
Requirements Engineering for Reactive Systems:
Coloured Petri Nets for an Elevator Controller∗

João M. Fernandes†, Jens Bæk Jørgensen, Simon Tjell
Department of Computer Science, University of Aarhus
IT-parken, Aabogade 34, DK-8200 Aarhus N, Denmark

{jmf,jbj,tjell}@daimi.au.dk

Abstract

This paper presents a model-based approach to require-
ments engineering for reactive systems; we use an eleva-
tor controller as case study. We identify and justify two
key properties that a model which we construct must have,
namely: (1) controller-and-environment-partitioned, which
means constituting a description of both the controller and
the environment, and distinguishing between these two do-
mains and between desired and assumed behaviour; (2) use
case-based, which means constructed on the basis of a
given use case diagram and reproducing the behaviour de-
scribed in accompanying scenario descriptions. For the
case study, we build an executable model in the formal mod-
elling language Coloured Petri Nets. We demonstrate how
this model is useful for requirements engineering, since it
provides a solid basis for addressing behavioural issues
early in the development process, for example regarding
concurrent execution of use cases and handling of failures.

1 Introduction

A reactive system is “a system that is able to create de-
sired effects in its environment by enabling, enforcing, or
preventing events in the environment” [14]. This character-
isation implies that in requirements engineering for reactive
systems it is necessary to describe not only the system itself,
but also the environment in which the system must oper-
ate [8]. In this paper, we suggest a model-based approach to
requirements engineering for reactive systems; we illustrate
our proposal in the development of an elevator controller,
which is a standard example in the literature.

In our approach, we must construct an executable model
that is controller-and-environment-partitioned. This key

∗Research supported by FCT, under project SOFTAS (contract
POSC/EIA/60189/2004).

†On a sabbatical leave from University of Minho, partially supported
by FCT, under grant SFRH/BSAB/607/2006.

property means that it is a description of (1) the desired be-
haviour of the controller itself; (2) the desired behaviour of
the composite system that is made up of the controller, plus
relevant external entities in its environment; and (3) the as-
sumed behaviour of these external entities. Additionally,
the description must clearly distinguish between the con-
troller and the environment and also between desired and
assumed behaviour. For example, desired behaviour is that
an elevator car stops when it comes to a floor for which there
is a request; assumed behaviour is that the motor starts and
sends the car downwards when it receives a goDown sig-
nal. The reason that we emphasise the distinction between
desired and assumed behaviour is that developers have free-
dom to make design choices regarding the former, while re-
garding the latter they “just” have to accept and understand
what is given and act accordingly.

The second key property of the model is that it must be
use case-based, which means that it is constructed from a
given use case diagram and can reproduce the behaviour
described in accompanying descriptions of scenarios for the
use cases. The reason that we enforce this property is that
use cases are a convenient and widely-used technique and
we would like our approach to be useful in projects that
apply use cases for requirements engineering, because this
may increase the possibility of its industrial adaptation. Our
approach expands, refines, and supplements use case de-
scriptions through the creation of a model, which can be
seen as an executable version of a given use case diagram.

The model-based approach that we suggest deviates
from what is often done. If we follow, say, RUP [12], after
creating the use case diagram and the accompanying sce-
nario descriptions we would most likely soon create a class
diagram of the software system to be made. Instead, here
we focus on the entire elevator system by creating a be-
havioural model, prior to more technical software design.

In this paper, we demonstrate how to create a model in
the Coloured Petri Nets (CPN) language [9] that has the
two properties which we pursue. In this way, we com-
bine UML use case diagrams and sequence diagrams with

14th Asia-Pacific Software Engineering Conference

1530-1362/07 $25.00 © 2007 IEEE
DOI 10.1109/ASPEC.2007.15

294

CPN. Hence, we contribute to a more general effort on
combining UML notations and Petri nets (see, e.g., [3, 6]),
which we believe can be useful in software engineering and
therefore deserves more attention than it has had. Using
the CPN model in requirements engineering for an eleva-
tor controller allows some behavioural issues to be analysed
and dealt with early in the development process. An exam-
ple is concurrent execution of use cases and related issues,
like resource access and synchronisation. Another example
is failure handling; many failures can happen in the environ-
ment and must be detected and handled by the controller.

The paper is structured as follows. Sect. 2 introduces
the use case diagram and the scenario descriptions for the
elevator controller case study. A brief introduction to the
CPN modelling language is given in sect. 3 to provide the
reader previously unacquainted with CPN the necessary
background to understand this paper. The CPN model of
the case study is presented in sect. 4, and its use to address
behavioural issues is discussed in sect. 5. We cover related
work in sect. 6 and draw some conclusions in sect. 7.

2 Use Cases and Scenarios for the Case Study

We consider a simplified version of an elevator system
with two elevator cars in a six-floor building. The main re-
sponsibility of the elevator controller is to control the move-
ments of the cars, which are triggered by passengers push-
ing buttons. On each floor, there are hall buttons that can be
pushed to call the elevator; a push indicates whether the pas-
senger wants to travel up or down. Inside each car, there are
floor buttons, which can be pushed to request the car move-
ment to a particular floor, and there is one button to force
the car door to open. The controller is also responsible for
updating a floor indicator inside each car that displays the
current floor of the car. Similarly, a direction indicator must
be updated. Fig. 1 shows the use case diagram for the ele-
vator controller. The use cases are briefly described below.

«include»UC2
Service floor

UC4
Close door

UC3
Open door

UC6
Notify floor

passed
UC5

Stop at floor

UC1
Travel to

floor

Floor
Button

Direction
Indicator

Hall
Button

Car
Motor

Door
Motor

Car Door
Sensors

Open
Door

Button
Floor

Indicator

Door
Timer

Location
Sensor

Elevator
Controller

«include»

«include»

«include»

«in
clu

de
»

«include»

«include»

«in
clu

de
»

Figure 1. Use case diagram for the elevator
controller.

• UC1 Travel to floor calls an elevator car to the floor
that has been requested, and after the elevator car ar-
rives travels to a given destination floor.

• UC2 Service floor moves the elevator car from one
origin floor to a destination floor.

• UC3 Open door opens the car door.
• UC4 Close door closes the car door. If the door is

blocked or the open door button is pushed while the
door is being closed, the door is opened and will close
again after a timer expires.

• UC5 Stop at floor stops an elevator car at a given floor.
• UC6 Notify floor passed informs the passengers in-

side the elevator that a given floor is about to be passed.

As usual, the use case diagram identifies and names
the use cases that the elevator controller must support, and
shows the external actors participating in the use cases. The
actors in the use case diagram are the external entities that
the controller interacts directly with. These entities are
given, and we cannot change them or affect them in our
development project, but we must know how they behave.
This conception of actors in a use case diagram may deviate
from more common conventions. Many use case diagrams
for the elevator controller would include a “passenger” ac-
tor. We do not do this, because the elevator controller does
not interact directly with passengers, but merely with but-
tons and sensors operated and affected by passengers.

To describe the individual use cases in detail, their tex-
tual descriptions are supplemented with sequence diagrams
that specify some behavioural scenarios accommodated by
the use cases. These scenarios describe desired behaviour
of the elevator system, consisting of the controller plus its
external actors. As an example, the description of the main
scenario for UC1 is presented next, including references to
the sequence diagram that is depicted in fig. 2:

1. The passenger at floor fo requests an elevator to travel
in a given direction (specified in the sequence diagram
by message carRequest from Hall Button to Elevator
Controller);

2. Internally, the Elevator Controller selects a car and as-
signs it to the request (messages selectElevatorCar
and assignRequest);

3. The passenger is notified that the request has been
assigned (message notifyCarSelected from Elevator
Controller to Hall Button);

4. The car is sent to floor fo (1st ref to UC2);
5. The passenger is notified that the car has arrived at

floor fo (message notifyCarArrived from Elevator
Controller to Hall Button);

6. The car door is opened (1st ref to UC3);
7. The passenger is notified of the direction the car will

take (message light from Elevator Controller to Direc-
tion Indicator);

295

8. After entering the elevator, the passenger selects des-
tination floor fd (message destinationFloorSelected
from Floor Button to Elevator Controller);

9. Internally, the Elevator Controller registers the request
(message recordRequest);

10. The passenger is notified that the request has been reg-
istered (message notifyRequestFloorRecorded from
Elevator Controller to Floor Button);

11. The car door is closed (ref to UC4);
12. The car is sent to destination floor fd (2nd ref to UC2);
13. The passenger is notified that the request to travel to

floor fd has been served (message notifyRequest-
FloorServed from Elevator Controller to Floor But-
ton);

14. The car door is opened and the passenger exits the el-
evator (2nd ref to UC3).

Similar textual descriptions and sequence diagrams exist
for the other use cases. There are some dependency rela-
tionships among the use cases (for example, UC1 needs the
functionalities provided by UC2, UC3, and UC4). They are
specified in the use case diagram by include relations and in
the sequence diagrams by ref operators.

3 Brief Introduction to Coloured Petri Nets

This section gives a brief and informal introduction to
the CPN language. For a more complete and formal treat-
ment, please refer to [9, 10]. CPN is a well-proven for-
mal modelling language, suitable for describing the be-
haviour of systems with characteristics like concurrency,
resource sharing, and synchronisation. The CPN language
is supported by CPN Tools (www.daimi.au.dk/CPNTools)
which is licensed to more than 4,000 industrial and aca-
demic users. CPN Tools facilitates construction, editing,
execution, and analysis of CPN models. The CPN language
provides an explicit description of both states and actions,
and gives a modelling convenience corresponding to a high-
level programming language with support for data types,
modules, and hierarchical decomposition.

A CPN model is a graphical structure, composed of
places, transitions, arcs, tokens, and inscriptions, supple-
mented with declarations of data types, variables, and func-
tions. An example of a CPN model, representing the be-
haviour of the door timers used in the elevator system is
shown in fig. 3. The tokens may have complex data values
(colours). The use of functions and expressions to manipu-
late data values allows the complexity of a model to be split
between graphics, declarations, and inscriptions.

Places are drawn as ellipses and hold multi-sets (bags)
of tokens. A place models a local state, given by its tokens.
The global state of a model is the union of all local states.

Elevator
Controller

Hall Button

selectElevatorCar

Direction Indicator

light(c,d)

Floor Button

destinationFloorSelected(c,fd)

recordRequest

notifyRequestFloorRecorded(c,fd)

notifyRequestFloorServed(c,fd)

Passenger enters elevator car c
to travel to floor fd

Passenger exits elevator car c
at floor fd

Passenger at floor fo requests an
elevator to travel in an intended
direction d

Car c was selected
assignRequest(c)

notifyCarSelected(fo,d)

carRequest(fo,d)

ref {UC2} Service Floor

ref {UC3} Open Door

ref {UC4} Close Door

ref {UC2} Service Floor

ref {UC3} Open Door

notifyCarArrived(fo,d)

Figure 2. Sequence diagram for the main sce-
nario for UC1.

Each place has an associated type, indicated by an inscrip-
tion near the place, that specifies the kind of tokens that it
may contain. For example, the places Stopped and Run-
ning in fig. 3 can both contain tokens of the type CarID_t.
The place Stopped has two tokens, indicated by the circled
“2”, and the place Running has no tokens. The two tokens
in the place Stopped represent two door timers, one for
each elevator car. One token has the value 1, and the other
has the value 2 (indicated by the expression 1’1++1’2 in the
box near the place). These values are used to distinguish the
timers of the two cars. This shows an essential feature of the
CPN language: the pattern of behaviour of the door timers is
expressed only once by the structure of their CPN module,
and multiple timers operating concurrently are modelled by
tokens with individual IDs.

Transitions model behaviour and are drawn as boxes. A
transition is connected to input places and output places by
arcs. The state of the model is changed when transitions
fire, by moving tokens from input to output places and/or

296

by changing the values of the tokens. The door timer has
two different states represented by the two white places in
fig. 3: it is either running or stopped. The black places are
used to model the interface between the door timer and the
controller (more details in sect. 4.1). Two events can oc-
cur in the door timer and each of these is represented by a
transition: the timer either expires or is started.

The Start transition has the places Stopped and Ctrl.-
Controlled Shared Events as input places and the place
Running as output place. When the transition fires (rep-
resenting the event that the timer is started), one token is
removed from each of its input places and a new token is
added to its output place. A transition is said to be enabled
(i.e., ready to fire), when it is possible to consume a collec-
tion of tokens from its input places that complies with the
restrictions expressed by the inscriptions on the arcs con-
necting these places to the transition.

DoorTimerExpiredEvent
{car=c}

DoorTimerSetCommand
{car=c}

c

c c

Expire

Start

Env.-Controlled
Shared Events

Out

Ctlr.-Controlled
Shared Events

In

StoppedRunning

In

Out

c

CarID_t

CarID_t.all()

CarID_t

ControllerEvents_t

EnvironmentEvents_t

2
1`1++
1`2

Figure 3. The Door Timer module.

The Start transition is enabled when: (1) there is a token
in the Stopped place, representing that a timer is stopped,
and (2) there is a token in the Ctrl.-Controlled Shared
Events place, representing that a command has been sent
to the controller to start the timer. The variable c is used
in both input arcs of the Start transition to relate the token
representing the occurrence of an event (the command) and
the token representing the current state of the timer.

Substitution transitions (of which there are none in fig. 3)
constitute the basic mechanism for arranging a CPN model
in a hierarchical structure. A substitution transition, graph-
ically represented by a doubled-edged box (see, e.g., fig. 5)
is a transition that stands for a whole module of the CPN
structure. A substitution transition in a super-module is con-
nected to its sub-module via places on the two modules,
which are conceptually glued together. Regarding structur-
ing of models, substitution transitions serve the same role
in CPN models as superstates do in statecharts [7].

4 CPN Model for the Case Study

In this section, we present the CPN model that has been
created for the elevator controller case study, based on the

artefacts presented in sect. 2. The CPN model is structured
in a hierarchy of which the topmost modules are shown in
fig. 4 (these modules are sufficient for this paper, and we
do not have space to present the other modules of the CPN
model). The boxes in the figure represent modules while
the connecting lines represent relationships in the hierar-
chy. For example, the Top module contains two substitu-
tion transitions: one bound to the Controller module and
one bound to the Environment module.

Top

Controller

UC1 Controller
Car Door
Car Motor

Door Timer

Environment

UC1 Environment

Figure 4. The hierarchy of CPN modules.

4.1 The Top Module

The topmost module of the CPN model (fig. 5) is struc-
tured to describe the controller and the environment. In
this way, the CPN model is constructed to ensure the first
key property we pursue; it is controller-and-environment-
partitioned (the distinction between desired and assumed
behaviour in the environment is dealt with on the lower lev-
els in the hierarchy). Each of the two domains is represented
at the top level by a substitution transition.

The two domains communicate through an interface
formed by a collection of shared phenomena [8]. A shared
phenomenon is a state or an event that is observable by both
domains while being controlled by only one domain. In
contrast, a private phenomenon is only observable within
the controlling domain (not to be confused with the con-
troller domain). In our case study, an example of a shared
phenomenon is the event of a passenger pushing a request
button. It occurs in the environment and is observable by
the controller. The controller records all pending requests in
an internal data structure, and this is a private phenomenon
of the controller. In CPN models, places can not only be
used for holding information about states, but also for ex-
changing information about the occurrence of events. Thus,
a place can be seen as a communication channel between
two modules. In the model, we enforce a distinction, firstly,
between shared events and shared states and, secondly, be-
tween phenomena controlled by either the controller or the
environment, which results in four places as shown in fig. 5.

The place Ctlr.-Controlled Shared States holds tokens
with values representing shared states that are controlled
by the elevator controller. Examples of these states are
the states of the signals (interpreted as electric voltages)
used to control the car motor, the direction indicator lights,

297

and the door motor. The place Ctlr.-Controlled Shared
Events holds tokens that represent the information indicat-
ing that particular events caused by the controller occurred.
An example of such an event is the start of the door timer.
The place Env.-Controlled Shared States holds tokens
that represent shared states controlled by the environment.
Examples of such states are the readings from door sen-
sors, and the state of the car door timer. The place Env.-
Controlled Shared Events holds tokens that represent the
information indicating that particular events caused by the
environment occurred. Examples of such events are when a
button is pushed, a timer expires, and a car is sensed near a
given floor by a location sensor.

Controller

Controller

Environment

Environment

EnvironmentEvents_t

Ctlr.-Controlled
Shared Events

ControllerEvents_t

EnvironmentStates_t

ControllerStates_t

Ctlr.-Controlled
Shared States

Env.-Controlled
Shared Events

Env.-Controlled
Shared States

Controller Environment

initialEnvironmentStates()

initialControllerStates()

26

16

Figure 5. The Top module.

Since the shared phenomena places only contain tokens
that represent shared phenomena, the structure defined in
the Top module helps to ensure that the CPN model pos-
sesses the environment-and-controller-partitioned property.

4.2 The Controller and Environment
Modules

Fig. 6 depicts the Controller and the Environment mod-
ules that, as can be seen in fig. 4, are sub-modules of the
Top module. Both modules contain a substitution transition
used in the modelling of UC1. The substitution transition
UC1 Travel to Floor (Controller) represents all the actions
initiated by the controller, while the substitution transition
UC1 Travel to Floor (Environment) represents all the ac-
tions initiated by the environment as part of UC1. Both fig-
ures include black places holding representations of shared
phenomena; they are conceptually glued together with the
places with the same names in the Top module. Thus, the
two modules for UC1 communicate through the interface
formed by the black places exclusively. This is an example
of how the controller-and-environment-partitioned property
guides and restricts the way a use case is modelled.

In the Environment module, three external entities (Car
Door, Car Motor, and Door Timer) are represented by the
correspondingly named substitution transitions. The Door
Timer module is shown in fig. 3. Only external entities that
contain both private and shared phenomena are modelled by

UC1
Travel To Floor

(Controller)

UC1 Controller

Ctlr.-Controlled
Shared States

I/O

Env.-Controlled
Shared States

I/OI/O

UC1 Controller

ControllerStates_tControllerEvents_t EnvironmentStates_t EnvironmentEvents_t

Ctlr.-Controlled
Shared Events

OutOut

Env.-Controlled
Shared Events

InInI/O

26 16

UC1
Travel to Floor
(Environment)

UC1 Environment

Door Timer

Door Timer

Car Door

Car Door

Car Motor

Car Motor

Door States

Ctlr.-Controlled
Shared Events

In

ControllerEvents_t

Env.-Controlled
Shared Events

Out

EnvironmentEvents_t

Ctlr.-Controlled
Shared States

I/O

ControllerStates_t

Env.-Controlled
Shared States

I/O

EnvironmentStates_t

I/OI/O OutIn

Car Motor

Car Door

Door Timer

UC1 Environment

initialDoors()

Door_t

2

26 16

Figure 6. The Controller (top) and Environment
(bottom) modules.

substitution transitions; entities without private phenomena
are represented by tokens in the black places (e.g., Loca-
tion Sensor and Floor Indicator). In fig. 3, the substitution
transitions representing the external entities model assumed
behaviour, whereas UC1 Travel to Floor (Environment)
models desired behaviour. In the Controller module, there
is no assumed behaviour, since we are developing the con-
troller and can give it any behaviour that we desire.

This completes our justification that the CPN model has
the controller-and-environment-partitioned property. We
have described both the controller and the environment and
we have distinguished between them (on the Top) and be-
tween desired and assumed behaviour.

4.3 The Modules for UC1

Fig. 7 shows how the sequence diagram in fig. 2 has been
translated into two CPN modules that specify the behaviour
of UC1: one for the environment and one for the controller.
Messages in the sequence diagram are represented as sub-
stitution transitions in the CPN modules. An example from
the top of the sequence diagram is the carRequest mes-
sage, which gives rise to the substitution transition by the
name Passenger Requests An Elevator in the Environ-
ment module for UC1. This message is followed by two
internal messages generated in the controller: selectEleva-
torCar and assignRequest. These messages and the noti-
fyCarSelected message are represented by the Select Car,
Assign Request, Notify Selected substitution transition
in the UC1 Controller module. The subsequent messages
in the sequence diagram are reflected in the CPN model in
a similar fashion.

The two CPN modules for UC1 communicate through

298

Release
Car

Release Car

Select Car,
Assign Request,
Notify Selected

Record - Assign - Notify

Light
Direction
Indicator

Light Direction Indicator

Notify Floor
Served

Notify Floor Served

UC3
Open Door 2

UC3 Open Door

UC2
Service
Floor 2

UC2 Service Floor

UC4
Close
Door

UC4 Close Door

UC3
Open Door 1

UC3 Open Door

UC2
Service
Floor 1

UC2 Service Floor

Reserved
Cars 2

Door Opened
At Dest. Floor

AssignedRequest_t

Available
Cars

CarID_t.all()

CarID_t

Reserved
Cars 1

Ctlr-Controlled
Shared Events

Out

Env.-Controlled
Shared Events

In

Env.-Controlled
Shared States

I/O

Ctlr.-Controlled
Shared States

I/O

Door Opened At
Destination Floor

Serving Notified

AssignedRequest_t

Assigned
Request

AssignedRequest_t

Floor Reached

AssignedRequest_t

Door Closed

AssignedRequest_t

Request
Recorded

AssignedRequest_t

Waiting For Dest.
Floor Request

AssignedRequest_t

Door Opened
At Origin Floor

AssignedRequest_t

Car Has
Arrived

AssignedRequest_t

I/O I/O InOut

UC2 Service Floor

UC3 Open Door

UC4 Close Door

UC2 Service Floor

UC3 Open Door

Notify Floor Served

Light Direction Indicator

Record - Assign - Notify

Release Car

CarID_t

ControllerEvents_t ControllerStates_t EnvironmentEvents_tEnvironmentStates_t

Notify Car
Arrived

Notify Car ArrivedNotify Car Arrived

Arrival Notified

AssignedRequest_t

Record Request,
Notify

Request Recorded - NotifyRequest Recorded - Notify

CarID_t

AssignedRequest_t

2

26

Passenger
Exits Elevator

Passenger Exits Elevator

Passenger
Requests

An Elevator

Passenger Requests An Elevator

Passengers
Travelling In

Elevator

Passengers
In Elevator

CarPassenger_t

Passenger_t

Passenger_t

Passengers At
Destination Floors

Ctlr.-Controlled
Shared States

I/O
ControllerStates_t

Env.-Controlled
Shared Events

Out
EnvironmentEvents_t

OutI/O

Passenger Requests An Elevator

Passenger
Selects Destination

Floor

Passenger Pushes Floor ButtonPassenger Pushes Floor Button

Passenger Exits Elevator

FloorCarPassenger_t

Passenger_t

Door_t

Elevator
Arrives,

Passenger
Enters

Elevator Arrives - Passenger EntersElevator Arrives - Passenger Enters

Door
States

I/OI/O

Passengers Waiting
For Elevator

Passengers
Ready To

Request Elevator

initialPassengers()

26

2

10

Figure 7. The UC1 Controller (top) and UC1 En-
vironment (bottom) modules.

the black places holding shared phenomena. Thus the
progress of the environment part of UC1 is observable to the
controller part through the places Env.-Controlled Shared
Events and Env.-Controlled Shared States, while the
progress of the controller part of UC1 is observable to the
environment part through Ctrl.-Controlled Shared Events
and Ctrl.-Controlled Shared States.

The other five use cases in fig. 1 are also reflected in the
CPN model, in a similar fashion. Thus, the CPN model
is use case-based. In summary, we have achieved a CPN
model that has the two properties that we have pursued.

5 Addressing Behavioural Issues

This section discusses how the CPN model can be used
to address a number of behavioural issues of the elevator
controller, related to concurrent execution of use cases and
handling of failures and unexpected uses.

5.1 Concurrent Execution of Use Cases

The CPN model has a parameter NumberOfPassen-
gers that specifies the number of passengers, initially in-
terested in using the elevators. This value determines the
number of tokens that are initially put in place Passengers
Ready To Request Elevator (fig. 7). If NumberOfPas-
sengers is greater than one, the model reflects the possi-
bility of UC1 (and the included use cases) being executed
in multiple concurrent instances. One instance of the use
case (i.e., one scenario) is initiated every time an event rep-
resenting a passenger pushing one of the hall buttons occurs
in the CPN model.

If, for instance, NumberOfPassengers is set to ten, the
CPN model can mimic up to ten passengers requesting the
elevator. This means that a maximum of ten tokens can be
accumulated in the Env.-Controlled Shared Events place,
after an equal number of firings of an internal transition in
the sub-module bound to the substitution transition Pas-
senger Requests An Elevator. Each token represents the
completion of the event of a passenger pushing a hall but-
ton, and each event initiates an individual instance of UC1.

The tokens generated in the UC1 Environment module
that represent hall button push events are put in place Env.-
Controlled Shared Events. Each event must be assigned
to a given car and this decision, modelled by the substitution
transition Select Car, Assign Request, Notify Selected,
is taken by the controller, based on internal information
(e.g., reserved cars) and external information (e.g., location
of cars). The place Assigned Requests holds all pending
requests to be served. Whenever a given car is available
(represented by a token in place Available Cars), one of
the pending requests is picked according to the scheduling

299

strategy, and the assigned car is sent to the floor where the
request happened.

The controller must respond to all these events, to ac-
tually transport passengers. The CPN model permits the
developer to experiment with how these events should be
handled by the controller, e.g., to investigate whether the
selected scheduling algorithm obtains an acceptable usage
of the elevator cars, which are the shared resources in the
elevator that the passengers compete for.

5.2 Failures and Unexpected Uses

The division between controller and environment in the
CPN model supports simulation of situations where the lat-
ter does not behave as expected. An example is a failure of
the door timer: when the timer is started, it is assumed to
expire after a fixed period of time. This is signalled to the
controller, which reacts by closing the door. The model of
the environment can easily be modified to include a situa-
tion where the timer does not expire, by adding a transition
to the module in fig. 3 that moves a token from the Running
place to the Expired place without producing an event.

The CPN model can also be used to investigate unex-
pected uses. An example is when a passenger pushes a hall
button. When the car arrives, the passenger is assumed to
enter the elevator and select a destination floor. The UC1
Environment module (fig. 7) can be modified to include
a scenario where the passenger leaves the location without
waiting for the elevator. This can be done by adding a tran-
sition that consumes a token from the Passengers Waiting
For Elevator place.

In both examples, the reaction of the controller can be
observed by executing the model, which can be iteratively
adapted to describe how to handle the situation. Any con-
troller must deal with issues similar to those we have dis-
cussed here. It is beneficial to address them early, and the
CPN model provides a means to facilitate this.

6 Related Work

In [1], it is shown how to make correctness arguments
in the context of Jackson’s problem frame [8] for an ele-
vator controller by the use of various UML models, which
are also controller-and-environment-partitioned. There are
several advantages of using UML, the standard modelling
language of the software industry. However, UML is not a
perfect or universal modeling language. From a technical
perspective, UML can sometimes benefit from being sup-
plemented by other modelling languages, e.g., CPN as we
have used in the considered case study.

We can compare the use of CPN with the use of UML for
the elevator controller, described in [1] and in [14], which

employ statecharts to model the desired life cycle of one sin-
gle elevator car. In comparison, our CPN model explicitly
describes multiple elevator cars. Thus, our CPN model is a
more accurate description of the real world that the elevator
controller controls, with the concurrent behaviours that the
real world exhibits.

In [4], it is suggested to utilise use case diagrams and
scenarios to obtain one hierarchical CPN model of the be-
haviour of an interactive system. The hierarchy of the CPN
model mimics the one of the use case diagram. The usage
of the colours in the nets preserves the independence of sev-
eral scenarios after their integration in the CPN model. This
permits modeling of concurrency between use case, scenar-
ios and copies of the same scenario. However, this approach
only tackles the controller perspective, and does not explic-
itly describe the environment.

The approach in [2] suggests use cases to be described
by tables, to ease the communication between the analyst
and the domain expert. Later, through some mapping rules,
Petri nets are built from the tables to formalise the require-
ments. The approach is used for producing object-oriented
requirements specifications, based on structural models and
focuses on deriving intra-object behavioural models. Again,
the environment is not explicitly modelled.

7 Conclusions

We have suggested through a case study a model-based
approach to requirements engineering for reactive sys-
tems. We have also presented a CPN model that has two
key properties, namely being controller-and-environment-
partitioned and use case-based. Further research is needed
to investigate how the approach can be generalised.

As discussed in the previous section, the CPN model for
the elevator controller case study allows various issues re-
garding behaviour to be addressed. In addition to the dis-
cussion there, it should be noted that it is possible to ap-
ply the standard analysis techniques for CPN (e.g., model
checking techniques) documented in the literature for fur-
ther analysing behavioural properties, and also to use asso-
ciated tools for edition, simulation, and animation.

Another advantage provided by CPN is that it allows
models to be constructed in a parameterisable way. In our
case study, we have considered a specific elevator system
with two cars in a building with six floors. If we wanted
to deal with other elevator systems, this would be straight-
forward. Adapting the elevator controller for distinct con-
texts (e.g., different number of passengers, cars, or floors)
requires no changes to the structure of the CPN model, but
only some specific parameters to be modified.

The created CPN model does not synthesise the com-
plete behaviour of the controller, since our focus is on ear-
lier stages of the software development process. However,

300

we deem that the CPN model can be useful in later devel-
opment stages as well, because of its structure that sep-
arates the description of the controller from the descrip-
tion of the environment. The CPN model may be used
within a model-driven development in the sense that parts
of platform-specific code for the actual controller might be
generated automatically from the part of the CPN model
that represents the controller. In the context of model-based
testing, it may be possible to use the CPN model for auto-
matic generation of a large collection of test cases; the clear
interface between the descriptions of the controller and the
environment supports black-box testing.

It may very well be possible to use other modelling lan-
guages than CPN to create models with the two desired
properties, e.g., statecharts, UML state machines, or UML
activity diagrams. Indeed, many of the points that we make
about CPN in this paper may also be valid for UML 2.0 ac-
tivity diagrams. Compared to UML 1.x, UML 2.0 has intro-
duced several modifications to activity diagrams, which are
no longer a special type of state machines (ActivityGraph
used to be a subclass of StateMachine in the Metamodel)
and whose meaning is now explained with concepts bor-
rowed from Petri nets.

If we aim to obtain a controller-and-environment-
partitioned model, a modelling language that supports de-
scription of concurrency issues seems essential. If we only
wanted to describe the controller itself, it may not have
been necessary to describe concurrency issues; the con-
troller may well be single-threaded. Since we also want
to describe the environment, concurrent execution must be
described, e.g., the two elevator cars are travelling up and
down concurrently, and the motor is running while the sen-
sors are being activated. The need to describe concurrency
puts demands on the chosen language, and CPN is particu-
larly well-suited to handle these issues.

The use of CPN has a number of advantages, but also
some problems. As we argue in [11], CPN satisfies four of
the five criteria, which are put forward as being essential for
good modelling languages in [13]. CPN models (1) are ab-
stract, (2) can be made understandable (in particular when
the CPN model itself is hidden behind a graphical anima-
tion, e.g., [11]), (3) can be made accurate, and (4) can be
used for prediction. However, it is not known whether CPN
models do or do not satisfy the fifth criteria, that models
must be inexpensive. The cost-effectiveness of using CPN
has not been established, which is an issue that the CPN
language seems to share with many formal methods.

We plan to mature and generalise the suggested ap-
proach. Currently, we consider exactly one sequence dia-
gram for each use case. We need to study how to deal with
more than one sequence diagram for a use case, as we do
in [5]. We expect also to apply the approach in industrial
contexts, to evaluate its usefulness in helping developers of

reactive systems in their requirement engineering activities.
This requires a careful analysis of the impact of introduc-
ing the approach on the software process and on the tools
in use. Defining some guidelines and providing some au-
tomatic means to obtain the CPN model from the use cases
diagrams and the sequence diagrams are important issues to
ensure that the approach can be applied in a sensible way.

References

[1] C. Choppy and G. Reggio. A UML-Based Method for the
Commanded Behaviour Frame. In 1st Int. Workshop on Ad-
vances and Applications of Problem Frames (IWAAPF ’04),
at ICSE 2004, pages 27–34. IEE, 2004.

[2] B. Dano, H. Briand, and F. Barbier. An Approach Based
on the Concept of Use Case to Produce Dynamic Object-
Oriented Specifications. In 3rd IEEE Int. Symp. on Require-
ments Engineering (RE ’97), pages 54–64. IEEE CS Press,
1997.

[3] G. Denaro and M. Pezzè. Petri Nets and Software Engi-
neering. In Lectures on Concurrency and Petri Nets, volume
3098 of LNCS, pages 439–66. Springer, 2004.

[4] M. Elkoutbi and R. Keller. Modeling Interactive Systems
with Hierarchical Colored Petri Nets. In Advanced Simula-
tion Technologies Conference 1998, pages 432–37, 1998.

[5] J. Fernandes, S. Tjell, J. Jørgensen, and O. Ribeiro. Design-
ing Tool Support for Translating Use Cases and UML 2.0
Sequence Diagrams into a Coloured Petri Net. In 6th Int.
Workshop on Scenarios and State Machines (SCESM 2007),
at ICSE 2007. IEEE CS Press, 2007.

[6] H. Gomaa. A Software Modeling Odyssey: Designing
Evolutionary Architecture-Centric Real-Time Systems and
Product Lines. In 9th Int. Conf. on Model Driven Engineer-
ing Languages and Systems (MODELS 2006), volume 4199
of LNCS, pages 1–15. Springer, 2006.

[7] D. Harel. Statecharts: A Visual Formalism for Complex
Systems. Science of Computer Programming, 8:231–74,
1987.

[8] M. Jackson. Problem Frames — Analyzing and Structuring
Software Development Problems. Addison-Wesley, 2001.

[9] K. Jensen. Coloured Petri Nets – Basic Concepts, Analysis
Methods and Practical Use. Vol. 1, Basic Concepts. Mono-
graphs in Theoretical Computer Science. Springer, 1992.

[10] K. Jensen, L. Kristensen, and L. Wells. Coloured Petri Nets
and CPN Tools for Modelling and Validation of Concurrent
Systems. Software Tools for Technology Transfer, 2007. In
Press. DOI: 10.1007/s10009-007-0038-x.

[11] J. Jørgensen. Addressing Problem Frame Concerns via
Coloured Petri Nets and Graphical Animation. In 2nd Int.
Workshop on Advances and Applications of Problem Frames
(IWAAPF ’06), at ICSE 2006, pages 49–57. ACM Press,
2006.

[12] P. Kruchten. The Rational Unified Process — An Introduc-
tion, Second Edition. Addison-Wesley, 2000.

[13] B. Selic. The Pragmatics of Model-Driven Development.
IEEE Software, 20(5):19–25, 2003.

[14] R. Wieringa. Design Methods for Reactive Systems: Your-
don, Statemate, and the UML. Morgan Kaufmann, 2003.

301

