
Adding Aspect-Oriented Features to MATLAB

João M. P. Cardoso
Universidade do Algarve
Campus de Gambelas

8000-117, Faro
INESC-ID, 1000-029, Lisboa

PORTUGAL
jmpc@acm.org

João M. Fernandes
Dep. Informática / CCTC
Universidade do Minho

Campus de Gualtar
4710-057 Braga

PORTUGAL
jmf@di.uminho.pt

Miguel P. Monteiro
Escola Superior de Tecnologia

Instit. Politécnico de Castelo Branco
Avenida do Empresário

6000-767 Castelo Branco
PORTUGAL

mmonteiro@uminho.pt

ABSTRACT
This paper presents an approach to enrich MATLAB with aspect-
oriented extensions to experiment different implementation fea-
tures. The language we propose aims to configure the low-level
data representation of real variables and expressions, to a specifi-
cally-tailored fixed-point data representation that benefits from a
more efficient support by computing engines (e.g., DSPs, applica-
tion-specific architectures, etc.) without specific hardware-based
floating point units. Additionally, the approach aims to help de-
velopers to introduce handlers and monitoring features, and to
configure a function with an optimized implementation.

Keywords
Aspect-Oriented Programming, MATLAB.

1. INTRODUCTION
MATLAB is an interpreted, imperative programming language
mainly based on matrix data types and operations on them. It is
widely used in scientific computing, control systems, signal proc-
essing, image processing, system engineering, simulation, etc.
Mathworks1, the company proprietary of the language, furnishes a
complete integrated environment to develop MATLAB projects.
The environment includes a number of suitable debug features.
Also included is Simulink, a visual, component based, environ-
ment also using MATLAB, suitable for simulation of discrete and
continuous systems. Several toolboxes (packages) exist that in-
clude special functions and features in a number of domains. Such
packages make the language one of the preferred choices to
model and simulate complex systems. More than 800 books2
dedicated to MATLAB attest to its wide adoption.
Like most interpreted languages (e.g., Perl, Python, etc.),
MATLAB does not require the declaration of variables. By de-
fault, the numeric representation used is the floating-point data
type with double precision (64 bits, according to the IEEE stan-
dard 754 format). Other types of numeric data are integer (with 8,
16, 32 and 64 bits) and single precision floating-point data types3.
MATLAB supports other numeric representations by using spe-
cific toolboxes. They enable the assignment of certain data-types

1 The Mathworks Inc., http://www.mathworks.com
2 http://www.mathworks.com/support/books/index.html
3 http://www.mathworks.com/access/helpdesk/help/techdoc/ mat-

lab.html

and operation properties (e.g. overflow mode) to MATLAB vari-
ables. Useful features of MATLAB include operator overloading,
function polymorphism and dynamic type specialization. Function
polymorphism enables the same function to be called with differ-
ent numbers and types of arguments. Dynamic type specialization
enables variables to represent different data types during runtime.
For instance, we can simulate the same code by applying stimulus
with different data types.
The above features can really help to explore certain behaviors
and data types by simulation. However, they are extremely cum-
bersome, error-prone and tedious for tasks such as exploiting non-
uniform fixed-point representations, monitoring certain variables
during a timing window, or to include handlers to watch specific
behaviors. Each time these kinds of features are necessary, one
needs to perform invasive changes on the original code, as well as
to insert new code. This problem is felt in other implementation
issues as well, since MATLAB can be regarded as a specification
rather than an implementation language. There are open issues
related to automatic synthesis of MATLAB specifications to a
software language or a hardware description language [1]. Those
issues heavily rely on attaining a given desired efficiency level.
Various research efforts attempting to automate certain imple-
mentation issues took place in the past. For instance, the trans-
formation from floating- to fixed-point data formats was con-
ducted with some restrictions to MATLAB specifications [2].
However, it is usually claimed that the developer should have full
control of the process since automatic conversions are not trivial
and must be efficient. Even in this case, some automatic support
is still necessary to assist developers during implementation
phases.
In this paper, we propose aspect-oriented extensions to the
MATLAB language in order to help system modeling and explo-
ration of certain features conceiving system implementation. Our
approach heavily relies on the separation of concerns [3] (data
types versus behaviors). One of the advantages is related to the
fact that a single version of the specification can be used through-
out the entire development cycle rather than maintaining multiple
versions, as is presently the case. We believe this separation helps
the development, simulation, exploration and implementation
phases. Furthermore, the extensions we propose can be used in
other languages as well.
The rest of the paper is organized as follows. Section 2 describes
the main motivation for our work. Section 3 presents the ap-
proach, by providing some examples of aspects. Section 4 com-
pares our approach to related work. Finally, concluding remarks
are presented in section 5.

2. MOTIVATION
Certain implementation requirements entail the use of sufficient
bit-widths to represent numeric data (integer and real numbers),
achieving an acceptable accuracy. Bit-widths can be exploited,
e.g. to save resources and speedup performance through special-
ized and lower latency arithmetic operators [4] or through sub-
word level parallelism [5].
Fixed-point arithmetic is usually the preferred implementation of
several digital signal-processing systems due to their efficient
support when targeting Digital Signal Processors (DSPs) without
hardware floating-point units and specific hardware, e.g., Field-
Programmable Gate Arrays (FPGA) implementations. Specific
architectures may also use specialized data-types (e.g. floating
point arithmetic over data types not defined by the IEEE 754
standard). Those implementations need several tests to acquire the
necessary bit-widths in order to have the required accuracy (ac-
ceptable quantization errors) and required behavior. Several au-
thors proposed methods to automatically translate floating- to
fixed-point representations [6][7][8][9][10]. Some methods rely
on profiling, while other methods rely on static schemes. Al-
though this is a very important topic, the translation usually
serves to help the designer only, since neither those methods are
fully automatic nor can be applied without restrictions. In certain
cases, designer experience and knowledge of the system require-
ments (which may include more than accuracy requirements, for
instance related to dynamic range or precision) is the determining
factor to the success of the final implementation. Therefore, simu-
lation and specification refinement still play an important role at
both data and behavioral levels.
As mentioned above, the MATLAB environment includes special
packages to deal with fixed-point representations. MATLAB sup-
ports two toolboxes for fixed-point computations: Filter Design
Toolbox and Fixed-Point Toolbox. The Filter Design toolbox
furnishes functions to quantize values represented as, e.g., dou-
bles in fixed-point representations (quantizer and quantize). The
Fixed-Point Toolbox furnishes fixed-point data types and func-
tions. Fi objects can be defined to represent a number of fixed-
point properties and can be associated to variables and to arithme-
tic operations.
Certain exploration features need changes in the code to be ac-
complished. Such changes are error-prone, tedious, and difficult
to maintain. Sometimes, changes require manual refactoring of
large sections of code. Examples of changes are insertion of code
statements, new function arguments, different data-types, and
global variable definitions. Often, the developer must manage
multiple versions of the specification, which usually gives rise to
additional problems when changes must be made.
Consider as an example the MATLAB code illustrated in Figure
1. It represents an algorithm to perform the Discrete Fourier
Transform (DFT) – widely used in signal processing systems. The
function can be tested using the test program shown in Figure 2.
To test it with uniform fixed-point data types, we merely need to
add a line of MATLAB to the test program (see Figure 3). How-
ever, to test the function using fixed-point representations with
specialization of each variable and operation, we need to change
the original function. Figure 4 represents the changed function.
Note that the fixed-point representations used in the example are

included here as a general example and have not been necessarily
exploited to fulfill a specific accuracy or behavior.
During design phases we usually need models that closely resem-
ble implementation details. As an example, if a specific hardware
implementation is needed, results with fixed-point numeric repre-
sentations might be necessary to validate the final implementation
using a comparison between Hardware Description Language
(HDL) and MATLAB simulations. Modeling with specialized
fixed-point representations is of great importance since such im-
plementations are usually needed to satisfy various requirements,
namely low power dissipation, low energy consumption, better
performance and fewer hardware resources.
Notice that this kind of data type specialization is also needed
when object-oriented programming is used. In that case, even if
you use specific built-in class support for fixed-point data types,
there is always the need to directly specify the data type speciali-
zations required. Even though we do not focus the object-oriented
case, we believe our approach can also be used in that context.

function [y] = dft(x)
y=zeros(size(x));
N=length(x);
t=(0:N-1)/N;
for k=1:N
 y(k) = sum(x.*exp(-j*2*pi*(k-1)*t));
End

Figure 1: Simple MATLAB example (function to perform a
Discrete Fourier Transform, source: [1]) – original code.

function [y] = dft_specialized(x)
y=zeros(size(x));
N=length(x);
t=(0:N-1)/N;
quant1=quantizer('fixed','floor','wrap', [18 16]);
t=quantize(quant1, t);
quant2=quantizer('fixed','floor','wrap', [23 20]);
pi_fix = quantize(quant2, pi);
quant3=quantizer('fixed', 'floor', 'wrap', [20 8]);
quant4=quantizer('fixed','floor', 'wrap', [23 10]);
quant5=quantizer('fixed','floor', 'wrap', [24 10]);
quant6=quantizer('fixed','floor', 'wrap', [26 12]);
quant7=quantizer('fixed','floor', 'wrap', [28 14]);
quant8=quantizer('fixed','floor', 'wrap', [32 16]);
for k=1:N
 v1 = quantize(quant3, (k-1)*t);
 v2 = quantize(quant4, pi_fix*v1);
 v3 = quantize(quant5, -j*2*v2);
 v4 = quantize(quant6, exp(v3));
 v5 = quantize(quant7, x.*v4);
 y(k) = quantize(quant8, sum(v5));
end

Figure 2: Simple MATLAB example – code needed to model
specialized fixed-point bit-widths.

function testdft;
x=[1 2 3 4 5 6 7 8];

dft(x)

Figure 3: Example of MATLAB – Test of dft function with
double-precision data types.

Sometimes, there is also the need to keep different implementa-
tions of a given function. As an example, consider arithmetic
division that can be implemented with look-up tables, iterative
algorithms, a combinatorial divisor, etc. Each implementation
may affect the overall accuracy of the system and therefore re-
quires modeling prior to implementation. This entails changes in
the original code and ultimately maintenance of multiple versions

of the code. Configuration features ameliorate the problem, since
with a rule one can specify the implementation used by a simula-
tion in a given development phase.

function testdft;
x=[1 2 3 4 5 6 7 8];

x=fi(x, 1, 9, 5); %new line

dft(x)

Figure 4: Example of MATLAB – Test of dft function with a
uniform fixed-point representation.

3. ASPECT-ORIENTED EXTENSIONS
Our approach envisages the usage of two separate parts (source
files) to model a given system: MATLAB code representing the
primary behavior and aspect-oriented rules. Aspect-oriented rules
are mainly used to reassign data types to variables in the
MATLAB code, to introduce handlers and monitoring features,
and to configure a function with a given implementation. The
rules aim to facilitate development of systems that require refine-
ment of specific features needed for implementation of the origi-
nal specification. The proposed rules have declarative semantic as
opposed to the imperative semantic of MATLAB. According to
their semantics, rules can be divided in the following groups:

• Monitor rules help users to observe the runtime characteris-
tics of MATLAB variables. They include special behavior
related to monitoring, such as return the maximum value of a
certain variable during the simulation period.

• Handler rules are a kind of assertions with the purpose to
ensure that certain conditions hold during the simulation pe-
riod.

• Type assignment rules are used to bind different types to
the variables of the MATLAB specification.

• Configuration rules are used to statically bind a different
implementation to a given function or operator.

Figure 5 presents the outline of the proposed system. We propose
that aspect-oriented rules and MATLAB code be specified in
different files. A transformation engine (weaver) is responsible to
generate new MATLAB code that includes the features composed
by the specified aspect-oriented rules.

Matlab
program

(*.m)

Aspect
Rules (*.ar)

Transformation
Engine (weaver)

New Matlab
program

(*.m)

Figure 5: Outline of the MATLAB-based system enhanced

with aspect-oriented rules.

Type assignment rules are one of the most important aspects of
our approach. Using MATLAB, users start with a specification
using double precision floating-point data-types (the default
MATLAB numeric data type). The following example shows a
simple MATLAB code to multiply two variables, previously as-
signed to constants:

a = 2;
b = 3;
c = a*b;

All the assigned and calculated values of the above example are
represented as doubles. If we need to test the code with integer
data types, e.g. of 16 bits, the original code must be changed to:

a = int16(2);
b = int16(3);
c = int16(a*b);

Using our approach the original code is maintained and we only
need to add an assignment rule in the aspect part:

For all variable in program do: set type int16;

This would tell the transformation engine to add to the original
code the code needed to assign the type int16 for each variable.
Moreover, if we need to simulate the original code using different
data types for each variable, we only need to use the following
rules:

For variable a in program do: set type int16;
For variable b in program do: set type int16;
For variable c in program do: set type int32;

In this case we are specifying the following MATLAB code:
a = int16(2);
b = int16(3);
c = int32(a*b);

This kind of aspect-oriented rules may require the decomposition
of arithmetic expressions onto sub-expressions in order to apply
different rules to each sub-expression. Suppose the existence of
the following statement in a MATLAB specification:

a = b*c+d;

To bind different specialized fixed-point representations to the
sub-expressions that will be computed by this statement, we
would need to change the original code to:

v1 = b*c;
a = v1+d;

Then, each variable in the above assignments can be bound to a
specific fixed-point data representation. Although this is a
straightforward step, it requires changes in the original code, mak-
ing it less legible. To address this problem, we include in the as-
pect features a decomposition rule telling the transformation en-
gine to decompose a given expression into the specified sub-
expressions. An example of this kind of rule is:

for "a = b*c + d;" :
 decompose { v1=b*c; v2=v1+d; a=v2; };

This way, we may now include type assignment rules to each
variable (a, b, c, d, v1 and v2). Note that the statements between
brackets in the decompose command should be pure-MATLAB
with the same behavior as the original expression.
Monitor type rules may help developers by including observing
behavior without changing the original MATLAB code. Examples
of monitors are to outputting to a file the values of a specific vari-
able during simulation (e.g., For variable a in program
do: print(“a.dat”, a);). Sometimes it is also required to
observe the maximum and minimum values assigned to a given
variable in the program. This is usually required when exploring
bit-width analysis since it may expose the number of bits to repre-
sent a certain variable. Adding this behavior to the original code
may require the use of global variables and the addition of spe-
cific code to compute the maximum and minimum values for each
assignment. Note also that usually this behavior is auxiliary and is

latter removed. With our aspect-oriented rules, such behavior is
kept separate from the original MATLAB code (e.g., For vari-
able A in program do: print(ecran, a:max);).
Handler type rules can also help developers observing the occur-
rence of certain values in variables of the program (e.g., if mod-
ule1: a > 100 {print(ecran, “warning: value of
module1:a exceeds: “+100);}). Note that handler rules are
similar to assertions.
Finally, configuration rules are used to assign to an operator
(arithmetic or logical) or a function an implementation different
from the original one (e.g., Use for “module1”:”f1”: con-
figuration “my_f1”;).
Based on the initial example illustrated in Figure 1, we show in
Figure 6 an example of rules to bind all variables of the original
“dft” function to a fixed-point uniform representation of <1, 10,
5> (10-bit signed fixed-point representation, using 5 bits in the
fractional part). Figure 7 shows an example of rules to bind each
operand of the “dft” function with a specialized fixed-point repre-
sentation according to the result shown in Figure 2. Note that
expressions already decomposed in the original code do not need
decomposition commands in the aspect-oriented rules.

Rule 1 : type is assignment {
 Typedef fixed1 = fixed<1, 10, 5>;

 For all variable in dft do:
 set type fixed1;
}

Figure 6: Quantification rules applied to the function pre-
sented in Figure 1 for uniform fixed-point representation.

Rule 1 : type is assignment {
 For “y(k)=sum(x.*exp(-j*2*pi*(k-1)*t));”:
 decompose {
 v1=(k-1)*t;
 v2=pi_fix*v1;
 v3=-j*2*v2;
 v4=exp(v3);
 v5= x.*v4;
 y(k)=sum(v5);
 };
 set fixed = {overflow=”wrap”; round=”floor”};
 Typedef fixed1 = fixed<1, 18, 16>;
 Typedef fixed2 = fixed<1, 23, 20>;
 Typedef fixed3 = fixed<1, 20, 8>;
 Typedef fixed4 = fixed<1, 23, 10>;
 Typedef fixed5 = fixed<1, 24, 10>;
 Typedef fixed6 = fixed<1, 26, 12>;
 Typedef fixed7 = fixed<1, 28, 14>;
 Typedef fixed8 = fixed<1, 32, 16>;
 For variable t in dft do: set type fixed1;
 For variable pi in dft do: set type fixed2;
 For variable v1 in dft do: set type fixed3;
 For variable v2 in dft do: set type fixed4;
 For variable v3 in dft do: set type fixed5;
 For variable v4 in dft do: set type fixed6;
 For variable v5 in dft do: set type fixed7;
 For variable v6 in dft do: set type fixed8;
 For variable v7 in dft do: set type fixed9;
 For variable v8 in dft do: set type fixed10;
}

Figure 7: Quantification rules applied to the function pre-
sented in Figure 1 for variable (specialized) fixed-point repre-

sentation.

Each rule may have one or more commands. The set of com-
mands for each rule is considered in the sequential order in which
they appear in the aspect-oriented rule’s files. In the case of over-

lapping conflicts in commands, the last command prevails. Figure
8 shows some examples of the proposed rules.

Apply Rule1; // several rules may be applied:
 // Apply rule1:rule2:rule3;

Rule 1 : type is Monitor {
 Set myVars1 = {a, b, c};
 For each variable A in program do:
 print(ecran, A: value for each change:);
 For each variable A in myVars1 do:
 print(file:”data.txt”, A);
 For variable A in program do:
 print(ecran, A:max); // mean, abs, etc.
 For each variable A in myVars1 do:
 print(ecran, A:min);
 For each variable A in module1 do:
 print(ecran, max:A);
}

Rule 2 : type is assignment {
 Typedef fixed1 = fixed<1, 10, 4>;
 set float={precision=”single”};
 For all variable in program do:
 set type float;
 For all variable in “module2” do:
 set type fixed1;
 For all variable in “module3” do:
 set type fixed1;
}

Rule 3 : type is handler {
 If “module1”:A > 100 {
 print(ecran,
 “warning: value of A exceeds: “+100);
 }
}

Rule 4 : type is configuration {
 use for “function1”: configuration “func1”;
 use for “module1”:”/”: configuration “myDIV”;
}

Figure 8: Examples of aspect-oriented rules (words in italic
represent user definitions).

4. RELATED WORK
To the best of our knowledge, this is the first approach to consider
aspect-oriented rules to assign numeric data types to a MATLAB
specification.
In [2], Irwin et al. present AML, a system for sparse matrix com-
putation that deals with crosscutting concerns (such as execution
time and data representation), using aspect-oriented programming
principles [11]. In AML, the primary behavior is written with a
MATLAB-like language. AML allows the programmer to write
annotations that represent properties of sparse matrices, in com-
pletely separated way from the main functionality. Thus, readabil-
ity and maintainability of the behavioral code is not (negatively)
affected by non-functional aspects. The AML system seems to
have a satisfactory result, since the authors report that their code
in AML has similar speed a standard version, yet it is smaller and
less complex. They propose an aspect, called “data representa-
tion” that is relevant for our work. This aspect defines 5 axes for
representing data: element type, dimension, representation, order-
ing, and orientation. AML was first described as an aspect-
oriented system but is no longer considered as such [12].
Our proposal differs from the one above in that although type
refinement may help compilers to produce optimized code, the

aspects we present are intended to help developers to model and
to explore different possible implementations of a given
MATLAB specification without changing the original code and
without the need to manage multiple MATLAB specifications.
Moreover, most aspects we propose would be unsuitable to embed
in the original specification as a form of annotations. There are
various reasons for that. First, that would be responsible to a less
legible code and would impose difficulties whenever changes in
the original code are required. Second, that would still require
more than one version of the MATLAB specification when we
need to explore different data types for a given variable. Third,
some of the rules are intended to be applied globally, not just to a
certain function. With our approach explorations can be per-
formed with the same MATLAB specifications by simply em-
ploying different aspect-oriented rules. Our approach uses a de-
clarative type of aspect semantics suitable to be applied both local
and globally.

5. CONCLUSION
This paper presents an approach to add aspect-oriented rules to
MATLAB specifications in order to help developers to explore
implementation features related to numeric data type representa-
tions. The approach uses a separation of concerns concept such
that MATLAB behavior and aspect-oriented rules (e.g., numeric
data type assignments) are separately specified. We believe the
approach brings significant benefits as it enables developers to
explore numeric data type representations without changing the
original MATLAB code.
Work in progress includes studies about other aspect-oriented
rules and trying the approach with other programming languages.
Further plans include the specification of a grammar for the as-
pect-oriented rules and experiments on the implementation of the
transformation engine.

ACKNOWLEDGEMENTS
João M. Fernandes and Miguel P. Monteiro are partially sup-
ported by FCT under projects PPC-VM (POSI/CHS/47158/2002)
and SOFTAS (POSI/EIA/ 60189/2004).

REFERENCES
[1] R. Allen, Compiling High-Level Languages to DSPs, in

IEEE Signal Processing Magazine, vol. 22, no. 3, pp. 47-56,
May 2005.

[2] J. Irwin, J.-M. Loingtier, J. Gilbert, G. Kiczales, J. Lamping,
A. Mendhekar and T. Shpeisman, Aspect-Oriented Pro-
gramming of Sparse Matrix Code, in Int’l Scientific Comput-
ing in Object-Oriented Parallel Environments (ISCOPE’97),
Marina del Rey, California, USA, LNCS 1343, Springer,
pp. 249-256, December 1997.

[3] D. L. Parnas, On the criteria to be used in decomposing sys-
tems into modules, in Communications of the ACM, vol. 15,
no. 12, pp. 1053-1059, December 1972.

[4] S. Mahlke, R. Ravindran, M. Schlansker, R. Schreiber, and
T. Sherwood, Bitwidth Cognizant Architecture Synthesis of
Custom Hardware Accelerators, in IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Synthe-
sis, vol. 20, no. 11, pp. 1355-1371, November 2001.

[5] K. Scott, and J. Davidson, Exploring the Limits of Sub-Word
Level Parallelism, in 9th Int’l Conference on Parallel Archi-
tectures and Compilation Techniques (PACT'00), pp. 81-91,
October 2000.

[6] M. L. Chang, S. Hauck, Précis: A Usercentric Word-Length
Optimization Tool, in IEEE Design and Test of Computers,
vol. 22, no. 4, pp. 349-361, July/August 2005.

[7] D-U. Lee, A. A. Gaffar, R. C. C. Cheung, O. Mencer, W.
Luk, and G. A. Constantinides, Accuracy guaranteed bit-
width optimization, to appear in IEEE Transactions on Com-
puter-Aided Design of Integrated Circuits and Systems.

[8] A. Nayak, M. Haldar, A. Choudhary, and P. Banerjee, Preci-
sion and error analysis of MATLAB applications during
automated hardware synthesis for FPGAs, in DATE 2001,
pp. 722-728, March 2001.

[9] S. Roy, and P. Banerjee, An Algorithm for Trading Off
Quantization Error with Hardware Resources for MATLAB-
Based FPGA Design, in IEEE Transactions on Computers,
vol. 54, pp. 886-896, July 2005.

[10] P. Banerjee, D. Bagchi, M. Haldar, A. Nayak, V. Kim, and
R. Uribe, Automatic Conversion of Floating-point MATLAB
Programs into Fixed-point FPGA based Hardware Design, In
41st Annual Conference on Design Automation (DAC’04),
pp. 484-487, June 2004.

[11] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, Lopes,
C. V., Loingtier, J.-M., Irwin, J. Aspect Oriented Program-
ming, ECOOP’97, Jyväskylä, Finnland, June 1997.

[12] C. V. Lopes, AOP: A Historical Perspective (What’s in a
Name?). In Aspect-Oriented Software Development, pp. 97–
122. Addison-Wesley, 2005.

