kramer present an MSC language with se-
mantics in terms of labeled transition systems and parallel
composition [15]. The language integrates other languages
based on the usage of high-level MSCs and on the identi-
fication of component states. With their language, scenario
specifications can be broken up into manageable parts using
high-level MCSs. These authors also present an algorithm
that translates scenarios into a specification in the form of
Finite Sequential Processes, which can be used for model
checking and animation purposes.

There are also works on the synthesis of Petri nets
from scenario-based specification. Juhás et al. present
a polynomial algorithm to decide if a scenario, speci-
fied as a Labelled Partial Order, is executable in a given
Place/Transition Petri net [12]. The algorithm preserves the
given amount of concurrency and does not add causality. In
case the scenario is indeed executable in the Petri net, the
algorithm computes a process net that respects the concur-
rency expressed by the scenario. Although quite useful, this

technique is not yet available for high-level Petri nets (such
as Object-oriented Petri nets, CPNs, or Reference nets), and
to validate the scenario the user must simulate the obtained
process net, where the concepts of the problem domain are
not clearly represent as in the created animations used in
our approach.

Amorim et al. introduce an informal methodology to
map Live Sequence Charts (LSCs) into CPNs for allow-
ing properties of the system to be verified and analysed [2].
They do not consider the validation of gathered behavioural
scenarios, but only its verification, namely to detect some
inconsistencies between them.

Eichner et al. present a formal semantics by means of
Petri nets for the majority of the concepts of sequence dia-
grams [4]. This semantics allows the concurrent behaviour
of the diagrams to be modelled and subsequently analysed.
Moreover, the usage of high-level Petri nets with data rep-
resentation in its tokens permits an efficient structure for
data types and control elements. In their approach they use
places to represent the messages, instead of transitions as
we do.

Elkoutbi and Keller suggest the usage of use case di-
agrams diagrams and scenarios to obtain one hierarchical
CPN to model the behaviour of an interactive system [5].
The hierarchy of the CPN mimics the one of the use case
diagram diagram. The usage of the colours in the nets pre-
serves the independence of several scenarios after their in-
tegration in to the CPN. This permits modeling of concur-
rency between use cases, scenarios and copies of the same
scenario. However, their approach only tackles the con-
troller perspective, and does not include the environment
parts.

Dano et al. suggest use cases to be collected and de-
scribed by tables, to facilitate the communication between
the analyst and the domain expert [3]. Later, through some
mapping rules, Petri Nets are built from the tables to for-
malise the requirements. The approach is used for produc-
ing object-oriented requirements specifications, based on
structural models and focuses on deriving intra-object be-
havioural models. Again, the environment part is not mod-
elled.

3 Research Objectives and Approach

In this section we present the details of the research ob-
jectives of this project and also a description of the approach
to be followed.

The research approach taken in this project begins with
the study of the state of the art, in order to clearly describe
the research problem. After that, we verify the hypothesis
in the thesis finding solutions for the problem. To validate
the obtained solutions we explore two different case studies
already described in the literature. During the exploration

214

of the case studies we consider the possibility to introduce
improvements to the solution. We report the application of
these solutions to the case studies, and the results will be
submitted to conferences in the area.

The focus of our work is in the translation of models of
behavioural scenarios into a state-based model. We con-
sider that the requirements document includes a set of use
case diagrams and its associated descriptions. If these arte-
facts are not explicitly available we assume that the docu-
ment has sufficient information to develop them. The be-
haviour of each use case is detailed by a collection of sce-
nario descriptions, which can be represented by sequence
diagrams. Recently the version 2.0 of UML has been
launched to substitute the previous versions. Sequence di-
agrams in UML 2.0 have many new high-level flow opera-
tors. Due to their simplicity we believe that sequence dia-
grams of UML1.x are more adequate to capture the system’s
behavioural scenarios at a first stage of analysis. Then, in
the beginning we do not use all the features available in
UML 2.0 (namely the high-level operators) and later in the
development process, these diagrams can be aggregated into
UML 2.0 sequence diagrams with all its features.

Most of the works on the translation of scenario-based
models into state-based models concentrate only on the
modelling of the controller part, and do not take into ac-
count the environment [5, 3], which is an important part,
especially when considering reactive systems. The obtained
model usually is not parametric, i. e., it does not permit the
simulation of scenarios obtained by changing some initial
conditions of the original scenario.

We want to explore the capabilities of the CPN mod-
elling language in order to have a state-based and executable
model with the following additional characteristics: (1) It
allows an easy modification of the initial conditions of the
scenario (parametric), (2) it includes the state of the relevant
elements of the environment (environment-descriptive), and
(3) the elements related to animation are clearly separated
from the other elements in the model (animation-separated).

Our approach is based on the translation of models of
behavioural scenarios into a CPN model. We believe that
the CPN modelling language is adequate to reach our goals
because it was already used on the modelling and validation
of problems from a wide range of areas [9], and the edition,
simulation and analysis of CPNs are supported by the CPN
Tools, a well proven tool. The CPN modelling language is a
formal language supporting concurrency. To animate a CPN
model, the BRITNeY Suite Animation Tool [16] permits
the creation of an animation on top of CPN Tools, using the
animation plug-in based on the SceneBeans framework [1].

Fig. 1 sketches the general software process proposed
to be followed in our approach, where rectangles represent
artefacts and arrows represent activities. The idea is that
from the requirements document, it is possible to obtain a

Scenario-based

models

CPN model

Requirements

document

modelling

translation

Animation

specification

animation

creation

animation

and validation

requirements

gathering

Code

code

generation

Figure 1. Process for the approach.

set of scenario-based models, which can be subsequently
translated into a CPN model. This CPN model, when used
in conjunction with an animation specification, drives an
animation that permits the users to perceive how the system
behaves and to validate that behaviour with respect to the
requirements.

The animation creation is an activity consisting on defin-
ing how each element in the problem domain is represented
in the animation, namely how it is graphically depicted, the
movements associated to it, the messages to be sent, and the
commands it receives.

The CPN model can be used as a formal support in the
next steps of the development process. In particular we can
generate implementation code from it.

Our work concentrates on two activities of the approach:
translation and animation creation (Fig. 1). It aims to dis-
cover how the translation from a set of scenario-based mod-
els to a CPN model can be automated, and if it is possible
to clearly separate the CPN model and the animation speci-
fication.

In order to increase the flexibility level of the animation’s
usage we aim to permit that the user can change the ini-
tial conditions of the scenario being animated, obtaining a
variation of the scenario. The obtained CPN model must
permits also the concurrent execution of various scenarios.

The approach will be validated through the exploration
of two examples of reactive systems. During the exploration
of these systems a conceptual tool will be developed to sup-
port others applications in different examples and to be used
as a formalization of the translation.

215

4 Current Work and Preliminary Results

The research project described in this proposal started by
defining the necessary rules to transform behavioural sce-
narios into a CPN model [14]. For these first experiments
we had considered a small control application from the in-
dustry. In order to establish these rules, we apply them to
two case studies, namely an elevator system and a gas pump
station. In [6], we present an analysis of the elevator system,
based on the rules previously defined, where we improve the
rules of translation in order permit the concurrent execution
of different scenarios.

By now, we are defining ways to clarify the separation, in
the obtained CPN model, between the definitions related to
the definitions about the system being analysed, and the an-
imation specific elements introduced in CPN model. With
this animation-separated CPN-model, after the validation of
the system, it is possible to reuse the CPN model related to
the control part as a formal basis for the next development
steps. For example, the CPN model can be used for gen-
eration of implementation code for the system being devel-
oped. We also plan to define mechanisms to have a paramet-
ric CPN model that permits the change of the initial condi-
tions of a given scenario, thus obtaining a different version
of the scenario being considered. We will explore another
reactive system, an automated gas pump station, which is a
system that permits customers to buy fuel in a self-served
way. We plan to create a requirements document modelling
all the behaviours as a scenario, and produce an animation
of the system’s problem domain. In this example we have
more types of external actors, than in the elevator system,
in this way we believe that the exploration of this exam-
ple will complement the definition of translation, namely in
what concerns to the treatment given to the external actors
in the animation.

5 Work Plan and Implications

In this section we describe in a chronological way the
activities of our work plan, which have been done, and some
activities that we plan to do in the next steps of this research
project.

In the first semester, we have studied in the main areas
to be covered in this work: reactive systems, validation of
software systems, system modelling with CPNs, UML, and
scenario-based behavioural models. From this study we
have produced a synthesis about the state-of-the-art in the
area. As a practical exercise, we have constructed some
animations of the behaviours described in the requirements
document, using the CPN Tools together with the BRIT-
NeY Suite Tool, applying informal rules to translate a be-
havioural requirement to the target CPN model.

In the second semester, we have studied some works
about the translation of scenario-based models into state-

based models, and we have started the definition of some
rules to translate sequence UML 2.0 diagrams into a CPN
model. In a first stage, we considered a subset of the high-
level operators present in the UML 2.0 sequence diagrams.

We have explored a small control application, defining
the sequence diagrams representing its behavioural scenar-
ios, and studying the applicability of the defined rules to the
system being considered. Using the rules for translation we
created a CPN model, and on top of it we created an anima-
tion of the system. We produced a technical report where
these experiences are detailed.

In the third semester, we submitted first results of ap-
plying the ideas into an article at a workshop organized by
people responsible for the development of CPN modelling
language, and its supporting tools. We received feedback
about the way we were using the CPN modelling language
in our approach. Then, some improvements were done over
the rules of translation, and they were extended to the rest
of high-level operators present in the language of UML 2.0
sequence diagrams.

We explored an elevator controller system, which is re-
sponsible for controlling two cars in a building with six
floors. By exploring this system we discovered the necessity
to put some mechanisms in the target CPN model, in order
to permit the representation of the variations of a use case,
and to permit the concurrent execution of various scenarios.
We produced from this work a technical report where we
present the behavioural models of scenarios related to the
elevator system, and all the details of the experience of ap-
plying these ideas to the elevator system. We also published
also a paper about the problem of combining scenarios and
state machines [6].

In the fourth semester, we developed an animation to the
elevator system and some applications to facilitate the man-
agement of the animation’s definitions to be used as the in-
put to the SceneBeans Suite Tool. We started the develop-
ment of a conceptual tool to support the application of the
translation rules. To do this, we stated a modelling language
to capture behavioural scenarios based essentially on the se-
quence diagrams of UML, but probably it will be necessary
to include some annotations to facilitate the automatic gen-
eration of the CPN model. We plan to use the VDM speci-
fication language [11] to formalize this translation.

In the fifth semester, we plan to write an article about the
usage of animations in the requirements engineering area, in
order to validate the usefulness of the properties that we are
introducing in the obtained CPN model. Additionally we
continue to improve the tool that supports the translation.

For the sixth semester, we plan to mature the results ob-
tained from exploration of the considered examples, and
from the development of the supporting tools for the trans-
lation. We also plan to do the final adjustments to finish the
final thesis document to be submitted for evaluation.

216

6 Conclusions

In this proposal we describe a Ph.D. thesis research
project that aims to present novel methods to be applied on
the validation of reactive systems, namely through its ani-
mation with a language using problem-domain concepts.

The focus of our work is on the translation of behavioural
scenario models into a state-based model, which is intended
to represent the global behaviour of the system accord-
ing to the requirements. In particular, our approach con-
siders the translation of use cases described by a set of
behavioural scenarios into a CPN model that is paramet-
ric, environment-descriptive and animation-separated. The
CPN is used to drive an animation of the problem domain.
We plan to study what parts of the translation process can
be automatized, and to create tool-support for that process.

The validation of the approach will be obtained by ap-
plying its ideas, concepts, and methods to two examples.

References

[1] SceneBeans. www-dse.doc.ic.ac.uk/software/SceneBeans/.
[2] L. Amorim, P. Maciel, M. Nogueira, R. Barreto, and

E. Tavares. A Methodology for Mapping Live Sequence
Chart to Coloured Petri Net. In IEEE Int. Conf. on Sys-
tems, Man and Cybernetics, volume 4, pages 2999–3004,
Oct 2005.

[3] B. Dano, H. Briand, and F. Barbier. An Approach Based
on the Concept of Use Case to Produce Dynamic Object-
Oriented Specifications. In 3rd IEEE Int. Symp. on Require-
ments Engineering (RE ’97), pages 54–64. IEEE CS Press,
1997.

[4] C. Eichner, H. Fleischhack, R. Meyer, U. Schrimpf, and
C. Stehno. Compositional Semantics for UML 2.0 Sequence
Diagrams Using Petri Nets. In 12th Int. SDL Forum, volume
3530 of LNCS, pages 133–48. Springer, Jan 2005.

[5] M. Elkoutbi and R. Keller. Modeling Interactive Systems
with Hierarchical Colored Petri Nets. In Advanced Simula-
tion Technologies Conference 1998, pages 432–37, 1998.

[6] J. M. Fernandes, S. Tjell, J. Jørgensen, and O. R. Ribeiro.
Designing Tool Support for Translating Use Cases and UML
2.0 Sequence Diagrams into a Coloured Petri Net. In 6th Int.
Workshop on Scenarios and State Machines (SCESM 2007),
at ICSE 2007. IEEE CS Press, 2007.

[7] D. Harel and R. Marelly. Come, Let’s Play: Scenario-based
Programming Using LSCs and the Play-Engine. Springer,
2003.

[8] M. G. Hinchey, J. L. Rash, and C. A. Rouff. A Formal Ap-
proach to Requirements-Based Programming. In Proceed-
ings of the 12th IEEE Int. Conf. and Workshops on the En-
gineering of Computer-Based Systems (ECBS 2005), pages
339–45. IEEE CS Press, 2005.

[9] K. Jensen. Coloured Petri Nets — Basic Concepts, Analy-
sis Methods and Practical Use. Volume 1-3. Monographs
in Theoretical Computer Science. EATCS Series. Springer,
1992-97.

[10] K. Jensen, L. M. Kristensen, and L. Wells. Coloured Petri
Nets and CPN Tools for Modelling and Validation of Con-
current Systems. Int. Journal on Software Tools for Technol-
ogy Transfer (STTT), 9(3-4):213–54, June 2007.

[11] C. B. Jones. Systematic software development using VDM.
Prentice Hall International (UK) Ltd., Hertfordshire, UK,
UK, 1990.

[12] G. Juhás, R. Lorenz, and J. Desel. Can I Execute My Sce-
nario in Your Net? In Proceedings of 26th Int. Conf. Ap-
plications and Theory of Petri Nets, volume 3536 of LNCS,
pages 289–309, Miami, USA, June 2005. Springer.

[13] I. Krüger, R. Grosu, P. Scholz, and M. Broy. From MSCs
to Statecharts. In F. J. Rammig, editor, Distributed and Par-
allel Embedded Systems, pages 61 – 71. Kluwer Academic
Publishers, 1999.

[14] O. R. Ribeiro and J. M. Fernandes. Some Rules to Trans-
form Sequence Diagrams into Coloured Petri Nets. In 7th
Workshop and Tutorial on Practical Use of Coloured Petri
Nets and the CPN Tools (CPN 2006), pages 237–56, 2006.

[15] S. Uchitel, J. Kramer, and J. Magee. Synthesis of Behaviour
Models from Scenarios. IEEE Transactions on Software En-
gineering, 29(2):99–115, Feb. 2003.

[16] M. Westergaard and K. B. Lassen. The BRITNeY Suite An-
imation Tool. In 27th Int. Conf. on Applications and Theory
of Petri Nets, pages 431–40, 2006.

[17] J. Whittle, R. Kwan, and J. Saboo. From scenarios to code:
An air traffic control case study. Software and Systems Mod-
eling, 4(1):71 – 93, Feb 2005.

[18] R. J. Wieringa. Design Methods for Reactive Systems: Your-
don, Statemate, and the UML. Morgan Kaufmann, 2003.

[19] CPN Tools. www.daimi.au.dk/CPNtools.

217

