Requirements Engineering for Reactive Systems
with Coloured Petri Nets: the Gas Pump
Controller Example*

Jodao M. Fernandes', Simon Tjell?, and Jens Baek Jorgensen?
! Dept. of Informatics, Universidade do Minho, Braga, Portugal
2 Dept. of Computer Science, University of Aarhus, Aarhus, Denmark
jmf@di.uminho.pt, tjell@daimi.au.dk, jbj@daimi.au.dk

Abstract. The contribution of this paper is to present a model-based
approach to requirements engineering for reactive systems, and more
specifically to controllers. The approach suggests the creation of a CPN
model based on several diagrams, for validating the functional require-
ments of the system under development. An automatic gas pump con-
troller is used as case study. We propose a generic structure for the CPN
model to address the modelling of the controller, the physical entities
which the controller interacts with, and the human users that operate
the system. The CPN modules for modelling the behaviour of the human
users and the controller are instances of a generic module that is able to
interpret scenario descriptions specified in CPN ML.

1 Introduction

A reactive system is “a system that is able to create desired effects in its environ-
ment by enabling, enforcing, or preventing events in the environment” [9]. This
characterisation implies that in requirements engineering for reactive systems it
is useful, and often necessary, to describe not only the system itself, but also the
environment in which the system must operate [1].

In this paper, we are particularly interested in controllers, i.e., a type of reac-
tive systems that control, guide or direct their environment. This work assumes
that a controller (to be developed) and its surrounding environment are linked
by a set of physical entities, as depicted in fig. 1. This structure clearly identifies
two interfaces A and B that are relevant to two different groups of stakeholders,
users and developers, in the task of requirements analysis.

From the user’s or client’s point of view, the system is composed of the
controller and the physical entities. Typically, the users are not aware of this
separation; they see a device and they need only to follow the rules imposed by
interface B to use it. In fact, they may not even know that there is a computer-
based system controlling the system they interact with.

* This research work was conducted while J.M. Fernandes was on a sabbatical leave
at DAIMI, University of Aarhus and was partly supported by project SOFTAS
(POSC/EIA/60189/2004).

From the developer’s point of view, the environment is also divided in two
parts with different behavioural properties; the physical entities have predictable
behaviour while the human actors may exhibit disobidience with respect to their
expected behaviour. Thus, the description of the behaviour of the environment
must consider the physical entities (usually called sensors and actuators) which
the system interacts with through interface A. In some cases, these physical
entities are given, and software engineers cannot change or affect them during
the development process, but need to know how they operate. Additionally, some
relevant behaviour of the human users that interact with the system through
interface B must be taken into consideration and actually reflected in the CPN
model.

entities

I

! |

physical | B |
H |

! |

! |

- =

Fig. 1. A controller and its environment.

This paper presents a model-based approach to requirements engineering for re-
active systems, and more specifically to controllers. The approach aims at obtain-
ing a CPN model that describes the requirements through scenarios combined
with a description of the behaviour of the physical entities which the controller
interacts with. We propose a generic structure for the CPN model to hold two
important properties: (1) controller-and-environment-partitioned, which means
that it constitutes a description of both the controller and its environment, and
that it distinguishes between these two domains and between desired and as-
sumed behaviour; (2) scenario-based, meaning that it was constructed on the
basis of the behaviours described in scenario descriptions. Our proposal contin-
ues the results presented in [8, 3, 2] and is illustrated in the development of a gas
pump controller, which is a well-known example in the literature [4].

The paper is structured as follows. Sect. 2 introduces the Automatic Gas
Pump case study that is used in this paper. In sect. 3, we present the main
requirement models, in the form of use case diagrams and sequence diagrams,
that were created for the case study. The CPN model for the case study, obtained
with our approach, is discussed in sect. 4. We make some conclusions in sect. 5.

2 Case Study

As case study, we consider an Automatic Gas Pump, which is a computer-based
system that permits customers to buy fuel in a self-served way. There exists
one storage tank for each type of fuel (diesel, gasoline 92 octane, and gasoline
95 octane). The pump must be deactivated for a given type of fuel, when the

quantity of fuel in the associated tank is less than a given threshold (to be
defined). There are also three different nozzles, one for each type of fuel.

To fill a car’s tank with fuel, first the customer must insert a credit card
and introduce the PIN code. If the card is valid and the introduced PIN code
is correct, the customer may start to fill the car’s tank with fuel, by picking a
nozzle. When a given nozzle is picked by the customer, the price per litre of the
respective type of fuel is shown in the display. While the fuel is being pumped,
the pump must show in real-time the quantity pumped and the respective price.

After the nozzle has been returned to the holster, the credit card company
is contacted and requested to withdraw from the customer’s account an amount
equal to the price of the fuel that has been tanked and to credit it to the station’s
account (the credit card company retains a fixed percentage of the transaction
that is deduced to the station). The customer may also get a printed receipt, if
the same credit card is reinserted in the pump, no later than five minutes after
returning the nozzle.

Based on the general structure of a reactive system (fig. 1), our approach
suggests the development to be started by creating a so-called entity diagram,
that depicts the controller system to be developed and all the entities in its
environment.

This entity model, which can be seen like a context diagram as proposed by
several software methods, has an important role in the approach, since it defines
without ambiguities the scope of the controller and identifies the entities that
exist in its environment. This clear separation between controller and environ-
ment must be preserved in the subsequent models, since our aim is to obtain a
CPN model that is controller-and-environment-partitioned.

Fig. 2 shows the entity diagram for the case study. It clearly identifies the
name and direction of each message that flow in interfaces A or B. This diagram
serves as a reference for the development process and in the next sections for each
diagram proposed we identify which parts of the entity model is being addressed.

3 Use Cases and Scenarios for the Case study

In this section, we show the artefacts (models and diagrams) that we suggest to
use before constructing the CPN model. These artefacts allow the developers to
formalise the user requirements and serve as a basis for obtaining a CPN model.
The artefacts are shown here in a specific (ideal) order, but in an engineering
development context it is expected that an iterative process must be followed.

The use case diagram for the automatic gas pump controller is depicted in
fig. 3. With respect to fig. 1, the use case diagram covers interface B (between
the users and the system), and identifies the functionalities provided by the
controller.

The use cases are briefly described below:

— UC1 buy fuel permits the customer to fill the car’s tank with the chosen
type of fuel.

pulCard T 7 [Ruainal |

T :
validateCard | phys!cal |
cardNumber validatePIN | entities !
cardStatus transferMoney | | card
-— — | card | -—
| reader [
) | 1
oy = o fuel |
|
open i Lmeasurer |,
close 1 1
—>] I
H fuel valve |,
] I
|
loyel . \[tank-level] m
| s iLsensor |} G gt
nozzleInPlace O] | &) returnNozzle
gas pump -— = 1| nozzle || B T— customer
controller = !|_detector || €
[e 2 2w
-=—H keyboard —£&
| | showPrice
show]] showPrice&Qtty
== L display =
| |
print ' receipt | getReceipt
1
activate : prlnter : lock
deactivate | | unlock
= 4 lock H == operator
] I
] [}

Fig. 2. An entity diagram for the Automatic Gas Pump, with a clear identification
of the messages that flow in interfaces A (between the Gas Pump Controller and the
Physical Entities) and B (between the Physical Entities and the Users).

— UC2 initiate payment validates if the customer has a valid credit card
and if its PIN code is correctly entered in the keyboard. If this is the case,
the pump is unblocked to allow fuel to be pumped.

— UC3 get receipt prints a receipt, if the customer reinserts the credit card
no later than five minutes after returning the nozzle to its resting position.

— UC4 de/activate pump activates or deactivates the pump. The state of
the pump must be easily visible to the customer.

As usual, the use case diagram identifies and names the use cases that the gas
pump controller must support, and shows the external actors participating in
the use cases. The actors in the use case diagram are the humans, customers and
operators, that use the gas pump.

To describe the individual use cases in detail, their textual descriptions can
be supplemented with sequence diagrams that specify some behavioural scenar-
ios accommodated by the use cases. The scenarios describe desired behaviour
of the gas pump controller in its interaction with the human actors and cover
interface B with respect to fig. 1. These scenarios are thus adequate to be dis-
cussed with the client and also the final users of the system, since they permit a
graphical and easy-to-understand representation of the user requirements, and
omit design and implementation issues.

uc4
de/activate
pump

gas pump
controller ba ucs
& get receipt
UCZ
initiate
payment
[
Customer Operator %

Fig. 3. Use case diagram for the Automatic Gas Pump controller.

As an example, the description of the main scenario for UC1 is presented
next, including references to the sequence diagram that is depicted in fig. 4(a):

1. The customer starts the payment by introducing a valid credit card and
typing the corresponding PIN code;

2. If the credit card is valid and the PIN code correct, the customer picks the
nozzle of the wanted type of fuel;

3. The system shows the information related to the selected type of fuel (price
per litre) and “0” as the number of litres pumped;

4. While the nozzle is being used, the customer can pump fuel to the car’s tank
and the system updates the display showing the volume of pumped fuel and
its respective price;

5. When the customer finishes pumping fuel, he returns the nozzle to its rest
position (in the holster);

6. The system withdraws the amount corresponding to the price of the pumped
fuel from the customer’s account, retains its commission, and credits the rest
to the station’s account.

Alternative scenarios for a use case can be created, namely when it is sufficiently
rich and complex. Fig. 4(b) shows an alternative scenario for UC1 that describes
a situation where the user initially introduces a valid credit card, types its correct
PIN code, picks a nozzle, but cancels the transaction by returning the nozzle to
the holster (i.e., without putting fuel in the car’s tank). Therefore, at the end,
the system does not transfer money from the customer’s account to the account
of the station.

Similar textual descriptions and sequence diagrams exist for the other use
cases. There is a dependency relationships between UC1 and UC2, meaning that
to complete its execution, UC1 needs the functionalities provided by UC2. This
dependency is specified in the use case diagram by an include relation and in
the sequence diagrams by ref operators.

The next step in the modelling process is to refine the scenario descriptions, to
introduce more detailed information in order to permit further development tasks
to be conducted. In our approach, this entails two different things. Firstly, it is
important to refine the user-level sequence diagrams by indicating the particular
physical entity with which the users do exchange messages at each point in time.

% system %

system
customer customer
| |

ref

{UC2} initiate payment | ref

opt J [valid card and correct PIN] opt J [valid card and correct PIN]
pick nozzle ! pick nozzle !

I

show information show information

- " return nozzle
loop] [nozzle is being used]
: trigger nozzle

! show information

1
|
|
[l
return nozzle |

I
transfer money
EE
(a)

Fig. 4. Sequence diagram at the user level for UC1: (a) the main scenario, and (b) an
alternative scenario.

The sequence diagram depicted in fig. 5 is an example of a scenario that details
the exchange of messages in interface B. This can be seen in contrast to the
diagram in fig. 4, where the user exchanges messages with the whole system,
seen as a monolithic structure.

customer
I

nozzle
detector

T T
ref J

display

{UC2} initiate payment |

T
pick nozzle (95)

! return nozzle (95)

|
|
T
|
i
|
1 1
ﬂ) : : trigger nozzle (95)
0 T
| |
|
|
L
|

show price

| —— e
1

|

|

1

show price & quantity 1
—
|

I

[

Fig. 5. The behaviour of the customer and the physical entities, during the main
scenario of UCI.

Secondly, the messages that flow in interface A need also to be considered in our
approach. This permits developers to introduce details about how the controller
actually reacts to stimuli from the physical entities, that were supposedly initi-
ated by the user. These refined scenario descriptions can be considered as part of
the system requirements. The sequence diagram depicted in fig. 6 is an example

of a scenario that details the exchange of messages in interface B. This diagram
is used to specify the behaviour of the gas pump controller, and more particu-
larly the interaction of the controller with the physical entities. Therefore, the
controller must be considered as the central element of that sequence diagram.

In summary, sequence diagrams as the one shown in fig. 5 describe require-
ments expressed as scenarios for the use cases, while sequence diagrams like
the one in fig. 6 should be considered as specifications for a given scenario of a
use case. This distinction assumes that “a requirement is a desired relationship
among phenomena of the environment of a system, to be brought about by the
hardware/software machine that will be constructed and installed in the envi-
ronment, while a specification describes machine behaviour sufficient to achieve
the requirement” [6].

pump fuel nozzle card

displa fuel valve
controller measurer detector reader play
T T T T

{UC2} initiate payment
T

pe)

<

T
I not nozzle in place (t

! reset (type)
(I AN
|_open (type)

I
1 show (type)
r

T

ﬂ) : quantity
—

)

:show (quantity & pric
|

close (type)

transfer money

R RPN DU N I A (U | M

Fig. 6. The behaviour of the gas pump controller when interacting with the physical
entities, during the main scenario of UC1.

4 The CPN model for the case study

The next development step is to construct a CPN model that represents all the
behaviours described by the collection of considered sequence diagrams. The
CPN modelling language was chosen, since CPN models are executable and
formal, can provide a good balance between graphical and textual constructs,
can address both the behaviour and the data of the system, and handle modelling
aspects such as concurrency and locality in a graceful manner [7].

The construction of the CPN model is based on scenarios, which is important
to guarantee that the model reflects all the partial behaviours identified and dis-
cussed with the clients and users of the system under development. Additionally,
the CPN model must be structured in such a way that the separation between
the controller and the environment, as expressed in fig. 1, is preserved and easy

to identify. Therefore, the approach ensures that the CPN is constructed to be
controller-and-environment-partitioned and scenario-based.

4.1 Top-level Module

Fig. 7 shows the topmost module of the hierarchical CPN model for the case
study, constructed from the sequence diagrams and following the structuring
principles proposed in this paper. The module contains three substitution tran-
sitions: Human Actors, Physical Entities, and Controller. These three substitution
transitions represent different domains and are used for modelling the functional
requirements, the behavioural domain knowledge, and the behaviour of the con-
troller, respectively.

["pump controller"] ["customer"]

Local
Objects 1

ObjectIDs

Physical | I
Controller
SD Interpreter SD Interpreter

Physical Entities
Private Phenomenon Phenomenon Private
Phenomena 1 Phenomena 2

sD SD
State UC1_controllér State UC1_customer

Local
Objects 2
ObjectIDs

Phenomenon Phenomenon

Fig. 7. The topmost module of the CPN model

The structure in fig. 7 is generic to reactive systems with a close interaction with
the physical environment and operated by human actors. The structure embod-
ies the guidelines that we are proposing for the modelling of such systems, their
requirements, and their environment. The basic idea of the structure is to assist
the modeller in maintaining a proper separation between the three modelling
domains. The structure allows the description of scenarios for the behaviour of
human actors and for the behaviour of the controller at an abstract level, both
by means of high-level sequence diagrams, which are translated into a textual
form for interpretation and execution by the Human Actors and Controller mod-
ules, respectively. Additionally, we use a regular CPN module (Physical Entities)
for describing the behavioural properties of the physical entities through which
the customer and the controller interact. By “regular”, we mean a CPN that
directly uses the graphical constructs (places, transitions, arcs, etc.) to describe
the behaviour of the considered domain.

The three domains interact through a collection of shared phenomena [5]. A
shared phenomenon is a state or an event that is observable by both domains
while being controlled by only one domain. In contrast, a private phenomenon
is only observable within the controlling domain (not to be confused with the
controller domain). The controlling domain is the domain that is able to affect

a shared phenomenon, i.e., to cause changes to a shared state or to generate
a shared event. An observing domain is able to react on, but not affect, an
observed phenomenon. No external domains are able to observe and thereby
react on phenomena that are private to other domains. The shared phenomena
perspective helps in the task of identifying the interfaces through which the
domains are interacting. This allows us to enforce a strict partitioning of the
representations of each of the domains in the CPN model, in order to make
it useful for requirements engineering. In the top module of the CPN model
(fig. 7), the interfaces of shared phenomena are emphasized as black places, each
one denoted by a letter and a number:

A1: Shared phenomena between the controller and the physical entities, and
controlled by the controller.

A2: Shared phenomena between the controller and the physical entities, and
controlled by the physical entities.

B1: Shared phenomena between the physical entities and the human actors, and
controlled by the physical entities.

B2: Shared phenomena between the physical entities and the human actors, and
controlled by the human actors.

4.2 Physical Entities Module

The customer does not interact directly with the pump controller. In fact, he
might not even be aware of the existence of a pump controller, i.e., a computer-
based system controlling the system he interacts with. Instead, the customer
does interact with the physical entities. The Physical Entities module is used
for describing the behaviour of the actuators and the sensors that connect the
controller with its physical environment. This behaviour is also referred to as
the indicative (or given) properties of the environment; the physical entities
have given behaviour patterns, which serve as a framework for the operation of
the controller. These patterns of behaviour must be taken into account when the
controller itself is designed, because they form part of the resulting behaviour of
the environment when the controller is deployed. Furthermore, we consider that
the physical entities are not integrated parts of the controller itself and this is
the reason why they are explicitly modelled as a separate domain.

Fig. 8 shows the internals of the Physical Entities module (with just a subset
of the entities). Each physical entity is represented by a substitution transition.
Two internal states (the white places Nozzle Triggered and Fuel Valves) are used
for modelling phenomena that are private to the physical entities; i.e., they are
hidden from both the customer and the pump controller. The black and grey
places are connected to the black places in the top module. A simple colour
coding scheme is applied: black places hold locally controlled shared phenomena,
while grey places hold remotely controlled shared phenomena.

Each substitution transition in the Physical Entities module encapsulates the
behaviour of one particular physical entity; as an example, fig. 9 depicts the

Nozzle Detector

A2 Z Nozzle detector

Phenomenon Phenomenon
Fuel Nozzle
Measurer Jriggere
/ INT
Fuel

Valve
Phenomenon [Fuel Valve 1 (921C|osed)++FueIValve
1'(95,Closed)
Display | Bl
|
[Display Phenomenon

Fig. 8. The Physical Entities module.

module for the Fuel Measurer. The description is restricted by the fact that com-
munication is performed exclusively through the interface of shared phenomena.
The result is a collection of descriptions of the indicative behavioural properties
of the physical environment. This part of the environment differs significantly
from the part of the environment containing human actors (modelled in the Hu-
man Actors module) by the lack of free will and by the resulting deterministic
nature. The physical entities exhibit strict reactive behaviour and do not gen-
erate events or change states in a spontaneous manner. Once the behavioural
properties of the physical entities have been described, the descriptions can be
maintained for executing various scenarios and for experiments with various
possible design specifications for the pump controller.

1'(92,0)++
Event("reset",

1'(95,0)
fuel_type,epar) (fuel_type,0
—————— P Reset |4 Measurements
|
(fuel_type,q)

Phenomenon FuelMeasurement

(fuel_type,q+1) | |(fuel_type,q)

Event("quantity",fuel_type,q+1
o W ("quantity ype,q+1) [Measure —
uel_type,Open /0
Phenomenon /ol FuelValve

fuel_type

Nozzle
riggered
= INT

Fig. 9. The Fuel Measurer module.

In the approach to requirements engineering of reactive systems that we suggest
in this paper, the modeller is only expected to specify CPN model structure,
when the behaviour of the physical entities is being described. Everything else
(i.e., controller and human users) is modelled by parameterizing a generic CPN
module.

4.3 Controller and Human Actors Modules

Both the controller and the human actors are represented in fig. 7 by substitution
transitions that refer to the SD Interpreter module. This generic module acts as
an interpreter for textual CPN ML representations of the basic elements of UML
2.0 sequence diagrams. This module is utilized both for executing scenarios in
which the user interacts with the system and for representing the behaviour of
the controller.

As shown in fig. 7, the instances of the SD Interpreter module are parame-
terized through three places: one place specifies which objects (as found in the
sequence diagram) are local to the instance (Local Objects 1 and 2), another
place specifies possible private phenomena to the domain (Private Phenomena
1 and 2), and a third place specifies the behaviour as a scenario in the form
of a sequence diagram (Scenarios 1 and 2). Each instance communicates with
the physical entities through its set of shared phenomena. The communication
consists of messages about the occurrence of events or changes to shared states.
Furthermore, shared states can be part of the predicates used in the sequence
diagrams.

Fig. 10 shows the internals of the SD Interpreter module. This module is basi-
cally the specification of a machine, which is able to execute sequence diagrams
specified in CPN ML. The execution may be affected by incoming events and
state changes and may itself cause state changes and generate events through
the interface of shared phenomena. When a sequence diagram is executed, the
modeller needs to specify which objects are local. All communication between
local and non-local objects is performed through shared phenomena.

Local Internal
Objects States
!

o ObjectlDs State
Locally Controlled
Counter I/OShared Phenomena
INT co2) Phenomenon
| Label | ALT
Label ALT
{1
Pick Current
Element Element Loop
Pick Element Elements LOOP/
. Remotely Controlled
{ %ehawor Shared Phenomena
SD OPT o

Phenomenon

Fig. 10. The SD Interpreter module.

Fig. 11 illustrates the CPN ML representation of the sequence diagram in fig. 5 (a
similar representation exists for the sequence diagram in fig. 6). This sequence

diagram specifies a scenario of UC1 as seen by the customers through their
interaction with the physical entities. Here, it has been translated into a list
value, which is placed (as a token) in the place Scenarios 2 and interpreted by
the Human Actors substitution transition.

A simple language has been developed to represent the basic features of
UML 2.0 sequence diagrams, such as optionals (OPT), alternatives (ALT), loops
(LOOP), and messages (arcs). Each of these features is handled by a separate
substitution transition in the SD Interpreter module. The interpreter utilises the
parameterised knowledge about local objects (and the derived implicit knowledge
about remote objects) to determine the direction of messages (events or state
changes) during the execution of the list representation of a sequence diagram.

If a message is outgoing (i.e., generated by a local object), this is reflected by
the interpreter altering a local phenomenon, either by generating a new event
token or by modifying the value of a state token in the place called Locally Con-
trolled Shared Phenomena. Alternatively, if a message is incoming (i.e., generated
by a remote object), the interpreter halts until this message is detected in the
place called Remotely Controlled Shared Phenomena. This is the basic mechanism
for the synchronisation of the instances of sequence diagram interpreters with
the physical entities modelled in regular CPN modules. In the example of fig. 5,
the customer object is local to the Human Actors instance, while the physical
entities are remote. The ALT, LOOP, and OPT operators do not involve any
exchange of messages, but rely on the interface of shared places in order to eval-
uate predicates that may involve shared states. When the interpreter encounters
a predicate in one of these operators, the current value of a relevant shared state
is investigated to evaluate the predicate.

The basic operation of executing the CPN ML representation of a sequence
diagram as performed by the SD Interpreter module can be described as fol-
lows: The interpreter traverses the CPN ML list one element at a time. This is
controlled by a counter (maintained in the place Counter) that somehow resem-
bles a program counter. The substitution transition Pick Element picks out the
next element of the list based on the current state of the counter found in the
single token value found in the Counter place. A single element is produced in
the Current Element place and from here it is consumed and handled by one of
these substitution transitions based on its type: Message, ALT, LOOP, OPT, or
LABEL. As an example of how specific elements are handled, Fig 12 shows the
contents of the LOOP substitution transitions that handles the elements used
for representing loop structures of arbitrary levels of depth found in sequence
diagrams. In can be seen how shared phenomena are evaluated through access to
the interface places described earlier (Remotely Controlled Shared Phenomena and
Locally Controlled Shared Phenoma). This makes it possible for the interpreter to
evaluate the predicates that may exist in the definition of a specific loop in order
to determine when to enter and leave the loop based on shared phenomena.

Fig. 13 documents the collection of colour sets that are used through out the
model.

val UCl_customer =
UC2_customer
[
Message ((” customer” ,” nozzle._.detector”),
EventOccurrence (" pick.nozzle” ,95, EventParameter (0))) ,
Message ((” display”, ”customer”),
StateChange (” display”, 0, AnyStateParameter)),
LOOPHEAD(1,INT_(5), NoPredicate ,”a” ,”b”),
Label(7a”),
Message ((” customer” , "nozzle._.detector”),
EventOccurrence (" trigger._.nozzle”, 95,EventParameter (0))),
Message ((” display”, ”customer”),
StateChange (” display” ,95, AnyStateParameter)) ,
LOOP_TAIL() ,
Label ("b”),
Message ((” customer” ,” nozzle._.detector”),
EventOccurrence ("return._nozzle” ;95, EventParameter (0)))

15

Fig. 11. The CPN ML representation of the sequence diagram found in fig. 5

LOOP_HEAD

LOOP_HEAD
-perform evaluation

»l
a 1| and push head
if positive
A A
Evaluate Predicate
Observable Remotely Controlled
State N Shared Phenomena
f Phenomenon
Y 1 [No Predicate 4 A
Current Loop Stack No . op
IE O% em@ Predicate Behavior Cou tack
A Elements LoopStackElement L S L LoopStack
Controllable Locally Controlled
Shared Phenomena
Evaluate Predicate Phenomenon
A 4 A 4
LOOP_TAIL
- -jump to 4—/
head
LOOP_TAIL

Fig.12. The LOOP module.

colset
colset
colset
colset
colset
colset

colset
colset
colset
colset
colset
colset

colset
colset

colset
colset
colset

colset
colset

colset

colset
colset
colset
colset
colset

colset
colset
colset
colset
colset
colset
colset
colset

colset
colset
colset
colset
colset
colset
colset
colset

colset
colset
colset
colset
colset
colset

ObjectID = STRING;
ObjectIDs = list ObjectID;
EventID = STRING;
Direction = product ObjectID * ObjectlD;
EventParameter = INT;
OptionalEventParameter =
union EventParameter: EventParameter + AnyEventParameter;
EventIndex = INT;
StatelD = STRING;
Event = product EventID % EventIndex x EventParameter;
StateIndex = INT;
StateParameter = INT;
OptionalStateParameter =
union StateParameter:StateParameter + AnyStateParameter;
StateChange = product StateID*Statelndex % OptionalStateParameter;
EventOccurrence =
product EventID % EventIndex % OptionalEventParameter;
State = product StatelD x Statelndex * StateParameter;
PredicateType =with NEQ | EQ | GT | LT | GTE | LTE;
StateChangeOrEvent =
union EventOccurrence: EventOccurrence + StateChange:StateChange;
Message = product Direction * StateChangeOrEvent;
Predicate =
product StateID x Statelndex * PredicateType * StateParameter;
OptionalPredicate =
union Predicate: Predicate + NoPredicate + NonDeterministic;
Label = STRING;
Phenomenon = union State:State 4+ Event:Event;
OPTHEAD = product OptionalPredicate * Label % Label;
INTorINF = union INT_:INT 4+ INF;
LOOP_HEAD =
product INT % INTorINF % OptionalPredicate x Label % Label;
LOOP_TAIL = UNIT;
ALTELEMENT = product Predicate % Label % Label;
ALT_ELEMENT_ELSE = product Label % Label;
ALT HEAD = Label;
ALT_TAIL = UNIT;
AltStackElement = product ALTHEAD x BOOL;
AltStack = list AltStackElement;
Element = union Message: Message + Label:Label +
OPT_HEAD:OPT HEAD + LOOP_HEAD:LOOP HEAD -+
LOOP_TAIL:LOOP_TAIL + ALT HEAD:ALT HEAD +
ALT_ELEMENT: ALT ELEMENT + ALT_ELEMENT_ELSE:ALT_ELEMENT_ELSE +
ALT_TAIL: ALT_TAIL;
LoopStackElement = product LOOPHEAD x INT x INT;
LoopStack = list LoopStackElement;
Elements = list Element;
SD = Elements;
Lst = list INT;
SCState = State;
OptionalEvent = union Event_:Event + NoEvent;
SCTransition =
product SCState x OptionalEvent x
OptionalPredicate * SCState * OptionalEvent;
SCStates = list SCState;
SCTransitions = list SCTransition;
SC = product ObjectID % SCState x SCStates * SCTransitions;
FuelValveState = union Open + Closed;
FuelValve = product INT *x FuelValveState;
FuelMeasurement = product INT x INT;

Fig. 13. The colour sets used in the model

4.4 Discussion

The reflections behind the work presented in this paper are inspired by the work
of Jackson and particularly by his work on Problem Frames [5]. The reactive
system we deal with in this paper fits well in the Commanded Behaviour Problem
Frame specified in [5] but our approach from the Problem Frames approach in
a central point: we explicitly model the human actors observing the states and
events of the domain of physical entities. This is necessary in order to synchronise
the execution of scenarios between the human actors and the physical entities
(and the system as a whole).

The main purpose of the CPN model we present in this paper is to provide
the modeller of a reactive system with a generic structure that can be used as
a starting point for capturing functional requirements and knowledge about the
physical environment in a sensible way.

The requirements are specified as a collection of scenarios describing use cases
in which the final system must be able to interact according to the expected
behaviour. To validate the scenarios, the CPN model suggests the behaviour of
the controller to be specified at a relatively-high abstract level. This permits to
base a prototypical design of the controller on sequence diagrams that describe
scenarios of use cases. At the same time, different sequence diagrams are used to
describe scenarios of the behaviour of the human actors; and thereby required
behaviour of the entire system consisting of the physical entities in combination
with the controller.

The specification of the behaviour of the controller is relatively abstract,
since it does not necessarily include descriptions of any internal components of
the controller. At a later point in the development process, such components
may be introduced by refining the sequence diagrams used to describe the con-
troller behaviour (as the one found in fig. 6). The abstract description of the
controller behaviour is necessary to permit the modeller to execute the scenarios
specified for the human actors in a simulated environment with responses from
the system. This is as an important property of the modelling approach, since it
may be helpful in the complex task of specifying and validating the functional
requirements.

5 Conclusions

The contribution of this paper is a model-based approach to requirements en-
gineering for reactive systems. Its application is illustrated in an automatic gas
pump controller. The approach suggests the creation of a CPN model based on
the requirements expressed as use cases and sequence diagrams, for validating
the functional requirements of the system under development.

A generic structure is proposed for the CPN model, so that it is possible to
address the modelling of the controller, the physical entities which the controller
interacts with, and the human users that operate the system. We suggest the
CPN modules for modelling the behaviour of the human users and the controller

to be instances of a generic module that is able to interpret scenario descriptions
specified in CPN ML. This proves to be a good solution, since the size of the CPN
module remains the same independently of the number of considered scenarios.

In contrast, for modelling the behaviour of the physical entities (actuators
and sensors) we use regular CPN modules, i.e., modules that directly use the
graphical constructs of the CPN language (places, transitions, arcs, etc.), to
model behaviour.

The CPN language is a good choice for modelling these two types of modules,
since it allows the complexity of the model to be split between graphical and
textual constructs, and also between the data and the control perspectives.

As future work, we plan to extend the SD Interpreter module to handle all
UML 2.0 sequence diagrams constructs, and also to apply our approach to other
types of reactive systems, like for example interactive systems, workflow systems,
and robotic systems.

References

1. J. Desel, V. Milijic, and C. Neumair. Model Validation in Controller Design. In
Lectures on Concurrency and Petri Nets, volume 3098 of LNCS, pages 467-95.
Springer, 2004.

2. J.M. Fernandes, S. Tjell, and J.B. Jgrgensen. Requirements Engineering for Reactive
Systems: Coloured Petri Nets for an Elevator Controller. Technical report, DAIMI,
University of Aarhus, Denmark, July 2007.

3. J.M. Fernandes, S. Tjell, J.B. Jgrgensen, and O. Ribeiro. Designing Tool Support
for Translating Use Cases and UML 2.0 Sequence Diagrams into a Coloured Petri
Net. In 6th Int. Workshop on Scenarios and State Machines (SCESM 2007), at
ICSE 2007 IEEE CS Press, 2007.

4. D. Heimbold and D. Luckham. Debugging Ada Tasking Programs. IEEE Software,
2(2):47-57, 1985.

5. M. Jackson. Problem Frames — Analyzing and Structuring Software Development
Problems. Addison-Wesley, 2001.

6. Michael Jackson and Pamela Zave. Deriving Specifications from Requirements: an
Example. In 17th International Conference on Software Engineering (ICSE ’95)),
pages 15-24, New York, NY, USA, 1995. ACM Press.

7. K. Jensen, L.M. Kristensen, and L. Wells. Coloured Petri Nets and CPN Tools for
Modelling and Validation of Concurrent Systems. Software Tools for Technology
Transfer, 2007. In Press. DOIL: 10.1007/s10009-007-0038-x.

8. O. R. Ribeiro and J. M. Fernandes. Some Rules to Transform Sequence Diagrams
into Coloured Petri Nets. In 7th Workshop and Tutorial on Practical Use of Coloured
Petri Nets and the CPN Tools (CPN 2006), pages 237-56, 2006.

9. R.J. Wieringa. Design Methods for Reactive Systems: Yourdon, Statemate, and the
UML. Morgan Kaufmann, 2003.

