
Deriving Software Architectures for CRUD Applications:
The FPL Tower Interface Case Study

Atif Mashkoor, João M. Fernandes

Departamento de Informática / CCTC
Escola de Engenharia, Universidade do Minho

Braga, Portugal

ABSTRACT
The main aim of this paper is to present how to derive
logical software architectures for CRUD (Create, Read,
Update and Delete) applications using a specific
technique called 4SRS. In this technique, a component
diagram, which is obtained through transformations of use
cases, is used to represent the logical software
architecture. To show that the 4SRS technique, which was
initially devised for behavior-intensive reactive systems,
is also effective and gives seamless results for other
software domains, it is being experimented on data
processing systems, which typically follow a CRUD
pattern. For demonstration purposes, the FPL tower
interface system, which is responsible for communication
between air traffic control operators and flight data
processing system on airports of Portugal, has been used
as a case study.

KEYWORDS
Software engineering, software design, software
architecture, use cases, component diagram, UML

1. INTRODUCTION
According to some authors [3, 10], the transformation of
requirement specifications into software architecture is
one of the most complex activities of software
development. One of such architectural transformation
techniques is the 4-Step Rule Set (4SRS) [5, 6] that
employs successive transformations of use cases to obtain
a logical software architecture that satisfies the elicited
user requirements. It provides a comprehensive set of
guidelines divided into four steps that helps developers to
obtain an initial architecture for the software system in a
consistent, coherent and systematic way. The iterative
nature of the approach ensures that the derived
architecture reflects the user requirements as seamless as
possible.

Initially, the 4SRS technique was proposed for behavior-
intensive systems and has been used for reactive
embedded systems for numerous times [4, 7, 8, 9]. This
approach seems also applicable to other domains, such as

CRUD applications, which are data-centric in nature
rather than behavior-intensive.

The acronym CRUD stands for Create, Read, Update and
Delete. These four operations stay at the core of CRUD
applications and play a pivotal role in the system. CRUD
applications, which are data-oriented, work with such data
modules that are retrieved, modified, updated and sent
back to applications for persistence. Data processing
systems can be seen as typical CRUD applications due to
their strong orientation towards data. Systems responsible
for data processing provide different mechanisms of data
conversion into information through handling, sorting,
and computation of data in compliance with defined
protocols.

The purpose of this paper is to demonstrate that the 4SRS
technique can also be used to derive software
architectures for CRUD applications as successfully as for
reactive embedded systems. To support this hypothesis a
case study, the FPL tower interface system, has been
used. This system is responsible for the communication
between air traffic control operators and flight data
processing system on airports of Portugal. It is a data
processing system and can be referred to as a typical
CRUD application. We apply the 4SRS technique to this
system and derive its logical software architecture
through successive transformations of uses cases.

The paper is structured as follows: section 2 gives an
overview of the 4SRS technique, section 3 introduces the
case study, section 4 illustrates the application and
execution of the 4SRS technique on the case study, and
finally section 5 draws some conclusions and suggests
directions for future work.

2. THE 4SRS TECHNIQUE
4SRS is a stepwise technique that transforms a use case
diagram into a component diagram, to help software
developers obtaining the final architectural design. The
updated 4SRS technique, based on [11], presented here, is
divided into four main steps and six micro-steps:

International Conference on Software Engineering Advances(ICSEA 2007)
0-7695-2937-2/07 $25.00 © 2007

1. Component creation
2. Component elimination

2i. Use case classification
2ii. Local elimination
2iii. Component description
2iv. Component representation
2v. Global elimination
2vi. Component naming

3. Component packaging
4. Component association

The first step of the 4SRS technique creates three
components for each use case i.e. control, data and
interface components. Each component receives the
reference of its respective use case appended with the
suffix (c, d, i) that indicates the category of the
component. However to deal with FPL tower interface
system, which is a data- and transaction-centric system
and holds only one shared repository of data for all
components, we do not create data component in this first
step; instead just control and interface components are
created. The data component will eventually be
incorporated into the resulting component diagram.

The main aim of the second step is to eliminate those
components created in the first step that are not relevant
for the architecture, i.e., they are not required to represent
the functionality of their particular use cases. In the first
micro-step of this step, the category of components is
determined based on the textual description for each use
case, which helps deciding which components to maintain
and which ones to discard. In the second micro-step, the
information gathered in first micro-step is used to discard
the components that do not make sense in the problem
domain. The next micro-step is used to describe the
components, based on the textual descriptions of the
original use case. In the fourth micro-step, the redundancy
of the user requirements elicitation is eliminated and the
missing requirements are added to the system. In this step,
every component passes a so-called self-sustainability test
to determine if the component can be represented by other
component or not. In a positive case, it means that the
representative component will not only represent its own
system requirements but also the requirements of the
represented components. Otherwise, it means that the
component will only represent itself. Micro-step 2v is
straightforward since it only consists of the application of
the results of the last micro-step. The components that are
represented by other components must be eliminated
because their system requirements are now responsibility
of the representative component. This micro-step is called
“global elimination” due to its global awareness for
generating a coherent and cohesive component model,

from the point of view of system requirements. The last
micro-step names the components. The name received by
the component must reflect its role in the system, the use
case which it comes from, and additionally it must reflect
all the represented system requirements as well if it is
representing another component.

The third step organizes and unifies the surviving and
semantically consistent components into packages. These
packages are the orchestration of similar components into
groups to present the architecture at higher levels thus
making it easier to understand.

The fourth step links the aggregates to specify the
associations among the existing components. These
associations, which work as connectors between these
components, show provided or required functionality or
any kind of dependency among these components.

The changes proposed by the upgraded version of the
4SRS technique, which is presented in this paper, over its
successors are as follows: first, it replaces the word of
object by component that is a more meaningful concept.
Secondly, it optimizes the second step by eliminating the
redundancy of naming the component. Originally the
component used to be named in the first place and then
renamed afterwards if it was changed. But now we only
name it once its functionality is fully determined. We also
change the name of the third step from “component
packaging and aggregation” to just “component
packaging”. This is due to the fact that in the second step
where components passes a so-called self-sustainability
test, the aggregation already takes place at that time and
in third step we just now pack them. To represent the
derived architecture we now use a component diagram
instead of an object diagram which, according to [2], is
more meaningful and appropriate to represent software
architectures.

3. THE CASE STUDY
The Flight Data Processing System (FDPS) is responsible
for flight data processing in the Portuguese airspace
including the control towers of Porto, Faro, Lisbon, and
Funchal [12]. The Flight Plan (FPL) tower interface, the
system under consideration for this case study, is
responsible for interfacing between air traffic control
operators and FDPS. Most of the data used by FPL is
obtained from the Airport Operational System (AOS),
Flight Data Section (FDS) and Environment. All these
systems are connected to FDPS, through a middleware
called BasicSystem that provides services for message
handling, task management, buffer management, and
memory management.

International Conference on Software Engineering Advances(ICSEA 2007)
0-7695-2937-2/07 $25.00 © 2007

Figure 1: A big picture of the system

Further communication with the air control operators
occurs by radio, namely with ANA Aeroportos de
Portugal [1] and the aircraft pilots. Fig. 1 shows the
overall structure of the system where FPL is included.

Figure 2: Top level use case diagram for FPL

This case study implements the mechanisms used by the
tower operators for managing the tower related
information such as monitoring local aerodrome data, and
monitoring flight data relative to the arrival, departure and
over-flights involving the local aerodrome. Fig. 2 shows
the top level use case diagram for FPL tower interface
which offers four main groups of functionalities. U.C.1
handle aerodrome information allows the operator to
update the data of aerodrome. U.C.2 handle departure
information is responsible for a list of flights departing
from the aerodrome. U.C.3 handle arrival information is
responsible for the flights arriving at the aerodrome.
U.C.4 handle over-flight information manages the
information of flights affecting the locally controlled
airspace, without involving the aerodrome. For instance,
flight information of aircraft inside the range of locally

controlled airspace, neither arriving at nor departing from
the aerodrome, shall be considered as U.C.4. Each use
case can list, visualize and modify the parameters of the
respective item. Thus, the considered case study clearly
constitutes a CRUD application.

4. THE 4SRS TECHNIQUE EXECUTION
We identify U.C.3 to be used as an example of a CRUD
application, as all other use cases possess the same type of
CRUD functionalities. Fig. 3 shows the expanded view of
U.C.3 handling arrival information. U.C.3.1 refresh
arrival data checks and fetches the latest updated arrival
data from the FDPS. U.C.3.2 confirm arrival data asks

Figure 3: Expanded handling arrival information use case

International Conference on Software Engineering Advances(ICSEA 2007)
0-7695-2937-2/07 $25.00 © 2007

Table 1: Tabular representation of the 4SRS technique execution

the FPL operator regarding his/her certainty about a
particular operation, for instance, if the operator wants to
update particular flight data then a dialog appears for
confirmation purposes. U.C.3.3 update arrival data is
responsible for updating the data in FDPS. U.C.3.4
validate parameters makes sure that no data anomaly is
created in the database during an update operation.
U.C.3.5 print flight strip is dedicated to print paper strips
about the flight information, which may be needed in case
of system failure. We now apply the 4SRS technique step
by step.

Step 1: Component creation
In this step, each use case is transformed into two
components classified with one of the following
categories: control or interface. In this step there is no
need to take or validate any decision. As a result of the
application of this step to the case study, the control and
interface components are created for each use case. All
created components are shown in the tabular
representation of the 4SRS technique in table 1.

Step 2: Component elimination
This step is one of the most crucial steps of the 4SRS
technique. The success of the whole technique is only
assured provided that definitive system-level entities are
identified during this step. The aim of this component
elimination step is to decide which of the components
created in the first step must be kept in the model. Those
components that are not subsequently eliminated must
fully represent the use case. This decision must take into
account the whole system including the textual
description of each use case, rather than each use case in
isolation. Additionally this step allows the elimination of
the redundant user requirements and also tries to fill the
gap by discovering missing requirements. This step is
further decomposed into several micro steps due to its
complexity.

Micro-step 2i: Use case classification
This first micro-step classifies each use case to help on
the transformation into components. It also gives some
hints on how to categorize and connect use cases and their
respective transformed components. For example, U.C.3.1

International Conference on Software Engineering Advances(ICSEA 2007)
0-7695-2937-2/07 $25.00 © 2007

is classified as “ci”, which means that both components
(control and interface) are kept for this use case; U.C.3.2
is classified as “i”, meaning that only the interface
component for this use case is maintained. Table 1 shows
these decisions.

Micro-step 2ii: Local elimination
In this micro-step, we analyze if every component created
in previous step makes sense or not to be kept in the
architecture. If not, we simply eliminate it. Here,
components {3.1d, 3.2c, 3.2d, 3.3d, 3.4d, 3.4i, and 3.5d}
do not make sense in the problem domain, so they are
eliminated. All data components are eliminated due to the
fact that eventually one data repository replaces all of
them. For the rest of the eliminated components, the
decision can be justified by analyzing the textual
descriptions of each affected use case. For instance, use
case U.C.3.4 is responsible for validating the parameters
for the update process. This description originates only
one control component, whose responsibility is validation.
This leads to the inclusion of component {3.4c} into the
component model.

Micro-step 2iii: Component description
In this step all components are described. The
descriptions are based on the original use case textual
descriptions. One example of a component description is
the elicitation of component {3.4c}. Component {3.4c} is
responsible for parameter validation and must provide
data checks before updating data. Table 1 shows the
abridged description of each component in the column for
this micro-step.

Micro-step 2iv: Component representation
In this step, in order to avoid redundancy, it is checked for
each component if it can be represented by other
component. This means that the representative component
can not only represent its own system requirements but
also the requirements of the represented components as
well. In this particular case, all components are self-
maintainable and do not require any representation hence
no representative component is produced.

Micro-step 2v: Global elimination
The components, which can be represented by other
components, must be eliminated in this step to have a
smooth design. Since no representative component has
been produced in the previous micro-step, global
elimination does not take place for this case study.

Micro-step 2vi: Component naming
Now the components must be named. The name received
by the component reflects its role and originating use
case. For instance, components {3.1i} and {3.1c} receive
the name refresh interface and data refreshing control

respectively. Table 1 includes the names of all
components.

Step 3: Component packaging
In this step, we package those components that are
somehow related to each other in any context. In this
particular case study, the criteria to aggregate these
components is the type of components, i.e., control
components are packed together in package PI and
interface components are packaged as PII. Since only one
data component exists in the system there is no need to
pack it.

Step 4: Component association
The fourth and final step of the 4SRS technique
introduces the links in the component model. The
decisions to include the links are strongly based on the
textual information of the use cases, but also use other
available information, such as stereotypes. The
association in this component diagram is shown with the
help of dependencies, required interfaces, and provided
interfaces. For instance, component {3.1c} is providing
refreshed data to component {3.1i}. This step must be
done carefully in order to avoid any design error.

After applying successive transformations and eventually
linking the components, the resulted component diagram
is obtained (fig. 4). The rectangles refer to components of
the system, the dashed lines denote dependency, and
required and provided interfaces are shown by socket and
lollypop symbols respectively.

3.3i
Arrival update

interface

Data repository

3.5c
Arrival strip

printing control

3.1c
Data refreshing

control

3.3c
Arrival update

control

3.5i
Arrival strip

printing
interface

3.1i
Refresh
interface

3.2i
Arrival

confirmation
interface

3.4c
Arrival

parameter
validation

control
Parameter
validation

Confirmation

Refreshed
data PrintingData

update

Data

Figure 4: The resulted component diagram

International Conference on Software Engineering Advances(ICSEA 2007)
0-7695-2937-2/07 $25.00 © 2007

Since we have come up with a logical architecture with
three separate layers of interface, controls and data, this
leads us to the three-tier architectural approach. In three-
tier architectures functionality of the application is
distributed across separate and independent layers of user
interface, functional logic, and data storage and access.
The newly created component diagram presents the initial
and simple architectural reference of the system emerged
from the transformations of requirement model. Further
details can be added to the resulted architecture to acquire
the final software architecture of the system.

After obtaining this new architectural model further
characteristics of the application design can be modeled
through different diagrams. For example, a class diagram
can be used to define the static structure and state
machine diagrams, activity diagrams and interaction
diagrams can be used to model the behavioral
characterization of the application. Creation of these
artifacts is out of scope for both the 4SRS technique and
this paper.

5. CONCLUSIONS AND FUTURE WORK
Obtaining software architecture from user requirements is
a challenging and important task for software developers.
Any misjudgment by software engineers in this process
may introduce severe design flaws and inconsistencies.
One approach to support this derivation is the 4SRS
technique that helps in transforming a use case diagram
into the corresponding logical software architecture in a
systematic, coherent and seamless manner. The 4SRS
technique has proved its value in behavior-intensive
systems, such as reactive embedded software design, yet
it was never leveraged to other types of software systems.

This paper applies the 4SRS technique to CRUD
applications. To show this application the paper uses the
FPL tower interface system, a data processing system, as
a case study. The derived logical software architecture
presents the typical component model of such kind of
CRUD applications. The 4SRS technique also shows its
usefulness by assuring the generation of a seamless
specification of the architectural requirements. The
resulted component diagram suggests that 4SRS can also
be applied to CRUD applications with similar benefits as
those encountered for reactive embedded systems. In
particular, it facilitates the generation of three-tier
architectures, which are a commonly accepted solution for
data-centric software systems.

In the future, we intend to incorporate aspectual support
to the 4SRS technique. We would like to evaluate how the
technique can benefit from its combined application with
Aspect Oriented Requirement Engineering (AORE)
approaches to represent software architectures.

ACKNOWLEDGEMENTS
We thank Ana Moreira, João Araújo, André Marques, and
Sérgio Agostinho for providing documents and support,
and Paula Santos for her comments and suggestions with
respect to the case study. This work was supported by the
SOFTAS project (POSC/EIA/60189/2004).

REFERENCES
[1] ANA Aeroportos de Portugal SA, www.ana.pt, lastly
accessed: Mar/2007
[2] S. Ambler, The Object Primer, 3rd Edition,
Cambridge University Press, 2004
[3] J. Bosch, P. Molin, Software Architecture Design:
Evaluation and Transformation, 7th IEEE Conf. on the
Engineering of Computer-Based Systems (ECBS'99), pp.
4-10, IEEE CS Press, 1999
[4] A. Bragança, R. J. Machado, Adopting Computational
Independent Models for Derivation of Architectural
Requirements of Software Product Lines, 4th Int.
Workshop on Model Based Methodologies for Pervasive
and Embedded Software (MOMPES 2007), pp. 91-101,
IEEE CS Press, 2007
[5] J. M. Fernandes, R. J. Machado, From Use Cases to
Components: An Industrial Information Systems Case
Study Analysis, 7th Int. Conf. on Component-Oriented
Information Systems (OOIS '01), pp. 319-328, Springer-
Verlag, 2001
[6] J. M. Fernandes, R. J. Machado, H. D. Santos,
Modeling Industrial Embedded Systems with UML, 8th
ACM/IEEE/IFIP Int. Workshop on Hardware/Software
Codesign (CODES'2000), pp. 18-22, ACM Press, 2000
[7] J. M. Fernandes, R. J. Machado, P. Monteiro, H.
Rodrigues, A Demonstration Case on the Transformation
of Software Architectures for Mobile Applications, IFIP
Conf. on Distributed and Parallel Embedded Systems
(DIPES 2006), pp. 235-244, Springer-Verlag, 2006
[8] J. M. Fernandes, R. J. Machado, System-Level
Component-Orientation in the Specification and
Validation of Embedded Systems, 14th Symp. on
Integrated Circuits and Systems Design (SBCCI 2001),
pp. 8-13, IEEE CS Press, 2001
[9] J. M. Fernandes, R. J. Machado, P. Monteiro, H.
Rodrigues, Refinement of Software Architectures by
Recursive Model Transformations, 7th Int. Conf. on
Product-Focused Software Process Improvement
(PROFES 2006), pp. 422-428, Springer-Verlag, 2006
[10] H. Kaindl, Difficulties in the Transition from OO
Analysis to Design, IEEE Software, vol. 16, nr. 5, pp. 94-
102, 1999
[11] P. Monteiro, Model-based Transformations for
Software Architectures: A pervasive application case
study, Master thesis, Dept. Informatics, University of
Minho, Portugal, 2005
[12] NAV Portugal, E.P.E., www.nav.pt, lastly accessed:
Mar/2007

International Conference on Software Engineering Advances(ICSEA 2007)
0-7695-2937-2/07 $25.00 © 2007

