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Abstract. This paper reports on an exercise on constructing a visual
animation layer for a behaviourally-intensive reactive system. We assume
that the requirements of the system under consideration are described by
use cases, and the behaviour of each use case is detailed by a collection of
scenario descriptions. These use cases and scenarios are translated into a
Coloured Petri Net (CPN) model, which is subsequently complemented
with animation-specific elements. We describe how the CPN model must
be structured to facilitate the animation process, and we present the
supporting tools for creating the animation. We consider an elevator
controller system as a case study, to demonstrate that a CPN model
complemented with a visual animation layer constitutes a solid basis
for addressing behavioural issues in an early phase of the development
process, namely during the validation task.

1 Introduction

Validation consists on checking if a system or a model satisfies the user expecta-
tions. One of the key issues to have a successful validation is to adopt a process
where users can actively discuss the requirements of the system under develop-
ment. To accomplish the validation task, one can use a visual animation [1] that
employs domain-specific vocabulary, since it allows users and developers to be
confident that the right system is being built.

When developing a reactive system [2], which usually has an intensive be-
haviour and a rich set of interactions with its environment, requirements valida-
tion is an important task to accomplish before deciding any design and imple-
mentation issues.

The Unified Modeling Language (UML) is currently the standard notation
adopted in industry to model software systems. This work uses two UML dia-
grams: Use Case Diagrams and Sequence Diagrams. Use cases specify the set
of functionalities presented by a system as seen by its users, and permit, due
to their simplicity, the dialogue between clients and developers. A sequence dia-
gram is used to capture a behavioural scenario of a given system, which can be
seen as a sequence of steps describing interactions between the actors and that
system. We suggest each use case to be described by a set of sequence diagrams.
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Coloured Petri Net (CPNs) [3] constitute a graphical modelling language
appropriate to describe the behaviour of systems with characteristics like con-
currency, resource sharing, and synchronization. The CPN Tools [4, 5] is a well
established tool supporting the CPN modelling language and allowing the exe-
cution of animations in accordance with the CPN model.

This paper describes the construction of a visual animation layer for the
problem domain of the elevator controller case study. The visual animation can
be used during the validation to facilitate the dialogue between the system de-
velopers and the clients. This animation layer described in this work is intended
to be controlled by an executable CPN model. We give some guidelines to create
the CPN model from the sequence diagrams present in the requirements of the
system under development. We also introduce a tool to support the development
of the animation layer.

This paper is structured as follows. Section 2 describes the elevator controller
case study to be considered in this paper. In Section 3, we present the develop-
ment of an animation layer for the elevator controller. We introduce also some
tools to support this development. Section 4 introduces some guidelines to con-
struct a CPN model for animation purposes. The conclusions are presented in
Section 5.

2 Case Study

In this section we introduce the case study used in this paper, an elevator con-
troller. We consider that this controller manages an elevator system with two
cars in a building with six floors. This case study is an adaptation from the
description presented in the technical report [6].

Fig. 1 depicts the context diagram for the elevator controller, where the main
sensors and actuators present in the considered top-most entities (Floor and Car)
are shown. Each Floor contains two Location Sensors, one for each car, to detect
when the respective car is at or is arriving to the floor. In each Floor there are Hall
Buttons to allow the passengers to call an elevator car indicating the direction
(up or down) he wishes to travel. Obviously, the first and the last floors have
only one button to select the unique direction that is possible to travel (up for
the first floor and down for the top-most floor). There is a Floor Door in each
floor to protect the car’s shaft, and the doors only open when the corresponding
car is stopped at the floor.

Each of the two Cars has one Car Motor to move up or down along the floors.
Each car has a Door which has: (1) a Door Timer to automatically close the door
after a given amount of time; (2) a Door Sensor to detect if there is something
obstructing the door during closure; (3) a Door Motor to open/close the door of
the elevator; and (4) a Car Door, which includes two sensors, to indicate either
if the door is closed or totally opened. The Car Door is mechanically linked with
the Door Motor, and also with the corresponding door in each floor.

Inside the car a passenger can find a Floor Indicator that shows the current
floor of the car, a Direction Indicator that shows the direction being followed by
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Fig. 1. Context Diagram for the Elevator Controller

the car, and a Control Panel that contains an Open Door Button to open the
doors and six Floor Buttons to select the destination floor.

The behaviour of the elevator controller is triggered by the passengers’ ac-
tions. The elevator controller has the responsibility of managing the movements
of the cars in accordance to the requests of the passengers through pushing on
the buttons.

Our approach proposes the usage of a use case diagram to depict the main
functionalities provided by the system to its users. In this paper, with the purpose
of illustrating the suggested approach, we just consider the use case “Service
Floor”. This use case is responsible for moving an elevator car from an origin floor
to a destination floor, by request of a passenger either in one of the building’s
hall or inside an elevator car.

Fig. 2 depicts the sequence diagram with the main scenario of the “Service
Floor” use case. This sequence diagram uses some high-level operators present
in the UML 2.0, namely the opt, and the loop operators. These operators permit
the description of several scenarios in a unique sequence diagram. In order to
abstract from the scenarios presented in the sequence diagram, there are along
the left-hand side of the diagram some textual annotations where some variables
being used in the messages (and guards) are informally declared. For example,
the diagram in Fig. 2 abstracts from the car, and the origin and destination
floors. With the textual annotation “Elevator car c is at Floor Fo, and the next
requested floor is the Fd”, we are declaring the variables c, Fo (origin floor) and
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Fig. 2. Sequence Diagram describing the “Service Floor” use case.

Fd (destination floor), to be used as parameters for the scenario present in the
diagram. With these variables, we are able to define variable d that represents
the direction followed by the car, in the textual annotation “d=up, if Fd>Fo;
d=down, if Fd<Fo”. The textual annotation “Fi=Fo+1, if d=up; Fi=Fo-1, if
d=down;” defines the variable Fi, representing the next floor from the origin
floor.

The scenario presented in Fig. 2 describes the following behaviour:

1. The passenger in the current floor is notified about the direction the car will
take (message lightDirInd);

2. If the car door is open (high-level operator opt)
(a) The car door is closed (message close)

3. The car is moved in direction to the destination floor (message start);
4. While the destination floor is not reached (high-level operator loop):



(a) The location sensor informs the elevator controller that the car is arriving
to the next floor (message isArrivingFloor);

(b) The Floor Indicator corresponding to the next floor is activated (message
lightFloorInd);

(c) The Car Door must slow down its speed, when the next floor is the
destination floor (message slowDown);

(d) The location sensor informs the elevator controller that the car is at the
next floor (message isAtFloor);

5. The car stops (message stop).

In this main scenario of the “Service Floor” use case, we are assuming that
during its execution there are no other interaction from the passengers with
the buttons. These situations could origin some other variations to this main
scenario, but in this work we will consider only the main scenario of the use
case.

3 Building an Animation to the Case Study

In this section, we present the development of an animation layer for the elevator
controller introduced in the previous section. We describe also how to use the
animation, and which tools are involved in its deployment.

3.1 Initial Considerations

The visual animation to be built is intended to reproduce the behaviour of the
elevator controller, specified by the considered collection of sequence diagrams.
It can be used during the validation to facilitate the dialogue between the system
developers and the clients, which is a critical facility to ensure that both parts
agree on what is to be developed.

One can start the construction of a visual animation, after some initial work
on the analysis task has been accomplished. For this purpose, it is useful to have
the context diagram, since it enumerates the main entities of the environment
with which the controller interacts. Typically, these entities are strong candidates
to be represented in the animation, since the system’s behaviour depends on
them.

It is also important to have the use case descriptions, together with their
corresponding sequence diagrams, since they describe which messages are re-
ceived by the elements in the environment, and how these elements react on
those messages. These artefacts specify the behaviour that must be covered by
the animation layer.

The construction of the animation must be synchronised with the activity of
creating the CPN model, because the CPN model must include some elements
which are specific to control the animation as explained in next section.

The animation has been created using the SceneBeans tool [7, 8], which is a
framework for creating and controlling animations, using the Java programming



language. There is a XML-based file format to define animations and a parser
to translate those XML files into animation objects for SceneBeans.

In the SceneBeans architecture there are as basic elements scene graphs,
behaviours and animations. A scene graph is implemented in JavaBeans by a
direct acyclic graph, which draws a two-dimensional image. In the leaf nodes of
a scene graph there are primitive shapes (such as circles, ellipses, rectangles). An
intermediate node either combines or transforms its subgraphs. The combination
can be done in two ways: putting one subgraph on the top of another; or choosing
one from the set of subgraphs. In a transform node it is possible to apply a linear
transformation followed by a translation to its subgraphs (for example rotation,
scaling or translation) or to change the way that its subgraphs are rendered (for
example, changing the colour in which a node is drawn).

Associated to each graphic element in the animation, there are some be-
haviours (not to be confused with the behaviour of the controller) to animate
some of the properties of the element. A behaviour in SceneBeans is implemented
by a Java bean that controls a time value, and when the value changes it an-
nounces an event. This permits the animation of the visual appearance of the
scene graph. Notice that there is a so-called animation thread that manages the
frame rate of the overall animation signals the passage of time. There is also the
possibility to define commands to call the execution of a set of behaviours and
to announce an event when they finish.

3.2 Static part of the animation

The behaviour of the elevator controller, as the behaviour of reactive systems in
general, lies in the interaction with its environment, by sending messages to the
environment, which in response can also send messages in the opposite direction
(i.e., to the controller). In this work we consider the elements in the environment
as the actors of the elevator controller system. The actors for the “Service Floor”
use case are the ones that participate in the sequence diagram in Fig. 2.

An elevator can be visually represented by a picture with the floors and the
cars, where the cars can go up/down across the floors. While the cars are moving,
the elevator controller must update the information shown in the panels inside
each elevator car and attend the requests from the passengers.

For the elevator controller, only a subset of the entities of the environment
are relevant for animation, since the passenger is not aware of (or does not
interact with) all of them. This means that the animation layer only includes the
relevant entities. In contrast, the CPN model does specify all the environment’s
entities. In the elevator controller, the passenger interacts only with the following
six entities: Hall Button, Car Door, Direction Indicator, Floor Indicator, Open
Door Button, and the Floor Button. The validation focuses essentially on the
reactions of the controller to requests made by the passengers. If some flaw on
the behaviour of the elevator is detected during validation, the developer may
also need to analyse all the entities of the environment (even those that do not
appear in the visual animation), to identify and understand the cause of the
error.



Fig. 3. An animation of the elevator system.

Fig. 3 shows a screenshot obtained from the animation of the elevator con-
troller. On the left part of the figure, there is a representation of each floor with
the buttons to call an elevator. We can also see the two elevator cars in Fig. 3:
the left-hand side elevator is at the second floor with its door open, and the
right-hand side elevator is at the fifth floor with its door closed.

On the right part of the figure, the interior of both cars are depicted. Each
car has a floor indicator, which has one light for each floor, and only the light of
the current floor is on. There are also two lights, one to indicate the up direction
and another one to indicate the down direction, showing the direction being
followed by the car. Fig. 3 shows that the left-hand side car has the light with
the number two in yellow indicating that this light is on, and thus that the car is
currently at the second floor. The left-hand side car currently has no direction,
and the light direction of the right-hand side car indicates that the car is going
down.

The structure of the animation is essentially based on importing some icons
to represent an element of the system or on drawing a geometric artefact using a
XML tag. This structure is present in the leaf nodes of the scene graph, and for
example to include the image door.png we use the XML tag primitive, as follows:



1 <primitive type="sprite">
2 <param name="src" value="./images/door.png"/>
3 </primitive>

3.3 Dynamic part of the animation

In this subsection we show how to define the dynamic part of an animation in
the SceneBeans XML-based format.

As we said before, in the leaf nodes of a scene graph there are primitive
shapes and in the intermediate nodes either combination or transformation of
its subgraphs using a set of parameters. Each parameter can be associated to
a behaviour that needs to be previously defined. To allow the user to control
the existing behaviours, there are commands, and each one includes a sequence
of behaviour invocations. Thus, calling a command results on the animation of
some of the parameters present in the intermediate nodes.

With respect to the animation of our case study, let us consider how to
specify in the XML-based format the animation of the Direction Indicator entity
and, in particular, how the message lightDirInd is handled. This message allows
the Direction Indicator to change its state, among its possible values (up, down,
and idle). The Direction Indicator is composed of two triangular lights. If the car
is going up (down), the top light “4” is on (off) and the bottom light “5” is off
(on). If the car is stopped, the idle direction is represented by delighting both
lights.

For example, to indicate that the car is going up, we use the following XML
code, whose XML tags param in lines 2-4 are used to set the parameters from,
to and duration of the behaviour:

1 <behaviour algorithm="move" event="ldi" id="showlightDirInd(rightCar,up)">
2 <param name="from" value="-1000"/>
3 <param name="to" value="750"/>
4 <param name="duration" value="0.0001"/>
5 </behaviour>

This block of code defines a behaviour that is based on a specific movement
of an animation icon from a given point (‘from’) to another point (‘to’) during a
given time (‘duration’). This behaviour will be associated to the parameters in
the nodes of the scene graph.

To indicate, during the animation, that the car is going up, it is needed to
put an icon (showing the top light on, and the bottom light off) at the position
of the Direction Indicator entity in the animation picture. This is achieved by the
following XML code:

1 <transform type="translate">
2 <param name="translation" value="(-1000,50)"/>
3 <animate param="x" behaviour="showlightDirInd(rightCar,up)"/>
4 <animate param="x" behaviour="hidelightDirInd(rightCar,up)"/>
5 <primitive type="sprite">
6 <param name="src" value="./images/direction_indicator_up.png"/>
7 </primitive>
8 </transform>



In lines 3 and 4, behaviours showlightDirInd (presented in the previous block
of code) and hidelightDirInd are associated to the parameter “x” of the transfor-
mation node, in order to change the x-axis position of the icon, i.e., they move
the icon horizontally in the animation picture. These behaviours are invoked
through their inclusion in a command definition as we present in the next block
of code.

There is one icon to represent each state of the Direction Indicator entity,
and showlightDirInd behaviour moves the respective icon to a visible part of
the animation, and the hidelightDirInd behaviour moves the respective icon to a
non-visible part of the animation. Thus, the change to a new state is animated
showing the icon of the new state and hiding the other two icons.

To allow the external invocation of these behaviours in order to animate the
changing of the direction indicator in the car on the right-hand side to indicate the
up direction, the following command announces an event with the same name.

1 <command name="lightDirInd(rightCar,up)">
2 <start behaviour="hidelightDirInd(rightCar,down)"/>
3 <start behaviour="hidelightDirInd(rightCar,idle)"/>
4 <start behaviour="showlightDirInd(rightCar,up)"/>
5 <announce event="lightDirInd(rightCar,up)"/>
6 </command>

There are similar code blocks for the other two possible directions and for
the other car.

3.4 Scripting Language

We have created a script to facilitate the manipulation of the XML tags in the
XML-file that specify the animation. Ruby [9, 10] is a scripting language that
follows the principles of object-oriented programming. The Ruby script uses
components from the library REXML [11].

With Ruby we can easily manipulate the XML to be generated, namely when
repetitive parts of the XML code follow a given pattern. To generate the XML
code for the animation, a Ruby script was created. Next we show part of that
script that generates the XML code for the animation of the Direction Indicator.

1 require ’builder’
2 require ’sbXMLgen.rb’

3 xmlBuilder = Builder::XmlMarkup.new(:target => $stdout, :indent => 3)

4 xmlBuilder.instruct! :xml, :version => "1.0"
5 xmlBuilder.animation("width" =>"800", "height" => "600" ){
6 carIds = ["left","right"]
7 carInteriorCoord = {"left" => Tuple.new(420,20), "right" => Tuple.new(610,20)}
8 lstBhLightDI = Hash.new()

9 lstCommands = Hash.new()
10 carIds.each{ |carId|
11 bhparams = Hash.new()
12 durQuick = 0.0001
13 xHide = -1000



14 xVisible = carInteriorCoord[carId].getX+7*20
15 bhparams["show"] = BehaviourParams.new(xHide,xVisible,durQuick)
16 bhparams["hide"] = BehaviourParams.new(xVisible,xHide,durQuick)
17 directions = ["up", "down", "idle"]
18 movs = ["show", "hide"]
19 bh = Hash.new()
20 movs.each{ |m| bh[m] = Hash.new() }
21 lstBhLightDI[carId] = {"up"=>[], "down"=>[], "idle"=>[]}
22 mkCmdStrDI= lambda{|mov, cId, dir| "#{mov}lightDirInd(#{cId}Car,#{dir})"}

23 directions.each{ |d|
24 movs.each{ |mov|
25 cmdStrDI = mkCmdStrDI.call(mov,carId,d)
26 bh[mov][d] = Behaviour.new(cmdStrDI, "move", bhparams[mov], "xpto")
27 bh[mov][d].toXML(xmlBuilder)
28 lstBhLightDI[carId][d].push(Tuple.new("x", cmdStrDI))
29 if (mov=="show") then
30 d_tmp = directions.dup
31 d_tmp.delete(d)
32 lstBhToStart = Array.new()
33 lstBhToStart.push(cmdStrDI)
34 d_tmp.each{ |od|
35 cmdStrDIod = mkCmdStrDI.call("hide",carId,od)
36 lstBhToStart.push(cmdStrDIod)
37 }
38 cmdStrDIname = mkCmdStrDI.call("",carId,d)
39 lstCommands[cmdStrDIname] = lstBhToStart.dup

40 end
41 } }
42 }
43 lstCommands.each{ |k,v| make_command(xmlBuilder, k , v) }
44 xmlBuilder.draw {
45 carIds.each{ |carId|
46 draw_DirectionIndicator(xmlBuilder, carInteriorCoord[carId],
47 lstBhLightDI[carId])}
48 }

In line 1, the package from the REXML library to build XML tags is included.
When we define an object as a Builder (see line 3 where we define the variable
xmlBuilder) we are able to generate a XML tag by using the name of the tag to
be generated as as a method for the object, for example in line 5 is created the
following XML structure:

1 <animation height="600" width="800">
2 ...
3 </animation>

Inside the tag animation it is included the XML code generated by the lines 6-47
of the Ruby script.

In line 6, the variable carIds is defined as an array with the car identifiers. It
is possible to create an iteration over this variable, as is shown in line 10. This
permits an easy integration of new similar cars in the animation, because we
have a dynamic structure based on the elements into the array carIds.

Line 2 includes some code from file “sbXMLgen.rb” created by us, in order
to save some functions to be used on the generation of XML for animations,
independently from the case being considered. For example, the code in line 26
creates an object of the class Behaviour which has the following definition:



1 class Behaviour
2 def initialize(id, algorithm, params, event, announce = "no")
3 @id = id
4 @algorithm = algorithm
5 @params = params # class BehaviourParams
6 @event = event
7 @toBeAnnounced = announce
8 end
9 def toXML(xb)

10 xb.behaviour("id" =>@id, "algorithm"=> @algorithm , "event" => @event){
11 @params.toXML(xb)
12 }
13 end
14 end

This a simple definition of a Ruby class, where we can find the same param-
eters as the behaviour XML tag, and the definition of the method toXML to
generate the corresponding XML code. The advantage is that we can use this
class to have a less verbose (i.e., easier to read by humans) code to specify a
behaviour. Consequently, if we repeat this process for all other XML tags present
in the SceneBeans XML-based format, we obtain a less verbose way to define an
animation layer.

We believe that this Ruby Script constitutes an abstract way to deal with
the XML-based stuff, in particular it is an easy way to work with parameteris-
ing in the visualizations. When comparing it with the forall construct we think
that the Ruby script is a more flexible and user-friendly way to manipulate the
parameters. The forall construct has the advantage that it is defined in the same
XML-file as the rest of the animation definitions.

4 Coloured Petri Net Models

In this section, we describe some guidelines that we suggest to be taken into
account when creating a CPN model for animation purposes. These guidelines
are discussed and are exemplified with respect to the case study.

The CPN model that is constructed from a set of scenario descriptions is an
executable model that can drive a graphical animation layer showing elements
and concepts from the problem domain. Additionally, the CPN model needs to
include a mechanism to manage how animation events are handled. The anima-
tion layer, in the SceneBeans XML-based format for the case study considered
in this work, is presented in the previous section.

The BRITNeY suite [12, 13] animation tool is used to connect the execution
of the CPN model in the CPN tools with the SceneBeans objects corresponding
to the animation specified in XML-based file. We use the SceneBeans plug-
in present in the BRITNeY suite to display and interact with a SceneBeans
animation.

As stated before, we consider that the requirements process includes the
creation of a set of use cases. The behaviour of each use case is detailed by a col-
lection of scenario descriptions, which can be represented by sequence diagrams.
In version 2.0 of UML, sequence diagrams have many high-level flow operators.



The translation from these sequence diagrams to a CPN model is based on the
general principles described in [14], which associate a transition on the CPN
model for each message in the sequence diagram and define some mechanisms
in the CPN model to represent the high-level operators present in the sequence
diagrams.

We describe the construction of a CPN model to execute the scenarios de-
scribed by the sequence diagram in Fig. 2, and also the changes that need to
be accomplished to allow the obtained CPN model to regulate the animation
introduced in the previous section.

4.1 Mapping sequence diagrams into a CPN model

Firstly, we suggest that each sequence diagram is translated to a CPN model
where there is a substitution transition for each message or high-level operator
in the sequence diagram. The places between substitution transitions guarantee
the order between the messages in the sequence diagram, and their colour set
needs to include the necessary information to allow the parallel execution of
many scenarios.

Fig. 4 shows a CPN model that was obtained from the sequence diagram
in Fig. 2, where messages, and high-level operators in the sequence diagram
are represented by substitution transitions in the CPN model. For example, the
message lightDirInd is represented by the substitution transition with the same
name, and the first opt operator in the sequence diagram is represented by the
substitution transition “opt (Is car door open?)”. The messages inside the opt
operator are present inside the corresponding subpage. The subpages contain
the necessary details to animate the messages in the sequence diagram.

Places in the CPN of Fig. 4 have the colour set ScenarioUC2, which pro-
vides the necessary information to execute a scenario of “Service Floor” use
case, namely the origin and destination floors and the car being used. In other
words, the definition of the colour set ScenarioUC2 comes from the textual an-
notation “Elevator car c is at floor Fo, and the next requested floor is the Fd”,
from the sequence diagram in Fig. 2, where the variables c, Fo and Fd are in-
formally declared. These implicit and informal declarations of variables by a
textual annotation allow for the usage of the same sequence diagram in different
situations, by using the variables as a parameter in messages, or even in other
textual annotations. The definition of the colour set ScenarioUC2 in the CPN
ML programming language has the following code:

1 colset ScenarioUC2tmp = record
2 c: CarId *
3 fo: FloorNumber *
4 fd: FloorNumber ;

5 fun hasDiffFloors(s:ScenarioUC2tmp)= (#fo s) <> (#fd s) ;

6 colset ScenarioUC2 = subset ScenarioUC2tmp by hasDiffFloors;

CarId and FloorNumber are defined as integers to identify a car and a floor,
respectively. The colour set ScenarioUC2tmp is created essentially to be used in
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the definition of the colour set ScenarioUC2. When executing an instance of the
“Service Floor” use case, it is implicit that the origin and destination floors are
different. This is specified using the predicate hasDiffFloors to restrict the colour
set ScenarioUC2tmp to obtain the colour set ScenarioUC2, whose elements are
guaranteed to have different origin and destination floors.

The colour set ScenarioUC2 is used to distinguish between parallel executions
of the use case, and thus the colour set must identify the car, the origin floor, and
the destination floor. To start the execution of the CPN model it is necessary to
define the input parameters using the place begin of UC2, where several tokens
can be put to allow the parallel execution of different UC2 instances.

The places in the CPN model of Fig. 4 ensures that the order between mes-
sages in the sequence diagram is maintained when firing the transitions in the
CPN model. Each token in the place begin of UC2 means that a “Service Floor”
has been requested to be executed, i.e., a given car must travel from a origin to
a destination floor. It is assumed that the environment is in conditions to allow
the execution of this scenario, provided by other use cases (not considered in this



paper). The conditions to permit the execution of an instance of the “Service
Floor” use case are that the selected car must be at the origin floor, with its
motor stopped.

A token in the place light direction actualized means that the direction indi-
cator light is now indicating the direction that the car is taking to go from the
origin to the destination floor, and allows the next transition to be enabled.

4.2 Data representation for the environment

Secondly, it is important to define a data representation of the main elements
in the environment of the system under development. This data description is
used to represent the behaviour of each message in the sequence diagram.

To obtain a description of the system’s environment, its elements are specified
as data in the CPN model using the CPN ML programming language, defining
a colour set for each element in the environment. In our case study, the cars
and the floors are the top-most entities of the environment. For example, the
colour set Car is a record with an identification of the car, the door of the car,
the motor to move the car, and the sensors and actuators inside the car.

1 colset Car = record
2 id : CarId *
3 motor : CarMotor *
4 door : CarDoor *
5 interior : CarInterior ;

Where the CarId colour set is an integer, the CarMotor colour set is a tuple
containing its moving speed and the direction being followed. The CarDoor colour
set is defined as a record stating if the door is open or closed, and representing
also the motor, the sensor and the timer of the door.

1 colset CarDoor = record
2 door : Door *
3 doorMotor : DoorMotor *
4 doorSensor: DoorSensor*
5 doorTimer : DoorTimer ;

Similarly, the entities inside a car are defined by the colour set CarInterior
and they include the lights to indicate the direction being followed by the car,
the lights to indicate the current floor (there is a light for each floor), and a
control panel where we can find a button to open the door, and buttons to allow
the passenger to select one of the existing floors.

1 colset CarInterior = record
2 directionIndicator : Direction *
3 floorIndicator : FloorNumber *
4 controlPanel : ControlPanel;

We consider that the components in the car are part of the colour set, such
as the car door, the door motor, the door sensor, the door timer and the car
motor.



The textual annotation “d = up, if Fd > Fo; d = down, if Fd < Fo;” in
the sequence diagram of Fig. 2 is represented by the function calcDirection which
takes a ScenarioUC2 colour set and gives a direction based on the origin and des-
tination floors, and is defined as follows:

1 colset Direction = with up | down | idle ;

2 fun calcDirection(a:ScenarioUC2) =
3 case (Int.compare(#fo p,#fd p)) of
4 LESS => up
5 |GREATER => down
6 |EQUAL => idle ;

Some of the messages in the sequence diagram have the parameter direction,
which can be calculated using the values of the ScenarioUC2. For example, the
message lightDirInd uses the parameter direction.

4.3 Animation of messages in the sequence diagrams

Thirdly, one must detail how the execution of each substitute transition in the
CPN model representing a message in the sequence diagram is animated in the
SceneBeans animation.

The communication between the CPN model and the SceneBeans animation
is done using an animation object which can be used in the code segments
of CPN model to invoke some commands to be executed in the SceneBeans
animation. The CPN model contains the following declaration of the ”anim” as
a SceneBeans object:

1 structure anim = SceneBeans(val name = "Elevator Controller Animation");

Fig. 5 shows the subpage associated to the message lightDirInd. The animation
of a message in the sequence diagram is divided in two transitions of the CPN
model: the first one (lightDirInd) to invoke the command in the animation, and
the second one (ack lightDirInd) to wait for the feedback from the animation,
informing that the command has been executed. Thus, a token in the place
waiting for lightDirInd event means that the animation is updating the appearance
of the direction indicator in the animation. This mechanism, that waits for the
event from the animation, ensures the synchronization between the animation
and the execution of the CPN model.

To ask for an execution of a command in the SceneBeans animation we use the
“invokeCommand” method which can be used for an object with an SceneBeans
animation. The parameter for this method is a string which must correspond to
a command in the animation. The command lightDirInd is used to animate the
Direction Indicator, as defined in the previous section, and has two parameters:
(1) the name of the car, and (2) the direction that the car is taking. To ease the
creation of the command identifier, the following function can be created:
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Fig. 5. CPN model for the execution of the message lightDirInd.

1 fun mkCmd_lightDirInd(aCar:Car, sUC2: ScenarioUC2) =
2 let
3 val sc = carName(aCar)
4 val strd = showDir(calcDirection(#floors sUC2))
5 in "lightDirInd("ˆsc ˆ"Car,"ˆ strd ˆ")" end

To verify the incoming of the corresponding event of the command lightDirInd
it is necessary to test if the event is in the list of incoming events. Our CPN model
is constantly aware of the events being generated by the animation through the
module in Fig. 6. The running fusion place is used to test if the animation is
already started.

4.4 Initial conditions for scenario execution

Fourthly, we suggest to add a module to the CPN model where the initial con-
ditions for the scenario execution and the selection of the SceneBeans XML file
to used are introduced.

The CPN model in Fig. 7 analyses the initial conditions of the environment
that the user wants to simulate and subsequently initialises the animation. The
initial conditions are introduced in the pre-places (in green) of transition Ini-
tialise. The firing of the Initialise transition invokes the necessary commands to
start running the animation according to the specified conditions. The Fig. 7
constitutes a top page of the CPN model where for each scenario a separated
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Fig. 6. Subpage of CPN model to capture events from the SceneBeans animation.

subpage exists and for which the start place can be found in Fig. 7 thought a
fusion place. The running place is used to allow the execution of CPN model
in subpage in Fig.6. There are also fusion places to connect the places with the
initial values with places that represent the environment values in the subpages.
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input (theCars, theFloors); 
output ();
action
(anim.setAnimation("C:/AnimElevator.xml");
setInitialAnimation(theCars, theFloors);())

Fig. 7. CPN-model to initialise the environment values and the SceneBeans animation.

Let us see now how to change the CPN model to allow the consideration of
a different numbers of cars and floors in the animation. To do this we need to
adapt both the CPN model and the ruby file presented in page 9.

The changes in the CPN model are done in the topmost page presented in
Fig. 7, changing the initial marking of the pre-places for Initialise transition. It
is also necessary to change the value of a constant that represents the number
of floors and another that represents the number of cars. These changes must be
complemented with the corresponding changes in the Ruby file namely in what



concerns with the variables that represent the available cars and the available
floors. And also the position of different elements in the graphic animation.

Supposing that we want to introduce a new car in the middle of the other two
existing cars we define a constant, e.g. centerCar, with its data representation,
to be included in the list of initial marking in place “Cars” of Fig. 7, which
results in the list [leftCar, centerCar, rightCar]. If we want to execute a scenario
related to this new car we need to add the scenario description to the list of
initial scenarios to be executed. Now we will refer to the Ruby script code listed
in page 9. Firstly in line 5, it is necessary to increase the height of the animation
to have some space to introduce the icon for the additional car. In line 6 we add
the identification label that we want to use for the identification of the new car,
and in line 7 we add to the hash table the coordinates for the new car. As we
can see in line 10, the code contains a loop over the identifiers of the cars.

5 Conclusions

In this paper we have described the creation of an animation layer for an elevator
controller system case study. We consider that the animation layer is controlled
by a CPN model, which has some additional elements that are specific to control
the animation layer. The created animation is used during the validation task.

The idea of use an animation of a CPN model for the requirements validation
is not new, for example Machado et al. present an approach to support the
validation of workflow requirements for the interaction between people for a
case study from a real project where animation were used [15]. Although these
authors also consider that the CPN models are obtained from sequence diagrams,
with this work we want to improve the mapping from sequence diagrams into
the CPN model in order to support the parallel execution of many scenarios.
We consider that the case study of Elevator controller is an example where the
parallel execution of many scenarios is useful.

The CPN model is obtained from sequences diagrams that represents a set of
scenario descriptions present in the use case behaviour. This CPN model explic-
itly model the entities on the environment that are important for the animation
of the elevator controller system. It is possible to execute a given scenario in
the CPN model for an initial state of the environment selected by the user. The
mechanisms that were added to the CPN model to manipulate the animation
are easily identified, thus it can be eliminated from the CPN model allowing the
reuse of the CPN model in other tasks of the development process.

The animation layer consists on a representation of the problem domain in
a user-friendly language, where the relevant entities of the system under devel-
opment have a graphic representation with associated animations to represent
the different behaviour of the entity. We use the SceneBeans tool to create the
animation layer, which is defined using a XML-based file format. To assist on the
management of XML-based code we present a script that permits an abstraction
from the details associated to the usage of XML tags.
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