
Softw Syst Model (2006) 5:403–428
DOI 10.1007/s10270-006-0013-0

REGULAR PAPER

Integration of DFDs into a UML-based model-driven engineering
approach

João M. Fernandes · Johan Lilius · Dragos Truscan

Received: 7 December 2004 / Accepted: 20 October 2005 / Published online: 20 June 2006
© Springer-Verlag 2006

Abstract The main aim of this article is to discuss
how the functional and the object-oriented views can
be inter-played to represent the various modeling per-
spectives of embedded systems. We discuss whether the
object-oriented modeling paradigm, the predominant
one to develop software at the present time, is also ade-
quate for modeling embedded software and how it can
be used with the functional paradigm. More specifically,
we present how the main modeling tool of the tradi-
tional structured methods, data flow diagrams, can be
integrated in an object-oriented development strategy
based on the unified modeling language. The rationale
behind the approach is that both views are important for
modeling purposes in embedded systems environments,
and thus a combined and integrated model is not only
useful, but also fundamental for developing complex

This article is an extension of two papers [1,2] published in the
proceedings of IEEE International Conference and Workshop
on the Engineering of Computer Based Systems (ECBS 2004).

J. M. Fernandes (B)
Departamento de Informática,
Universidade do Minho,
Braga, Portugal.
e-mail: jmf@di.uminho.pt

J. Lilius
Computer Science Department,
Turku Centre for Computer Science
and Åbo Akademi University,
Turku, Finland.
e-mail: Johan.Lilius@abo.fi

D. Truscan
Embedded Systems Laboratory,
Turku Centre for Computer Science,
Turku, Finland.
e-mail: dragos.truscan@abo.fi

systems. The approach was integrated in a model-driven
engineering process, where tool support for the models
used was provided. In addition, model transformations
have been specified and implemented to automate the
process. We exemplify the approach with an IPv6 router
case study.

Keywords MDA · UML · Data-flow Diagram ·
Model Transformation · Embedded Systems
Specification · Process Model · Activity Diagram · IPv6
router

1 Introduction

In recent years, object-orientation constantly gained
popularity over other specification techniques, becom-
ing one of the main tools used for software develop-
ment. Beside object-oriented methods, other languages
have been proposed and used for similar purposes. One
such language is provided by the structured analysis
methods [3, 4] introduced in early 1970’s, which be-
came quite popular in industrial environments. Still, the
structured analysis methods were largely overshadowed
by the object-oriented design methods, especially after
the introduction of unified modeling language (UML).
Although, currently the convention is to use either a
pure object-oriented approach or a “pure” structured
approach, we prefer to view the two approaches as
complementary, each one with its own strengths and
weaknesses. Both object-oriented and structured anal-
ysis methods represent viable and necessary tools in
embedded systems’ design, each of them providing imp-
ortant techniques for describing the system under con-
sideration. Moreover, as pointed out in [5,6], one

404 J. M. Fernandes et al.

conceptual model is limited to represent only a spe-
cific view of a system, filtering out important details of
the specification. Sometimes several views of the sys-
tem under development are needed to capture all (or
at least most) of its features and details. Ideally, the de-
signer should be able to benefit from an approach where
several design methods and conceptual models can be
combined to specify the system at different abstraction
levels [7].

Unfortunately, a culture of rivalry exists in the soft-
ware community with respect to the two major para-
digms. A proper mixture of the approaches is possible,
so that the best of both worlds can be achieved. There
were several attempts to combine these two approaches
[8–11], but none of them is widely used. Although some
researchers [12] argue that object-oriented analysis and
structured analysis are fundamentally incompatible, we
believe that the topic deserves more research effort in
order to understand if the integration can be effectively
achieved and, if a positive answer is obtained, how that
can be accomplished.

In fact, merging divergent aspects or ideas appears
to be a recurring solution in many areas of knowledge,
with very good results in some cases. Computing science
seems also to benefit when opposite or dual aspects are
taken into consideration. Indeed, significant improve-
ment has always been achieved when the fruitful inte-
gration of a dual pair was possible [13]. That observation
was a motivation for this work.

1.1 Comparing modeling methods

In software engineering, when a new approach appears
in the scene, with the promise of solving all the prob-
lems faced by its professionals, the typical reaction is
to abandon the old approach. What actually happens is
that ideas, concepts and techniques of both, the old and
the new, approaches are merged and the final result is a
combined solution. The object-oriented modeling par-
adigm is currently one of the most used approaches to
develop software and, when it was proposed in the 80s,
their advocates stated that it could overcome some, if
not all, of the weaknesses associated with the structured
methods. Some results indicate that, when the character-
istics of the problem are well suited to an object-oriented
approach, substantial time savings over traditional func-
tional decomposition can be achieved in logical design
[14]. But almost certainly we could make a similar claim
in favor of structured methods if an adequate problem
is used.

Comparing analysis techniques and achieving useful
conclusions is not an easy task. This may be the reason
why there is not yet a definite “proof” that shows that the

object-oriented paradigm is definitely better than struc-
tured methods [15], and some authors even suggest the
reverse [16]. In fact, attempts to prove formally that one
approach is better than another are seldom effective, in
any domain. This is especially difficult in information
technologies, because in real-world scenarios, there is
hardly ever an opportunity to develop the same system
in two different and independent ways and compare the
approaches.

If a careful comparison is undertaken, one can see
that object-oriented and structured methods do not dif-
fer so much on the meta-models they use. For example,
the set of diagrams suggested by the OMT methodol-
ogy is, according to M. Jackson, surprisingly close to the
traditional proposals of Structured Analysis [17]. In our
opinion, there is not too much surprise in this fact, since
object-orientation can be seen as an evolution (and not
a revolution) of the structured methods. Some authors
even assume a more drastic position, by considering that
“object-oriented methods are structured methods, just like
all the others that precede them” [18].

In fact, object-oriented and structured methods both
recognize the need to use three models to specify a
complex software system: a functional model, a control
model and a data model. For example, the usage of state-
charts was proposed in both approaches apparently with
successful results [19]. Additionally, the now classical
software engineering techniques and guidelines, origi-
nally conceived for structured design, namely modular-
ity, data hiding, low module coupling, and high module
cohesion, are still relevant and useful in object-oriented
design.

The major discrepancy between structured and object-
oriented analysis relies presumably on the way those
three models are used, namely, the order in which they
are created. The vast majority of object-oriented meth-
ods have the class diagram (a data-oriented model)
as their main modeling tool, while structured methods
use an activity-oriented model, i.e. data-flow diagram
(DFD), as its principal diagram. DFDs use four sym-
bols to represent any system at different levels of de-
tail. The four modeling concepts to be represented are:
data flows (movement of data in the system), data stores
(repositories for data that is not moving), processes
(transformation of incoming data flows into outgoing
data flows), and external entities (sources or destina-
tions outside the system boundary). DFDs provide an
activity-based behavioral view of the system, useful for
describing transformational systems, such as digital sig-
nal-processing systems, compilers, multimedia systems,
or telecommunication devices.

The popularity of object-orientation is probably due
to the observable emphasis on data in system design that

Integration of DFDs into a UML-based model-driven engineering approach 405

has increased considerably in the last years. However,
for embedded systems an activity-oriented view of the
system is typically more useful.

1.2 The functional and object-oriented views

The structured methods provide a functional view of
a system, also designated as dynamic or behavioral,
describing the perspective that centers around the behav-
ior of the system. Similarly, the object-oriented view is
seen as the perspective that focuses on the structure
of the system, namely its data. In fact, it is commonly
acknowledged that one major component of the object-
oriented analysis techniques is based on the entity-
relationship concepts [20].

For complex systems, it is inevitable that structural
and dynamic models have to be intertwined or inter-
played, during the development activities, at different
moments and also at distinct levels of abstraction. For
instance, the whole system can be seen as a module
and a state-machine can be devised for it. We can later
decompose the system in sub-systems and create, for
each one, an activity diagram that represents the respec-
tive function. The sub-systems can, by themselves, be
decomposed in objects, which can have their life-cycle
represented by a Petri net. We can go as many levels as
we want and, as modelers, we are always changing from
structural models to dynamic ones and vice-versa. The
same combination appears to occur, at an orthogonal
perspective, with specification and implementation [21].

A similar systemic view was proposed in [22]. There, a
combination of finite-state machines (FSMs) with other
concurrent models of computation (namely, dataflow,
synchronous/reactive and discrete event) is suggested.
The idea is that an FSM can be nested within a module
in a concurrency model, which is to be interpreted as
the FSM describing the behavior of that module. Con-
versely, a subsystem in some concurrency model can be
nested within a state of an FSM, which means that the
subsystem is active only when the FSM is in that spe-
cific state. The hierarchy can be placed anywhere and is
arbitrarily deep.

A proposal with identical practical consequences is
the “tool box” approach to software specification, where
each system’s module may be specified individually us-
ing the technique most adequate for it [23]. This
approach seems very useful for specifying complex sys-
tems, that are generally composed of several compo-
nents, each one with its own idiosyncrasies. One of the
main strengths of these approaches is that, for example,
the concurrency model can be selected to best suit the
problem at hand, based upon its particular character-
istics. Consequently, developers are not restricted to a

single specification language, as usually occurs. Hence,
the following languages, which seem useful for embed-
ded computing can be adopted and mixed: continuous
time and differential equations, discrete time and differ-
ence equations, state machines, synchronous/reactive
models, discrete-event models, cycle-driven models, rate
monotonic scheduling, synchronous message passing,
asynchronous message passing, timed CSP, publish and
subscribe [24].

1.3 Related work

Many authors have already studied the combination of
DFDs with object-oriented methods. Here we only dis-
cuss some approaches that are relevant for this work.

Within the object-process methodology (OPM), the
combined usage of objects and processes is recommended
[25]. An object-process diagram (OPD) can include both
processes and objects, which are viewed as complemen-
tary entities that together describe the structure and
behavior of the system. Objects are persistent entities
and processes transform the objects by generating, con-
suming or affecting them. In addition, states are also
integrated in OPDs to describe the objects. The us-
age of OPM, for modeling, specifying, and designing
reactive and real-time systems, was also proposed, by
extending the notation with notions such as timing con-
straints, events, conditions, exceptions, and control flow
constructs [26].

In [27], the DFD notation is modified and the roles
of the functional models are redefined, in order to use
DFDs while retaining the spirit of object-orientation.
Two types of functional models are suggested: object
functional models (OFM) and service refinement func-
tional models (SRFM). OFMs model the services pro-
vided by individual objects and SFRMs model how the
services of individual objects can be composed to imple-
ment the services of their corresponding aggregation
object. In both models, the only modeling elements are:
objects, processes and data-flows. The data store is not
necessary, according to the authors, since they use an
object for that purpose. The interactions with a data
store are modeled as communications with the corre-
sponding object.

In another proposal [28], the functionality associated
with each use case can be described by an E-DFD (an
extended version of the traditional DFD) or an activity
diagram, with the objective of automatically identify-
ing the objects/classes of a distributed real-time system.
E-DFDs are mapped into a graph and a tool automati-
cally partitions the graph, which allows the identification
of a set of objects that constitute the best architecture,
from the design and test points of view.

406 J. M. Fernandes et al.

In OMT, DFDs are used to describe the functional
model of a system [29]. Since in OMT the system is
also specified by two other models (the object and the
dynamic models), DFDs specify the meaning of the
operations in the object model and the actions in the
dynamic model. But, although there is some attempt at
integration, this correspondence is left completely vague
and can not be analyzed in any useful way.

For reverse engineering purposes, the adoption of
reverse generated DFDs (i.e., DFDs obtained after inter-
preting the source code) is proposed as the basis to ob-
tain the objects that a system is composed of [30]. The
approach is said to be hybrid, because it is not fully auto-
matic, requiring in specific occasions the assistance of a
human expert with knowledge of the domain. Again in
a reverse engineering context, it is suggested the com-
bined usage of DFDs and ERDs to describe the system
being modernized [31].

Alabiso also proposes the transformation of DFDs
into objects [8]. To accomplish the transformation he
proposes the following activities: (1) interpret data, data
processes, data stores and external entities in terms of
object-oriented concepts; (2) interpret the DFD hier-
archy in terms of object decomposition; (3) interpret
the meaning of control processes for the object-oriented
model; (4) use data decomposition to guide the defini-
tion of the object decomposition.

Another interesting proposal is the Functional and
object-oriented methodology (FOOM) [9], which is spe-
cifically tailored for information systems. FOOM’s main
idea is to use the functional approach, at the analy-
sis phase, to define users requirements and the object-
oriented approach, at the design phase, to specify the
structure and behavior of the system. In FOOM, the
specification of user requirements is accomplished, in
functional terms, by OO-DFDs (a DFD with data stores
replaced by classes), and in data terms by an initial
object-oriented schema, or an entity-relationship dia-
gram (ERD) which is easily transformed into an initial
object-oriented schema. In the design phase, the arti-
facts from the analysis are used and detailed object-ori-
ented and behavior sche-mas are created. These schemas
are the input to the implementation phase, where an
object-oriented programming language is adopted to
create a solution for the system.

From the approaches presented in this section we
consider that [8,9,30,31] are the closest to our work,
but they do not fit to what we consider is needed for
designing embedded systems for the following reasons:
(a) [30] and [31] are targeted to reverse engineering and
the process of defining DFDs requires human interven-
tion; (b) [9] addresses information systems, placing data
and behavior on equal footing, while we want to put

behavior first; (c) [8] is the closest to our approach, but
it follows a structural approach in the object-oriented
domain, while we would like to focus on the functional-
ity of the system.

1.4 Contents and main contributions

This paper discusses the unification of two different
modeling perspectives: the functional and the object-
oriented views. The discussion is especially oriented to-
wards the development of embedded software.

The proposed integration could look forced or unnat-
ural, because we are trying to unite two apparently dis-
cordant approaches for developing software systems.
Nonetheless, software engineers should not take a reli-
gious or dogmatic attitude when it comes to a specific
model. Currently the question that must be answered by
the software engineers is how to nicely integrate differ-
ent models, if all of them are deemed valuable for the
description of the system [7]. This is an important ques-
tion today when commonly adopted graphical modeling
languages such as UML include several diagrams that
are only loosely related. The proper integration of theo-
ries and concepts is one of the key challenges in the field
of embedded systems [32].

The main motivation for this comes from a case study
[33], where we have applied object-oriented techniques
and UML to the design of a protocol processor. In this
case study, we noticed that there was a functional and
structural view of the system that was not adequately
represented by the diagrams provided in UML. There-
fore, the integration of both DFD and UML appears
to be a solution for this question. Additionally, indus-
try currently needs to cope with high levels of design
complexity, that can be tackled using model-driven ap-
proaches to provide automation and consistency check-
ing during the analysis and design phases of embedded
systems.

The paper also proposes a practical approach in
combining the DFD and UML notations as part of a
model-driven engineering process. Due to the increasing
complexity of current embedded systems, model-driven
development has become one of the prerequisites for
systems development. The main idea behind a model-
driven approach is the usage of well-defined models
to represent abstract specifications of the systems. The
models are built following rules specified by their mod-
eling language (i.e. meta-model). To exploit the possibil-
ity of automation provided by models, appropriate tool
support is required, allowing the designer to navigate
among different views of the system in a tool supported
and automated manner. In this paper, we focus on the
analysis phase of the development process.

Integration of DFDs into a UML-based model-driven engineering approach 407

The paper is structured as follows. In the next sec-
tion we present our opinion on the usage of UML in the
context of embedded software. Then, in Sect. 3 we pro-
vide an argumentation on the necessity to use both UML
and DFD for the specification of embedded systems and
we discuss possible solutions to accomplish this integra-
tion. We present in Sect. 4 our model-driven engineering
(MDE) process based on UML-DFD integration. We
show how we modeled the different views of the system
and how we specified model transformations between
the views. Section 5 presents the tool support for the
MDE process and we give examples of how the model
transformations were automated using scripts. Finally,
Sect. 6 presents concluding remarks and points out some
future work. It is important to notice that the UML ver-
sion under consideration in this paper is 1.4.

2 UML for embedded software

One common aspect of structured and object-oriented
methods is that they usually adopt graphical notations
for describing the system under analysis. For a graphi-
cal notation to be useful it must be clear and intuitive,
so that both clients and designers can understand it, but
also precise and rigorous, so that computer tools can ana-
lyze, simulate and validate it. One drawback of graph-
ical representations is that they are not adequate for
capturing detail. A graphical model that has excessive
information becomes as hard to read as an equivalent
textual description.

One of the languages that is gaining popularity and
usage is the UML. When UML was created it missed
process, data and user interface models [34]. As it stands
today, UML must be, in some contexts and for some
application domains, complemented with other meta-
models or at least adapted (by stereotyping it) to address
those meta-models [7].

2.1 Typical usage of UML

The most common way to use UML diagrams during
analysis is to start with use case diagrams for capturing
the user requirements. For modelling business processes
[35] use cases with some stereotypes can also be used.
This solution can be complemented by using an activ-
ity diagram that shows how use cases are related, as
well as alternatives and decisions for them [36, p. 51].
Next, sequence diagrams are used to describe some sce-
narios of the interaction between the system and its
actors. Later, a class diagram is created, taken into con-
sideration the previous diagrams. Usually a state-chart
diagram is associated to each class for describing the
corresponding behavior.

Although UML includes nine diagrams, using only
the referred five during analysis seems to be sufficient
for the majority of developers. In fact, collaboration
diagrams are not included, because they are similar to
sequence diagrams, while component and deployment
diagrams are not at all used or only used in later devel-
opment stages.

On of the problems with this typical usage, in what
concerns the development of an embedded system, is
that the “jump” from use cases and scenarios to clas-
ses is, in our opinion, a very big one. This step requires
too much ingenuity and there is not an evident direct
relationship between use cases and classes. We think
that there exist many similarities between this transfor-
mation step and the transition from analysis to design
in structured methods, which was vastly criticized to be
one of the biggest limitations of those methods. Instead,
what we need to develop complex embedded systems is
a seamless process, from requirements until the coding
phase, that preserves the behavior and integrity of the
models in each development step [32].

2.2 Classes versus objects

For embedded software, the attention should be focused
towards object diagrams, instead of class diagrams. The
majority of the methodologies for developing software
do not pay too much attention to the object diagram.
In fact, software developers concentrate too much on
the class structure and too little on the object struc-
ture [37]. We provide in this section arguments on the
importance of the object diagram for embedded systems
development.

The typical focus towards classes may be caused by
the fact that many software engineers still do not clearly
distinguish between objects and classes [38,39]. This
confusion is greatly related to the intangible nature of
software. In the same time, the way the UML meta-
model is defined imposes a certain sequence in which the
diagrams are created. For instance, one cannot create an
object diagram unless the class diagram containing the
class specification of the objects was created in advance.

For conventional software, the class diagram is built
first, but we believe that for embedded software, that or-
der must be reversed. To develop embedded software,
it is more important to have a good object model than a
good class diagram, because the elements that do con-
stitute the system are the objects and not their clas-
ses [40]. Obviously, the best situation is having good
object diagrams and good class diagrams. (But, as a
guideline for development, we consider that classes and
objects should not be simultaneously incorporated in the
same model.) Therefore we recommend, when develop-

408 J. M. Fernandes et al.

ing embedded systems, to first identify the objects and
to later select the classes which those objects belong to.

The emphasis on objects (instances) is justified since
we are dealing with real-time embedded systems. This
object-driven or component-based approach is typically
followed for developing control-oriented systems, where
the final architecture and the concepts of abstraction and
modularity are key topics to guarantee that the non-
functional requirements (heterogeneity, ubiquity, fault-
tolerance, security, dependability) are met. In contrast,
class-driven approaches are usually used for informa-
tion-intensive applications, such as databases, in which
the relations among classes (types) and its hierarchical
categorization are the most important issues to consider.

This perspective that puts classes in an apparently
secondary role may be classified by some specialists as
object-based rather than object-oriented. However, the
approach that first defines the objects and later the clas-
ses is somehow consistent with the bottom-up discovery
of inheritance to organize the classes [29, p. 163].

The class diagram is usually understood as a template
for a set of applications that can be obtained from it. In
other words, the class diagram is a high-level general-
ization of the system [41]. When developers define the
way classes are interrelated, they are indicating all the
systems (or all the configurations) that can be obtained
from those classes.

With this perspective, it is common not to build the
object diagram, since it can be automatically derived
from the class diagram. In the cases where an object
diagram is built, it is mandatory to guarantee that the
relations expressed in the class diagram between two
classes also exist between instances of those classes. This
is the main reason why methodologies usually suggest
class diagrams to be collaborate first constructed, rather
than object diagrams.

The class-centered approach seems adequate to de-
velop business information systems or, more generally,
any data-dominated system, where the objects are cre-
ated and eliminated during the system life cycle [40,42].
For example, in a system for bank accounts manage-
ment, it is common that each account is always associ-
ated with, at least, one customer. This fact is indicated
in the class diagram by associating the account class
with the customer class. When an account object is cre-
ated, it must be linked to, at least, one customer object.
This approach does not offer many benefits for devel-
oping embedded systems, since at the highest levels of
abstraction the objects that constitute the system are not
created and destroyed on the fly.

Actually, structure is one of the dominant aspects of
real-time and embedded systems [42]. An embedded
system is generally composed of a set of fixed objects

that are linked in some way and this organization can
be perfectly described by an object or a collaboration
diagram. Thus, it is not crucial to indicate, for example,
that objects of the controller class need to be linked with
objects of the sensor class, because this fact is not at all
universal. If in some applications this information can
be important, it may be completely wrong in others.

Another important concern related to embedded soft-
ware is the description of concurrency. The notion of
concurrency can also be modeled in UML using ob-
jects, namely active ones [42]. An active object is con-
tinuously executing, which requires its own thread of
control, and runs concurrently with other active ob-
jects. The ‘Embedded UML’ profile proposes also the
concept of a reactive object, which consists of a con-
current process, with asynchronous communications to
other objects, that reacts to external events and stimuli
[43]. A reactive object is one that can react to events and,
therefore, must specify a control structure, typically in
the form of a state-oriented model, and communication
with other objects through ports and connectors, which
gives raise to collaboration diagrams. So, objects do play
a fundamental role in modeling embedded software sys-
tems.

3 Combining DFD and UML

The combined usage of DFDs with other UML models
can be accomplished in several ways and this combina-
tion must be interpreted in a very broad sense, where
several possible alternatives are considered. This results
from the fact that the development of a software sys-
tem proceeds in steps, where several different models
are being refined and detailed, but also transformed,
merged, split, integrated, etc. Therefore, in this con-
text, the term “combined” used above can mean sev-
eral different things. One possibility is that DFDs are
used during the development process and that they are
transformed into UML diagrams or vice versa. A dis-
tinct interpretation consists in not using DFDs at all,
and give some UML diagram a DFD flavor. Yet another
possible alternative is to use DFDs and UML diagrams,
and propose techniques for integrating their usage.

Under these circumstances, the question that is impor-
tant to answer is how and when can DFDs be used within
the development process of an embedded system. The
way to tackle this question can be divided in three more
specific ones, to which we hope to give real answers in
this paper:

1. Are DFDs useful models for embedded software?
2. In which phase of the development process must

DFDs be introduced?
3. Which views should DFDs cover?

Integration of DFDs into a UML-based model-driven engineering approach 409

Fig. 1 Three alternatives for
integrating DFDs in UML: a
DFDs mapped into UML
concepts; b DFDs added to
the UML meta-model, i.e.
profile; c DFDs as a separate
meta-model coexisting with
the UML meta-model

DFD UML

back-end
procesing tools

DFD UML

back-end
procesing tools

UML«DFD»
profile

back-end
procesing tools

(a) (b) (c)

3.1 Initial considerations

A data-flow model may be the most adequate one for
transformational systems, that is, systems that continu-
ously repeat the same data transformation on streams of
data. Application areas, where the data-flow paradigm
of computation is evidently useful and widely adopted,
include for example multimedia systems, telecommuni-
cation devices, and digital signal-processing systems.

This idea can be largely confirmed by the widespread
usage of data-flow oriented meta-models for describing
digital and embedded systems, namely process networks
[44] and control/data flow graphs (CDFG) [45]. It is
important to stress that the meta-model behind CDFG
has many resemblances to the one associated to DFDs
with control extensions (as proposed in the Ward–Mel-
lor method [4], for example).

However, for developing embedded software, we do
not believe that it is possible to rely on a “one-size-
fits-all” solution, due to the wide range of applications
covered by this software field. This means that in some
situations DFDs may be an adequate solution, but that
in others they are not.

The incorporation of DFDs into UML can not be
made without first deciding if they are merely added as
a new diagram or whether it is possible to view them as
an extension or adaptation of an existing UML diagram.
The combined use of DFDs with other UML models, if
deemed useful, can be accomplished with at least three
approaches (Fig. 1).

1. The DFD meta-model is mapped into UML con-
cepts, where DFD elements are represented using
already existing UML based on some convention of
interpretation;

2. DFDs are represented as an extension of UML (i.e.
profile) that coexists with the UML models;

3. Both UML and DFD meta-models are available as
originally devised.

Each of the alternatives brings its own advantages and
disadvantages. Although the first alternative brings the

benefit from using existing UML tools without additional
work, it does not provide mechanisms to enforce the
well-formedness of models with respect to the DFD
meta-model. Thus it is entirely left to the designers to de-
cide what UML elements best represent DFDs. The sec-
ond alternative defines a UML profile for DFD, where
by extending the UML core, one can still benefit from
the UML tools and notation, but some constraints on
the well-formedness of models can also be provided. In
the third approach, the DFD and UML meta-models are
specified independently but they may coexist inside the
same tool. Still, one can benefit from the specific DFD
graphical notations, but their implementation requires
additional work. Having a well-defined meta-model for
DFD supports better the well-formedness of the mod-
els, much in the same way as in UML. In fact, using
the OMG’s meta-object facility (MOF) [46] one can
reuse parts of the UML meta-model core to create a
meta-model for DFD. To follow this approach, a MOF-
based meta-model for structured analysis for real-time
(SA/RT), was defined and built in [47]. The meta-model
was specified so that it can function perfectly well as a
stand-alone tool, as well as in combination with other
MOF-based meta-models, providing the possibility to
integrate DFD models with UML tools.

The alternatives presented can be also applied when
integrating other meta-models with UML. We believe
that although the first two alternatives are preferable in
certain situations (e.g., defining a UML profile for an
object-oriented language like SystemC), by allowing us
to restrict to the UML meta-model in what concerns
the model’s back-end processing (model transforma-
tion, validation, code generation), in other situations
(e.g., domain-specific languages, non-object-oriented
hardware description languages, etc.) the third one is the
only solution. Restricting the UML meta-model allows
the usage, without any modification, of any tool that
supports UML for edition, documentation, validation,
simulation and code generation purposes. However, this
solution forces the DFDs to be adapted to a given UML
diagram, which means that we are not able to use DFDs
at their maximum expressiveness. Another argument in
favor of the first alternative is that almost all people

410 J. M. Fernandes et al.

involved in UML agree that it already offers a reason-
able set of diagrams, sufficient for the vast majority of
modeling purposes, and that it should not be further
extended, namely in what concerns the number of dia-
grams. In any case, to take full advantages of DFDs, the
designer must be completely aware of their associated
meta-model. So, even in the situation where a UML dia-
gram is adapted to be viewed as a DFD, the designers
have to understand the complete set UML + DFD.

Therefore, we propose three major ways of using, in
an integrated way, DFDs within an object-oriented sys-
tem development.

1. The DFDs to refine the use case model;
2. The DFDs to detail the behavior of a system’s com-

ponent;
3. The DFDs to be transformed into class diagrams.

The rationale behind these proposals is always to
have, as the major model to drive the implementation
phase, some object or class diagram, so that an object-
oriented programming languages can be used, but also
to include the DFDs in the modeling process.

Here, we will concentrate on the first proposal, and
only shortly discuss the others.

3.2 DFDs to refine the use case model

Use cases are among the modeling techniques the devel-
opers can rely upon to analyze their systems. Thus, it is
commonly accepted, within the object-oriented commu-
nity, that the analysis of a software system can be started
with uses cases. A use case diagram represents a func-
tional view of the system. Similarly, in structured meth-
ods, a system is seen as a provider of functions to the
user, which is an adequate view for requirements cap-
ture. Yet, use cases are not intended to be used alone,
but to be complemented with other techniques (e.g., user
stories, sequence diagrams, scenarios, etc.).

However, using use cases does not necessarily imply
that subsequently an object-oriented approach must be
followed. Use cases represent a technique that is quite
independent of object-oriented modeling and can be ap-
plied to any system, developed either with a structured
or an object-oriented approach [48]. In any case, adopt-
ing use case diagrams should not be seen as an oppor-
tunity to follow again a functional decomposition of the
system. This is the reason for our proposals to always
incorporate object-oriented diagrams in the modeling
process.

The transformation of a use case model into a DFD-
like model is not at all awkward or forced, since both
meta-models can be used naturally for focusing on the

same modeling perspective. DFDs can be made more
detailed, since they include processes (similar concept
to use cases) and external entities (identical to actors),
but also data stores and data flows, which indicate data-
dependencies among processes and are not directly rep-
resentable in a use case diagram. Even though UML
provides two relationships, include and extend, to con-
nect use cases among them, they are not related to data
or control flows, but rather with dependencies between
use cases. It is usually difficult to perceive how use cases
interact, especially if there are many of them in a dia-
gram. An interesting solution to this limitation is to use
an activity diagram that shows how use cases are related
and also alternatives and decisions.

We would like to use UML as the notation to rep-
resent the systems being modeled. Therefore, the meta-
model behind DFDs must be mapped into UML
concepts. Generically speaking, any UML diagram could
be used for this purpose, as long as stereotypes are asso-
ciated to its constructs. In the extreme case, we were only
using the syntax of the diagrams, but would associate a
very different semantics to it. But we prefer to adapt a
UML diagram whose respective model of computation
is as close as possible to that of the DFD. However, this
choice should be taken with care, since different dia-
grammatic representations do not necessarily have the
same effectiveness or computational power.

Before choosing which UML diagrams best match
with DFDs, it is important to notice that DFDs are
not representing only the behavior of the system. We
can also think about DFDs as defining a given struc-
ture or architecture for the application being analyzed:
they are dividing or decomposing it in its modules or
subsystems and also showing the communication paths
amongst those modules. As a matter of fact, DFDs can
be used to describe only the structure of a system, show-
ing just its components and the channels through which
information flows [49]. With this view, no behavioral
aspect is being modeled.

In the case of DFDs, the behavior is usually organized
as a tree of processes and only the leaf ones (called func-
tional primitives) must be associated with a description,
traditionally a PSPEC (process specification), that spec-
ifies concisely the intended behavior. In fact, when a
system is divided in parts both structure and behavior
are being decomposed. For example, Kiczales et al. [50]
consider that the design methods that have evolved to
work with object-oriented, procedural and functional
languages all tend to break the systems down into units
of behavior. They claim that all systems are submitted
to a functional decomposition, even if, for each compu-
tational paradigm, different units of behavior (objects,
procedures, and functions) are considered. Similarly, it

Integration of DFDs into a UML-based model-driven engineering approach 411

is acceptable that we consider that all those design meth-
ods force equally the systems to a structural decompo-
sition.

Our opinion is that collaboration diagrams (or com-
munication diagrams in UML 2.0) constitute the most
appropriate UML model for representing DFDs. The
decomposition that DFDs impose could be equally
achieved with collaboration diagrams. Although col-
laboration diagrams and DFDs could look similar, at
least superficially, there is however an important differ-
ence. DFDs constitute a static view of the system, in
the sense that all the system’s connections and all its
processes, used during the system’s life cycle, are repre-
sented. Contrarily, a collaboration diagram represents a
dynamic view of the system and allows the visualization
of a unique point in time, showing what are the inter-
actions within a particular subset of the objects that a
system is composed of. This means that collaborations
diagrams can be adapted, but also that they must be
slightly modified.

3.2.1 Transforming use cases into objects

If use case diagrams are to be transformed into DFDs,
represented as collaboration diagrams, the main ques-
tion is thus how to transform use cases into objects,
since these are the constituents of collaboration dia-
grams. This kind of transformation is not simple and
easy, and faces several problems. Firstly, despite the exis-
tence of some proposals for automatically obtaining ob-
jects, namely the SysObj tool [28], it generically involves
several decisions that can not be done by a method or a
tool, caused by the natural discontinuity between func-
tional and structural models.

To tackle these crucial questions, namely the identi-
fication of objects from use cases, some proposals exist
[52–54], but usually they concentrate on classes rather
than real objects. This difference, that might apparently
look superficial, entails a distinct approach and focus.
A strategy, called 4-step rule set (4SRS), was already
devised to assist the designers in the transformation of
use cases into objects [6,40].

The 4SRS associates, to each object found during the
analysis phase, a given category: interface, data, con-
trol.1 Each one of these categories is intimately related
to one of the three orthogonal dimensions, in which
the analysis space can be divided (information, behav-
ior and presentation) [52]. The division has also strong
resemblances to the typical 3-tier client/server architec-

1 These three categories can also be designated as boundary, entity,
and function, respectively.

tures commonly used within enterprise resource plan-
ning (ERP) systems, which divide the software appli-
cation into three layers: the presentation, the business
logic, and the database.

An interface-object (e.g., an object to provide a GUI,
an object to interface a sensor, etc.) models behavior and
information that depend on the system’s interface, that
is, the dialogue of the system with the actors that inter-
act with it. A data-object (e.g., a bank account) predom-
inantly models information, whose existence must be
lengthy. Apart from the attributes that characterize the
data-object, the behavior associated to the manipulation
of that information must also be included in the data-
object. A control-object models behavior that can not be
naturally associated to any other object. For instance, the
functionality that operates on several objects and that
returns a result to an interface-object is most probably
a control-object.

With this categorization of objects, object and collab-
oration diagrams become similar to DFDs that are com-
posed of data stores, processes, and external entities. We
think that it is relatively easy to adapt the main ideas of
the 4SRS to transform use cases diagrams into DFD-like
diagrams, and that this transformation is valuable to de-
velop embedded software. However, it is crucial to avoid
creating excessive functional control-objects that dictate
the behavior of data-objects, with no associated “intel-
ligence”. In fact, there appears to be a strong tendency,
which is important to contradict, for control-objects to
usurp the responsibilities of data-objects [55]. Further-
more, it is not unusual to see data-objects and control-
objects becoming respectively the data representation
and the processes, i.e., to have a clear separation be-
tween data and processes that object-orientation was
supposed to avoid. Thus, we emphasize that an object,
independent of its category, should be viewed as a rich
modeling entity with both attributes and methods, and,
eventually, a state-oriented model associated with it.

The objects that are created by the 4SRS must be
viewed at a higher level of abstraction if compared with
the traditional perspective in object-oriented analysis
and design. The objects are not to be viewed as, for
example, a stack or a queue, which have a small scope,
are centered on data and are passive. When developing
complex systems, some lower-level classes will certainly
be used, but generally these classes are not visible during
analysis or even design. We must see an object as a com-
ponent of the system. This view is similar to ROOM’s
one, where they define “an object as a software machine,
or as an active agent implemented in software” [51].

In fact, within the 4SRS, data-objects can be seen as
data stores. The data store notation in DFDs is used to
save information that is used within the system.

412 J. M. Fernandes et al.

Although data-objects are much richer than data stores,
since they can also have associated methods, this per-
spective does not conflict with the object-oriented view
of data-objects. DFDs should not be used to model the
details of the information perspective of the system,
since other diagrams are used for that purpose.

The interface-objects can be equally understood as
ports of the system. For every actor connected to a use
case,2 it is necessary to introduce an interface-object to
handle the communication between the actor and the
system. Alternatively, interface-objects can be seen as
the processes responsible for receiving the inputs and/or
sending the outputs, when that perspective makes sense.

The control-objects can be viewed as DFDs’ pro-
cesses. They are used to operate on data received from
the outside (from an interface-object) or stored inter-
nally (in data-objects) and to generate new data to be
sent to the outside (to an interface-object) or stored
internally (in data-objects).

3.2.2 Possible enhancements

The 4SRS can be enhanced in several directions, and
here we intend to provide one of these possible improve-
ments. The idea is that the transformation of each use
case into objects can be eased if the use case is classified,
according to some scheme. This classification would pro-
vide some hints on which object categories to use and
how to connect those objects.

To understand what the classification mechanism can
be, we must first study how many combinations of ob-
jects of a given use case do exist. The 4SRS assumes
that each use case gives rise to a maximum of three
objects:3 one interface-object (i), one control-object (c)
and one data-object (d). Thus, we come up with 8 differ-
ent combinations (∅, i, c, d, ic, di, cd, icd), if we ig-
nore the links among objects. These combinations can
be arranged hierarchically, as illustrated in Fig. 2.

If we now take in consideration the links among ob-
jects, they are trivially established for the combinations
of c0, c1 and c2 levels. Actually, only the c2 level combi-
nations have one link, since for the others there is only
one object or no object at all. For the c3 level combi-
nation, we have several possibilities for the links. In all
of them a minimum of two links must exist, since it is

2 In a use case diagram, it is possible to have actors that are not
connected to use cases. An actor of that type is called secondary.
3 In some situations, four or more objects can be created from
the same use case. A typical example is the creation of two inter-
face-objects, one for input and the other for output purposes.
However, considering three as the maximum number of objects
does not result in loss of generality.

i c d

i c d i c d

i c d

c3

c2

c1

c0

Fig. 2 Combinations of objects

c i d

i c d i c d

i c d

d c i i d c

d

c

i

l2

l3

l1

l0

Fig. 3 Combinations of linked objects

assumed that the objects must be fully-interconnected,
at least indirectly. All these combinations with links, de-
picted in Fig. 3, can be represented as: i, c, d, i-c, d-i, c-d,
c-i-d, d-c-i, i-c-d, -i-c-d-. This last symbol is intended to
represent the fully-interconnected object combination
at level l3. It must be stressed that the links between two
objects do not necessarily represent software messages,
but rather indicate only a logical association.

Some of the combinations in Fig. 3 might not make
sense, from a modeling perspective, namely if the seman-
tics associated with DFDs are taking into account, which
excludes, for example, two data stores directly connected.
Some restrictions may also apply to the object diagram,
if the rules for robustness diagrams presented in [53,
p. 69] are followed (Fig. 4). These rules presuppose a
more restrictive view on the categories of objects than
our perspective, but they may apply nicely and efficiently
in some contexts. The first observation is to include
always, for each use case, an interface-object to com-
municate with the actors, which means that an inter-
face-object is supposed always to exist. This is not the
case only for the situations where internal use cases (i.e.,
internally-initiated functionalities) exist. The rules also
disallow an interface-object to be connected to a data-
object.

The robustness diagram rules can also help the devel-
opers to link objects originated from different use cases.
Apparently, no restrictions apply to control-objects, since
they can be connected to all the categories of objects.

Integration of DFDs into a UML-based model-driven engineering approach 413

«interface»

Allowed

«control»«interface»

«control»«control»

«control»«data»

«control»

«interface»«interface»

«data»«interface»

«data»«data»

«data»

Disallowed

Fig. 4 Robustness diagram rules (adapted from [53])

i c c d

i c d

d c il2

l1

l0

Fig. 5 Combinations of linked objects, taking into account the
rules for robustness diagrams

In principle, two data-objects should not be directly
connected, since they are seen as passive objects. Inter-
face-objects and data-objects should only be linked to
control-objects. Figure 5 is a rearrangement of Fig. 3,
but taking into consideration the rules for robustness
diagrams, which result in deleting some of the combina-
tions.

The main idea behind this approach is thus to classify
the use cases according to some criteria and with that
classification have more information on what object con-
figuration (i.e., software architecture) is more likely to
give an appropriate computational support for the use
cases.

3.3 DFDs to detail the behavior of a component

In this paper, we explore very shortly this hypothesis
of using DFDs. This possibility was already suggested,
for example, by Ivar Jacobson in a conference panel

[12]. Briefly, we can comment that the UML meta-model
defines an association between ModelElement and State-
machine, called behavior [56, p. 2–145]. Almost all the
elements that can be included in the UML diagrams
are ModelElement. However, there is also the follow-
ing well-formed rule [56, p. 2–156]:

This means that only behavioral features and classi-
fiers can have state machines. A BehavioralFeature is a
method of a class and a Classifier can be a Class, a Use
Case, an Actor, a DataType, a Component, an Artifact,
a ClassifierRole, an Interface, a Subsystem or a Signal.

We can define the behavior of any classifier element
using a statechart (or an activity diagram). Thus, it is
possible to update this association so that we can define
the behavior of a model element using a statechart, an
activity diagram but also a DFD diagram.

With this approach, we must realize that DFDs are
not being adopted as the main description for speci-
fying the systems. If we follow this guideline, the prob-
lems of top-down functional decomposition are avoided,
but the benefits of their data-flow flavor still remain. In
UML this aim can be easily achieved since it promotes
a multiple-view modeling approach, by distributing the
different system’s views across several diagrams.

The main disadvantage of this approach is that it
forces the designer to use DFDs as they are, and thus
imposes the back-end tools to support both DFDs and
UML.

3.4 DFDs to be transformed into object/class diagrams

Assuming that generically DFDs are not an adequate
tool for capturing the user’s requirements, they are how-
ever useful in later phases of the development. One
specific situation where the usage of DFDs is helpful is
in re-engineering activities if the system was previously
developed following the guidelines of some structured
method. Even if the diagrams are no longer available, it
is expected to be easier to transform the program code
into DFDs and other complementary models, than to go
directly into some object-oriented models.

We propose that DFDs could be transformed into
object or class diagrams. We give more details, namely
algorithms, about these transformations in Sect. 4.5.
Some similar ideas were already proposed in the FOOM
methodology [9] for developing information systems,
but its usage for embedded systems requires some adap-
tation. The transformation of a functional specification
in Z into an object-oriented one in Object-Z, for re-
engineering purposes, is also proposed in [11].

414 J. M. Fernandes et al.

4 A model-driven engineering approach

In this section we present our model-driven engineering
approach, where we integrate the object-oriented and
data-flow paradigms from a modeling perspective.

Recently, OMG started to promote a new vision to
system development: model driven architecture [57],
where the main emphasis is put on separating the devel-
opment process from the implementation one, making
use of models to describe the system at different steps
of the development. The main modeling tool of MDA is,
unsurprisingly, represented by UML. But the way MDA
is envisioned gives the possibility of combining several
modeling languages, and consequently their paradigms.
As previously presented, sometimes several views, some
of them not supported in UML (thus belonging to a
different meta-model) have to be used to obtain a good
understanding of the system.

In the previous sections, the motivation for com-
bining the object-oriented and functional views of the
systems was given and a number of possible ways to
integrate the two were proposed. In this section we will
present our practical approach in combining the two
paradigms from the perspective of a model-driven phi-
losophy. In this sense, a set of models of the system, a
process for integration of these models and a number of
model transformations to go from one model to another
are defined. The method we present focuses on extract-
ing the behavioral specification of the system (i.e., an
IPv6 Router) corresponding to the realization platform
independent model (PIM) in the MDA specification. The
process “refines” several PIM models until the necessary
level of detail is reached, before proceeding to the PIM-
to-PSM (platform specific model) transformation. The
main purpose of the IPv6 Router case study is to serve
as a feasibility demonstration of our (MDE) approach.

The basic idea behind our approach is to specify the
system following a functional decomposition and rep-
resenting it using the benefits of both object-oriented
and DFD views. Some of the ideas presented here were
already analyzed and discussed in [33], but with a differ-
ent perspective. There, the main objective was to define
a complete UML-based methodology for embedded sys-
tems, making special emphasis on the real implementa-
tion of the system. Here, our aim is to provide a practical
way of merging DFDs with other models (e.g., object or
class diagrams), during the analysis phase and to develop
a viable tool support for creating and maintaining these
models during the entire life-cycle of the design. The
main phases of the process (Fig. 6) are:

(a) Extract application requirements
(b) Create the use case diagram (UCD)

(c) Specify each use case in a textual manner
(d) Transform the UCD into an initial object diagram

(IOD)
(e) Refactor IOD by grouping, splitting and discarding

objects based on their functionality
(f) Transform the IOD into a DFD
(g) Identify data flows and build a data dictionary
(h) Specify process behavior using activity diagrams
(i) Transform the DFD into an object diagram (OD)

or

(j) Transform the DFD view into a class diagram (CD)

During the design flow we have to change several
times the view of the system to be able to work on spe-
cific details provided by each view. To provide an auto-
matable approach, well-defined model transformations
are required. Several authors recognize the model trans-
formation as the fundamental mechanism for model-
driven development [58]. A model transformation takes
a source model expressed in a given language and trans-
forms it into a target model expressed either in the same
language or in a different one. We consider that model
transformation is an important technique for applying
software patterns and refactorings, in the same time pro-
viding a good support for reuse. Following, we briefly
describe the algorithm for the main steps in Fig. 6, exem-
plified with an IPv6 router specification.

4.1 Capturing the requirements with use cases

We start by analyzing the specification of the IPv6 router
requirements and building a use case diagram (Fig. 7).
Two external actors interact with the router. The node

is a common network node that requests the router to
forward datagrams and eventually to send back ICMPv6
error messages in case of failure. The router represents
the neighboring routers that exchange topological infor-
mation with our router. Then, we identify the services
that the system provides to the external environment
and extract them into a list of use cases. We have iden-
tified six use cases that provide services for external
actors. Each use case is accompanied by a short textual
description that specifies its functionality. Due to space
reasons, we intentionally omit technical details of the
router specification. More details can be found in [59].

As discussed in Sect. 3.2 use cases represent a tech-
nique that allows us to follow either a structured or
object-oriented approach. Indeed, next we show how
we obtain a DFD starting from a use cases diagram, by
first identifying the initial objects and then creating the
IOD of the system.

Integration of DFDs into a UML-based model-driven engineering approach 415

a. Extract
Application Requirements

b. Create
Use Case Diagram

d. Create
Initial Object Diagram

h. Create
Activity Diagrams

f. Create
Data Flow Diagram

g. Build
Data Dictionary

c. Specify
Use Cases

i. Create
DFD-like Object Diagram

j. Create
Class Diagram

Use Case
Diagram

Object Diagram

Data Dictionary

Initial Object
Diagram

Class Diagram

Use Case
Description

Activity Diagrams

Data Flow
Diagram

refinement

e. Refactor
Initial Object Diagram

Requirement List

Fig. 6 Activity diagram describing the process for integrating UML and DFD models

4.2 From use cases to initial object diagram

From the use case diagram (UCD) we identify the ini-
tial set of objects in the system by decomposing each
use case into three objects: control, data and interface-
objects, based on the 4SRS method. The objects have
the same number as the initial use case, but an extra
tag name is added. For instance, the {1.i}, {1.c} and {1.d}
objects (Fig. 8) represent the interface, control and data-
objects obtained from splitting the Forward Datagram

{1.} use case. Also, an actor is created in the initial
object diagram (IOD) corresponding to the actors in
the UCD.

The model is structured so that all communication be-
tween data-objects and interface-objects is done through
con-trol-objects. Consequently, we add associations
between interface and control-objects, and between con-
trol- and data-objects, respectively. We also add associ-
ations between objects and the external environment
(actors).

When a system is divided into parts, both structure
and behavior are being decomposed along with func-
tionality. Usually the designer is focusing his effort only
on one view during decomposition, but we consider that
the other aspects are always present as side-effects.

416 J. M. Fernandes et al.

Fig. 7 Use case diagram for
the IPv6 router

IPv6 router

{1.}
Forward

Datagram

router

node {2.}
Send Error

{3.}
Treat

Request

{4.}
Inform

Topology

{5.}
Update

R'ting Table

{6.}
Create

Request

{1.i} {2.i} {3.i}

{1.c} {2.c} {3.c}

{1.d} {2.d} {3.d}

{4.i} {5.i} {6.i}

{4.c} {5.c} {6.c}

{4.d} {5.d} {6.d}

node router router router routernode

forwarding
datagram

error
datagram

request
datagram

response
datagram

response
datagram

 request
datagram

Fig. 8 Initial object diagram for the IPv6 router

The main steps of transforming the UCD into IOD
are:
1. Each actor in UCD is transformed into an actor (in-

stance) in IOD
2. For each use case in UCD, three objects (interface,

control, data) are created in the IOD
3. In IOD, an association is drawn between the interface

and control-objects belonging to the same use case
4. Similarly an association is drawn between control and

data-objects belonging to the same use case
5. For each actor–usecase association in UCD, an asso-

ciation is drawn between the corresponding actor and
the interface-object generated by the use case.

4.3 Refactoring the initial object diagram

According to the 4SRS method, by instantiating sce-
narios for the initial use cases, we decide what objects
are kept or disposed, and also identify the communi-
cation (depicted by associations) among these objects.

The remaining set of objects is refactored, by decompos-
ing or grouping together objects of the same category.
The interface-objects that communicate the same infor-
mation with the same actor and in the same direction
can be grouped together. For instance, objects {5.i} and
{3.i} receive both routing datagrams, either as request

or response datagram, from the router. An interface-
object that communicates bidirectionally with one node,
can be split into 2 separate interface-objects ({1a.i} and
{1b.i}), one dealing with the incoming and the other with
the outgoing traffic. The final result of the refactoring is
presented in Fig. 8.

The only data-objects that survived are {1.d} (i.e.,
data-gram) and {5.d} (i.e., routing table). Although
we could also have the data-objects for use cases {2}, {3},
{4}, {6}, we decided that only the major functionalities of
the system ({1.} forwarding and {5.} routing) should have
a data object. This does not mean that information is not
produced in objects {2.c}, {3.c}, {4.c} and {6.c}, but that
the major role of those objects is to produce behavior.

Integration of DFDs into a UML-based model-driven engineering approach 417

The links between {5.d} and {1.c}, {4.c} and {6.c} rep-
resent the dependency of those control-objects on the
routing information, which is stored in object {5.d} (i.e.,
routingTable).

Although, splitting and grouping of objects is tool
supported, the refactoring process is, for the moment,
performed manually based entirely on the designer’s
expertise.

4.4 From object diagram to DFD

Sometimes designers need to change the view of the
system to be able to focus on different details. We use
DFDs to identify, classify and refine data flows involved
in the system. We obtain the data flow model of the sys-
tem from the initial set of objects (Fig. 8), by noting the
direction of the communication among the objects and
then defining data entities that are being exchanged. To
obtain the DFD of the system two steps are required:
to specify the processes (data transformations) and data
stores in the system, and then to identify the data flows
connecting them.

The first step of the process is straight-forward due to
the way the IOD was structured. In the IOD we have
control and interface-objects that process input com-
munication from external environment (i.e. router and
node) and transform it into output communication. This
is similar to the behavior of the processes provided by
the DFD concepts, allowing us to transform all control
and interface-objects into DFD-specific processes (i.e.,
data transformations). Similarly, data-objects in the IOD
are transformed into data store elements in DFDs.

Most of the DFD approaches in literature, do not
make a clear distinction among processes with respect
to their execution in time. Our opinion is that we can
observe two types of behavior: processes that start their
execution when one of their input flows becomes active,
and processes that execute continuously, independent of
their input flows status. We name them reactive processes
and active processes, respectively. A process is consid-
ered to be active if it has no input flows from other
processes or its behavior is self-triggered (output flows
are fired without an input flow triggering the process).
One example of an active process would be a process
that is periodically reading a data store (e.g., processes
{1b.c} and {6.c} in Fig. 9). Here, the input flows are trig-
gered by the processes themselves and not by the data
stores, despite the fact that there is a data-flow from the
data stores to the given processes. Classifying processes
into active and reactive helps the designer to specify,
in the next design phases, the internal behavior of each
process.

To transform an IOD into a DFD we perform the
following steps:

1. Transform each actor in the IOD into an external
entity

2. Transform interface and control-objects into processes
in the DFD

3. Transform data-objects into data stores
4. Transform associations between elements of the IOD

into data flows either between external entities and
processes, or between processes and stores, or in-
between processes

5. Identify and mark active processes in the DFD.

In the second step, we focus on refining the previ-
ously added data flows, by adding new details about the
data entities transported by data flows. The resulting
diagram is presented in Fig. 9. We classify the data flows
involved in the system by building a data dictionary. This
is done by analyzing the data that is moved between data
transformations, having as primary information source
the application requirements. Data flow identification is
performed manually and it is based, for the moment, on
designer’s skills. A complete data dictionary specifica-
tion of the IPv6 Router under study can be found in [1].
Following we only present a small example, where the
datagram types transported through the system (router)
are classified.

4.5 From DFD to UML

For obtaining an object-oriented model of the system
starting from the DFD-model we have tried two ap-
proaches. In the first (Sect. 4.5.1), we transform the DFD
model directly into an object diagram by mapping (on
an one-to-one basis) processes and data stores in the
DFD model into objects. The second approach (Sect.
4.5.2) follows a more object-oriented view, where we fo-
cus on classifying data in the system and detecting class
methods that operate over identified data.

4.5.1 From DFD to object diagram

To obtain the object diagram OD, basically, the algo-
rithm transforms each data transformation in the DFD
into an object in OD, and the data flows among these
transformations into associations. In addition, the data
flows involved in the system become internal attributes

418 J. M. Fernandes et al.

{1a.i}
ReceiveFwd

{1a.c}
Validate

{1.d}
dataStore

{3.i+5.i}
Receive
Routing

 {1b.c}
Forward

{3.c}
Request

{5.c}
Response

{5.d}
Routing Table

{4.c}
Create

Response

{6.c}
Create

Request

{4.i+6.i}
SendRouting

{1b.i}
SendFwd

RTE

 RTEs

RequestDatagram+
Interface(s)

ResponseDatagram+
Interface(s)

RequestDatagram+
RecvInterface

ResponseDatagram+
RecvInterface

ResponseDatagram+
RecvInterface+

ErrorType

RequestDatagram+
RecvInterface+

ErrorType

ForwardDatagram+
 RecvInterface+

ErrorType

 Foward
Datagram

Routing
Datagram

 FowardDatagram+
RecvInterface

 FowardDatagram+
RecvInterface

 FowardDatagram+
RecvInterface

 FowardDatagram+
FwdInterface

 FowardDatagram+
RecvInterface+

ErrorType

RTE

RTE

Foward
Datagram

Routing
Datagram

Trigger
Response

{2.c}
ICMP

{2.i}
SendICMP

ErrorDatagram+
RecvInterface

Error
Datagram

Fig. 9 Data-flow diagram for the IPv6 router. Active processes are drawn in thicker lines

of the classes (objects) are encapsulated into the objects
and used now to describe their internal state. In order
to access the data entities inside objects, corresponding

methods are added. For instance, the initial ForwardDat-
agram data flow, between the ReceiveFwd and the Val-

idate processes (Fig. 9), has been encapsulated inside

Integration of DFDs into a UML-based model-driven engineering approach 419

the Validate object (Fig. 10), and it is only accessed
by the sendFwdDatagram() method, while its value is
dispatched to the adjacent objects through the write-

FwdDatagram() and sendFwdError() methods.
In addition, objects originating from processes placed

at the border of the system will have set() methods to
communicate with the environment, while the other pro-
cesses will have send() methods that receive input data
flows in the DFD as parameters. Objects obtained from
active processes will have in addition a run() method
specifying their state machine, while the objects origi-
nating from data stores receive write() and/or read()
methods to provide access to their data, based on data
flows accessing them. One should note that the way the
elements in the object diagram are named is only to help
in automating the process. Once the transformation pro-
cess is completed, the names of different elements can
be changed to be more meaningful for the designer.

When the transformation is completed, we focus on
specifying the behavior of each object. In fact, defining
the behavioral aspects of the system is the main pur-
pose of this view. The final object model (Fig. 10) is very
similar to the DFD one, but now we have objects that
have an internal behavior and provide services (imple-
mented by methods) to the adjacent objects. The newly
created objects are also classified as being active or reac-
tive based on the processes from which they were gener-
ated. The difference between them is that the execution
of the reactive objects is triggered only when one of
their methods is invoked, while the active objects have a
state machine (usually implemented by a run()method)
executing continuously.

To summarize, the following steps are performed:

1. External entities in DFD are transformed into actors
in OD

2. Processes in DFD are transformed into objects in OD
3. Flows between processes become associations
4. Active objects receive a run() method
5. Classes originating from border processes dealing

with input communication receive an attribute cor-
responding to the input flow and a set() method to
access that attribute

6. Objects originating from non-border processes re-
ceive a send() method of the incoming dataflow and
the corresponding attribute

7. Data stores are transformed into objects, that con-
tain read() and write() methods to provide access
to their attributes.

4 We mention that, due to typographical reasons, some details (i.e.
attributes, actors, etc.) have been intentionally omitted from the
diagram.

The object diagram in Fig. 10 provides a low level of
abstraction and data encapsulation, but it proved to be
suited for prototyping purposes and functional testing of
the specification. Additionally, it is a good candidate for
being mapped onto a hardware-based platform, because
its granularity is at a relatively low level of detail.

We used this approach to design protocol processing
applications targeted to the TACO processor platform
[33]. The TACO processor is composed of functional
units that communicate via an interconnection network
of data buses. Resources of the processor are specified
and implemented in a library of components using the
SystemC language [60] (an object oriented extension
of C++ for hardware specification language, where the
hardware modules are instances of SystemC classes).
Due to the architectural aspects of the processor a object
diagram like the one presented in Fig. 10 proved well-
suited for the specification and design purposes. To con-
figure TACO to support a given application one has to
select a number of required resources from its SystemC
component library. Thus, being able to go from a struc-
tural representation to an object-oriented one at any
point during the design flow proved to be helpful.

4.5.2 From DFD to class diagram

In the second approach to create an object-oriented
model of the system, we adopt a view where data in-
volved in the system plays a central role. This approach
is not far from the structured methods philosophy where
determining the type of data involved in the system is
the main task. The transformation between the models
is based on the classification and encapsulation of data
into classes, along with the corresponding methods that
operate over this data.

Briefly, the algorithm classifies all the data flows and
data stores inside the DFD, based on their type. For
each identified type in the DFD, a corresponding class is
created in the class diagram. In order to add class meth-
ods we look for three kinds of patterns in the data flow
diagram: data flows communicating with the external
environment of the system (Fig. 11), data flows between
two processes (Fig. 12) and data flows that communicate
with data stores (Fig. 13).

A number of processes (i.e., data transformations)
operate over each data flow class inside the DFD. We
transform these processes into logical methods of the
classes corresponding to data flows they process. For
instance, Forward-Datagram data flow (Fig. 9) is pro-
cessed by different data transformations (ReceiveFwd,
Validate, Forward, Send-Forward, ICMP). Thus, we cre-
ate the forwardDatagram class inside the class diagram
(Fig. 14) and we add the DFD processes that affects it

420 J. M. Fernandes et al.

{1b.c}
Forward

{1a.i}
receiveForward

«methods»

setFwdDatagram()

{1a.c}
validate

«methods»

sendFwdDatagram()

sendFwdDatagram()

writeFwdDatagram()

{1.d}
dataStore
«methods»

readFwdDatagram(,)
writeFwdDatagram(,)

readFwdDatagram()

«methods»

run()

sendFwdDatagram()

{1b.i}
sendForward

«methods»

sendFwdDatagram()

{2.c}
ICMP

«methods»

sendFwdError()
sendRoutError()

sendRoutError ()

setTrigger()

{4.c}
CreateResponse

{3.i+5.i}
receiveRouting

«methods»

setRequest()
setResponse()

{3.c}
Request

«methods»

sendRequestDatagram()

{5.d}
routingTable
«methods»

writeRTE()
readRTE()

readRTE()

«methods»

setTrigger()

sendResponseDatagram()

{4.i+6.i}
sendRouting
«methods»

sendResponseDatagram()
sendRequestDatagram()

{5.c}
Response
«methods»

sendResponseDatagram()

{6.c}
CreateRequest

writeRTE()

«methods»

run()

sendRequestDatagram()

writeRTE()

sendRequestDatagranm()
sendResponseDatagram()

sendFwdError()
sendFwdError()

sendRoutError()

sendErrorDatagram()

readRTE()

{2.i}
sendICMP
«methods»

sendErrorDatagram()

Fig. 10 The object diagram of the IPv6 router4

dataTrans
x y

Actor

Attribute:

Operation:

y

receive_x()Actor

a

b

Fig. 11 Border process pattern

as logical methods of this class. We consider that a pro-
cess becomes a method of a class only if it has as output
flow the data flow type represented by that class. For

instance, the ICMP process in Fig. 9 is not transformed
into a method of forwardDatagram because it outputs
an ErrorDatagram.

Data stores in the DFD receive a special treatment.
Since they are places that store data and our goal is
classifying data in the system, each data store element
is transformed into a separate class. The newly created
class provides read() and write() methods to access
data, based on the input and output flows of the initial
data store (see data Store in Fig. 13). In addition, we
classify data inside “Data Store” classes based on the
data flows that access the Data Store element.

Here we also have a possible classification of classes
into active and reactive. Active classes have the inter-
nal behavior described as a continuous running state
machine that, based on the events it receives, can invoke
methods of its own class or methods of the neighboring

Integration of DFDs into a UML-based model-driven engineering approach 421

Fig. 12 Interprocess
communication pattern

dataTrans2dataTrans1
x y+p1 z

Attribute:

Operation:

y

dataTrans1(x)

Attribute:

Operation:

x

Attribute:

Operation:

z

dataTrans2(y,p1)

z.dataTrans2(y,p1)z.dataTrans1(y)

a

b

Fig. 13 Data Store
communication pattern

dataTrans2dataTrans1
zy

data

store

vx

Attribute:

Operation:

dataStore

write(y)
read_z()

Attribute:

Operation:

x

Attribute:

Operation:

v

dataTrans2(y,p1)

dataStore.read_z()dataStore.write(y)

a

b

Fig. 14 The class diagram of
the IPv6 Router

forwardDatagram

«attributes»

«methods»
receiveFwd()
validate()
forward()
sendForward()

dataStore

«attributes»
forwardDatagram
receivingInterface

«methods»

read_forwardDatagram()
write_forwardDatagram()

errorDatagram

«attributes»

«methods»
IMCP()
sendICMP()

requestDatagram
«attributes»

«methods»
request()
createRequest()

routingDatagram

«attributes»

«methods»

receiveRouting()
sendRouting()

responseDatagram
«attributes»

«methods»

response()
createResponse()

routingTable

«attributes»
RTEs

«methods»

read_RTEs()
write_RTEs()

classes. For instance, two active classes are present in
Fig. 14, forwardDatagram and routingData-gram that
were respectively derived from the processes {1b.c} and
{6.c} in Fig. 9. The behavior of this classes is described by
a state-oriented model (statechart or activity diagram).

The methods of the class are being called internally (by
the instances) when a specific state is reached. The meth-
ods are not called by other classes from the outside.
For instance, the receiveFwd method is called when an
event (e.g., new_message_available) is triggered in the

422 J. M. Fernandes et al.

state-machine. Classifying classes into active and reac-
tive is for now an ad-hoc approach, but we intend to
further investigate it.

In brief, the transformation performs the following
steps:

1. Transform distinct data flows and data stores into
classes

2. Apply the Inter-process communication pattern
3. Apply the border process pattern.
4. Apply the data store communication pattern.

As a case study, we used the approach to generate
Java code starting from the class diagram in Fig. 14. Due
to the object oriented principles implied by the class dia-
gram the code generation process was straight forward.
The obtained code provided a simulation model of our
specification that could be used as executable specifica-
tion to check the functionality of the router. The object
diagram in Fig. 10 could have been used for the same
purposes but with some necessary adaptation.

As a result of implementing the router specification
both in Java and on a protocol processor, we could con-
clude that both approaches can be equally followed. The
first approach seems to be more natural for component-
based hardware systems, while the second one fits well
in object-oriented software-intensive designs. We con-
sider that the designer should follow the one that fits
best with his affinities, experience and working culture.

5 Tool support

To take full advantage of a model-driven approach,
appropriate tool support is required. On one hand, tools
should provide means to (graphically) create, edit and
manipulate model elements. On the other hand, script-
ing facilities to implement automated manipulation and
consistency verification of such models have to be pro-
vided, in order to speed up the design process and to cut
down development times.

5.1 SMW toolkit

To create and manipulate the UML and DFD models,
we make use of the Software Modelling Workbench
(SMW) tool available for download at URL: http://
mde.abo.fi/confluence/display/SMW. The tool is built
upon the OMG’s MOF and UML standards, allowing
editing, storage and manipulation of meta-models. SMW
uses the Python language [61] (an interpreted object-
oriented programming language, with a slightly differ-

ent syntax than C++ or Java) to describe the elements
of a meta-model, each element being represented as
a Python class. This fact provides the basic scripting
mechanisms to query and manipulate models. More-
over, making use of the lambda-functions that the
Python language provides, OCL (Object Constraint Lan-
guage)-like idioms are supported. OCL is a semi-formal
language, developed by OMG, to add more precision to
the UML meta-models, beyond the capabilities of the
graphical diagrams.

SMW allows the creation and usage of user defined
profiles, based on the MOF standard. The consistency
of models is enforced by well-formedness rules that are
coded in the meta-models using OCL-like constructs.
The UML14 profile is currently the default profile in
SMW. It has been implemented to support the defi-
nitions of the UML 1.4 standard, where model ele-
ments (classes, diagrams, associations, etc) have been
described. More information on the UML profile in
SMW can be found in [62]. In addition, a SART profile
was built to provide support for the SA/RT meta-model
[47]. The profile is a MOF-based extension of the SMW
tool that allows to graphically create, edit and manipu-
late SA/RT models.

The SMW tool along with its UML14 and SA/RT pro-
files were used to provide support for our model-driven
approach. Following, we show how we have implemented
the model transformations between different views of
the system, using the scripting and modeling facilities of
SMW.

5.2 Model transformations

A model transformation maps a source model expressed
in a given language into a target model expressed in
the same or different language by applying a number
of elementary operations over elements of the model.
During a model transformation we perform two types of
elementary operations: queries and element transforma-
tions. These operations are implemented using scripts.
Queries are scripts used to gather information (e.g., a
collection of elements) from a given model that meets a
given condition, or certain metrics that provide design
quality information about the model. Element trans-
formations operate over model elements by creating,
modifying and erasing them.

The main difference between queries and element
transformations is that queries are free of side-effects;
they only provide information on a given model, but
do not modify the model in any way. Usually, when
performing transformations between models, one has
to select the source elements using queries and then to

Integration of DFDs into a UML-based model-driven engineering approach 423

transform them into target elements by applying several
element transformations.

We have used model transformations to provide sup-
port for the steps of the design flow presented in Sect. 4.
Due to space reasons, we only present two of the model
transformations supporting the design flow in Fig. 6,
namely steps (d) (transforming a use case diagram into
an initial object diagram) and (i) (transforming a
data-flow diagram into an object diagram). The ratio-
nale behind these transformations and the correspond-
ing algorithms were presented in the previous sections;
here we only intend to describe the practical aspects
involved in implementing such transformations.

5.2.1 From use case diagram to initial object diagram

As presented in Sect. 4.2 the transformation is based on
the 4SRS method. The script supporting this transfor-
mation provides an example of a model transformation
between models of the same meta-model (i.e., UML).
We start by loading the source model (use case diagram
– UseCases) and create a target model (the InitialOb-
jectDiagram).

1 ucModel=io.loadModel("UseCases.smw")
2 oModel=Model(name="InitialObjectDiagram")
3 elementMap={}

The last line of the code above, initializes a Python
dictionary to keep track of how elements of the source
model map into elements of the target model. Basically,
a Python dictionary is a collection of elements indexed
by a unique “key” element.

Once the source model is loaded, all model elements
of type Actor are collected using a OCL-like query
(lines 4, 5). For each identified element, a new Actor is
created (line 7) and added to the target model (line 8).
The pair of actors is saved in the elementMap dictionary
(line 9).

4 ucActors=ucModel.ownedElement.select(lambda x:
5 x.oclIsKindOf(Actor))
6 for act in ucActors:
7 p=Actor(name=act.name)
8 targetModel.ownedElement.append(p)
9 elementMap[act]=p

Similarly, we collect all the use case elements in the
source model (lines 10, 11) and, for each element found,
three corresponding classes are created (lines 13, 19, 24)
and added to the target model (lines 29–31). Each class
bears the name of the use case that generated it, a ste-
reotype specifying its category (lines 14, 20, 25) and a
tag (lines 15–17, 21–23, 26–28) based on the tag name
of the initial use case. For instance, the use case “{1.}

Forward Datagram” (Fig. 7) will generate a �control�
class labeled “{1.c} Forward Datagram” (Fig. 8).

10 useCases=ucModel.ownedElement.select(lambda x:
11 x.oclIsKindOf(UseCase))
12 for el in useCases:
13 p1=Class(name=el.name)
14 p1.stereotype.append(Stereotype(name = "interface"))
15 p1.taggedValue.append(UML14.TaggedValue(
16 name=el.taggedValue[0].name+".i",
17 dataValue=None,modelElement=p1,type=td))
18 elementMap[el]=p1
19 p2=Class(name=el.name)
20 p2.stereotype.append(Stereotype(name = "control"))
21 p2.taggedValue.append(UML14.TaggedValue(
22 name=el.taggedValue[0].name+".c",
23 dataValue=None,modelElement=p1,type=td))
24 p3=Class(name=el.name)
25 p3.stereotype.append(Stereotype(name = "data"))
26 p3.taggedValue.append(UML14.TaggedValue(
27 name=el.taggedValue[0].name+".d",
28 dataValue=None,modelElement=p1,type=td))
29 targetModel.ownedElement.append(p1)
30 targetModel.ownedElement.append(p2)
31 targetModel.ownedElement.append(p3)

Once the corresponding classes for each use case are
created, associations are added between the �inter-

face� and �control�, and the �control� and �data�
objects, respectively (lines 32–33).

32 a1=addAssoc(p1,p2,"")
33 a2=assAssoc(p2,p3,"")

The mechanism for adding an association between
two classes is presented in function addAssoc below. The
function receives as arguments two class identifiers from
the target model and the corresponding association in
the source model, and returns a new association element
between the two classes in the target model. Initially, a
new UML Association element is created and added
to the target model (lines 35, 36). In the UML1.4 meta-
model, the element that links an Association to a model
element is AssociationEnd. The relationship between
Association, AssociationEnd and Class elements is
that an Association has two AssociationEnd elements
corresponding to its endings. Each AssociationEnd ele-
ment is also linked to a corresponding Class connected
to the association. To add an association (i.e., as1) be-
tween two previously created classes (i.e., c1 and c2),
two new AssociationEnd elements ase1 and ase2 are
created (lines 37–40). They are linked to the p1 and p2

classes through the participant property of the Asso-

ciation element and they are set to belong to as1.
Consequently, the ase1 and ase2 elements are added
(lines 41, 42) to the association property of the con-
nected classes c1 and c2, respectively. Finally, the newly
created association is stored in the elementMap dictio-
nary (line 40).

424 J. M. Fernandes et al.

34 def addAssoc(c1, c2, as):
35 as1=Association(name=as.aname)
36 targetModel.ownedElement.append(as1)
37 ase1=AssociationEnd(participant=c1,
38 association=as1,multiplicity=None,isNavigable=1)
39 ase2=AssociationEnd(participant=c2,
40 association=as1,multiplicity=None,isNavigable=1)
41 c1.association.append(ase1)
42 c2.association.append(ase2)
43 elementMap[as]=as1
44 return as1

In the final step, the transformation script adds asso-
ciations between actors and �interface� classes cor-
responding to the associations Actors-UseCase in the
source model. Thus, all Actor-UseCase associations in
the use case diagram are selected (lines 45, 46) and for
each such an association the elements (i.e., Actor-Use-
Case pairs) linked by the given association (lines 47–
53) are selected. We invoke the addAssoc function pre-
sented above to add associations between the corre-
sponding pairs of elements in the target model, using
the mapping information stored in the elementMap dic-
tionary (line 54).

45 ucAssoc=ucModel.ownedElement.select(lambda x:
46 x.oclIsKindOf(Association))
47 ucAssoc.select(lambda as:
48 ucModel.ownedElement.select(lambda x:
49 x.oclIsKindOf(Actor) and
50 as.connection[0] in x.association and
51 ucModel.ownedElement.select(lambda y:
52 y.oclIsKindOf(UseCase) and
53 as.connection[1] in y.association and
54 addAssoc(elementMap[x], elementMap[y],as))))

The avid reader may notice our use of OCL-like con-
structs in an imperative manner. This was allowed by
the way lambda functions are implemented in Python,
and it greatly improved the flexibility and the level of
abstraction of the scripts.

Once the transformation is complete, the SMW Tool-
kit allows us to save the targetModel into a file or to
export it in the XMI format, providing the possibility to
import the generated model in other UML tools.

5.2.2 From Data-flow diagram to Object Diagram

In the second example, we present parts of the model
transformation script implementing the step i. of Fig. 6
(i.e., transforming a DFD into a object diagram). The
script provides an example of a model transformation
between a source model, expressed in given language/
meta-model (i.e., DFD), and a target model expressed in
a different language/meta-model (i.e., UML). The algo-
rithm and rationale of this transformation have been
presented in Sect. 4.5.1.

Initially, the transformation script loads the source
model and creates a new target UML model (lines 1, 2).

1 dfdModel=io.loadModel("dfdInput.smw")
2 targetModel=UML14.Model(name=dfdModel.name)

Then, the top-level data transformation of the DFD
model (i.e., topDfd) is identified (lines 3, 4), and model
(element) information from its lower-level DFD is gath-
ered by performing a number of OCL-like queries (lines
5–13). The low-level DFD, which according to the SA/RT
meta-model, is a refinement of the top-level DFD, con-
tains the data-flow diagram on which we focus our exam-
ple. The diagram was presented in Fig. 9.

3 topDfd=dfdModel.ownedElement.select(lambda x:
4 x.oclIsKindOf(DataTransformation))[0]
5 ee=dfdModel.ownedElement.select(lambda x:
6 x.oclIsKindOf(ExternalEntity))
7 dt=topDfd.ownedElement.select(lambda x:
8 x.oclIsKindOf(DataTransformation))
9 df=topDfd.ownedElement.select(lambda x:

10 x.oclIsKindOf(DataFlow) and
11 not x.oclIsKindOf(DataStore))
12 ds=topDfd.ownedElement.select(lambda x:
13 x.oclIsKindOf(DataStore))

In the following step, the script transforms eachExter-

nal Entity in the DFD into a UML Actor in the UML
model, verifying that an actor cannot be added to the
class diagram more than once (lines 9–15). As in the
previous example, we use the elementMap dictionary to
store pairs of source-target elements of the two models
(line 19).

14 elementMap={}
15 for e in ee:
16 if e not in elementMap:
17 act=Actor(name=e.name)
18 targetModel.ownedElement.append(act)
19 elementMap[e]=act

For each data transformation in the dfdModel a new
object (class) element is added to the targetModel.
Firstly, pairs of DataFlow or DataTransformation ele-
ments are selected from the source model and a corre-
sponding Class is added to the targetModel (lines 26–
29). Adding a new class to the UML model is imple-
mented by the function addClass, that creates a class
with a given name and adds it to the model. We use
again the elementMap dictionary to store the correspon-
dence between the source and target elements (line 24).

20 def addClass(initialElement, className):
21 if initialElement not in elementMap:
22 newClass=Class(name=className)
23 targetModel.ownedElement.append(newClass)
24 elementMap[initialElement]=newClass
25 return newClass
26 topDfd.ownedElement.select(lambda ts:
27 (ts.oclIsKindOf(DataTransformation) or
28 ts.oclIsKindOf(DataStore)) and
29 addClass(ts, ts.name))

Integration of DFDs into a UML-based model-driven engineering approach 425

Again, one can notice, in line 29, the use of OCL-like
constructions in an imperative manner.

Once the corresponding number of classes is added
to the targetModel, the script creates the associations
among them. As presented in Sect. 4.5.1 we have three
different cases of associations between elements based
on the source and target elements of the data flows in
the DFD model. The first case is that of an initial data
flow linking two data transformations. For each pair of
source-target data transformations, their corresponding
classes are identified in the targetModel and a send()

association is added (lines 30–39), using the function
addAssoc() presented in the previous example.

30 topDfd.ownedElement.select(lambda f:
31 f.oclIsKindOf(DataFlow) and
32 topDfd.ownedElement.select(lambda src:
33 src.oclIsKindOf(DataTransformation) and
34 f.connection[0] in src.association and
35 topDfd.ownedElement.select(lambda dst:
36 dst.oclIsKindOf(DataTransformation) and
37 f.connection[1] in dst.association and
38 addAssoc(elementMap[src],elementMap[dst],
39 "send"+string.split(f.name,’+’)[0]))))

In the second case, we treat data flows that either
originate from or have as target a data store element
in the dfdModel. This type of data flows will be trans-
formed into read() or write() associations, depending
on the direction of the initial data flow.

The third case of associations is based on the data
flows that communicate with external entities of the
DFD model. This type of data flows will generate set()

associations. Since in the second and third case the code
is similar to the code presented in lines 30–39, we inten-
tionally omit it here.

Finally, for those classed linked by associations, one
of the classes receives methods and encapsulated attri-
butes corresponding to the name of the associations. The
addAssocMeth function below is used to add a new oper-
ation (method) and a corresponding attribute to a given
class (lines 40–47). In this sense, classes originating from
data stores receive as attributes the parameters of the
data flows and corresponding methods to read and/or
write those parameters (lines 48–51).

40 def addAssocMeth(clas, methName, prefix):
41 o=Operation(name=methName)
42 if methName not in clas.feature.name:
43 clas.feature.insert(o)#
44 attr=Attribute()
45 attr.name="someName"
46 clas.feature.insert(attr)
47 return 1
48 ds.select(lambda t: df.select(lambda f:
49 f.connection[1] in t.association and
50 addAssocMeth(elementMap[t],
51 string.split(f.name,’+’)[0],"write")))

In both examples, we intentionally omitted initializa-
tion and other code lines not relevant to the transforma-

tion process. Also, in both examples we have used the
scripts to transform diagrams placed in a source model
file into another diagram placed in a different target
model file. But nothing prevents us from using the scripts
to operate between the diagrams placed inside the same
model, as long as the meta-model allows the coexistence
of the diagrams inside the same model.

6 Conclusions

The combination of object-oriented and functional ap-
proaches is almost universally seen as a “bad” solution
to software modeling. However, we believe that it can
give useful results in some specific contexts if not seen
as an infallible approach, but instead used with some
caution.

In this paper, the combination of the functional and
object-oriented approaches, represented by DFDs and
UML, respectively was analyzed. The emphasis of the
discussion was put on topics related to the analysis phase
of embedded software systems. The rationale was to al-
ways have as the major model of the implementation
phase, some object or class diagram so that an object-
oriented programming languages could be used, but also
to include DFDs in the modeling process. We have sug-
gested three main directions to achieve that combina-
tion: (1) DFDs to refine the use case model; (2) DFDs
to detail the behavior of a system’s component; and
(3) DFDs to be transformed into class diagrams, in a
re-engineering situation. We have also shown that it is
possible to create and manipulate artifacts described by
both DFD and UML notations, and also to implement
automated transformations among different steps of the
design process.

The automated transformations have to be viewed
as an aid to the designer and not something to replace
him/her. Since the models of both UML and DFD have
a user-friendly view, using the SMW tool enables sup-
port for human (i.e., designer) intervention. The way
the diagrams were created and transformed allows the
designer to trace to what pieces of functionality differ-
ent elements in the system belong. The above transfor-
mations are in some situations reversible allowing the
designer to repeatedly change the view during the sys-
tem specification and design. At each change of view,
new details specific to one of the views can be added
until the necessary level of detail is reached.

The presented model-driven engineering approach
promotes a mapping between structural (object dia-
gram) and dynamic (DFD) models. If a proper balance
between these models is achieved, the main advantage
of the approach is that the benefits of both models, in

426 J. M. Fernandes et al.

terms of expressiveness and focus, apply simultaneously.
However, if both models are biased towards one of the
perspectives, we actually have two different diagrams
for the same purpose, one of them being useless.

For the moment, since we were addressing protocol
processing applications targeted to hardware platform
implementations, we intentionally avoided referring to
specific object-oriented mechanisms as inheritance and
polymorphism. Their dynamic nature is in contrast with
the static nature of the hardware components.

The models presented here could be obtained from
scratch, following some of the techniques proposed by
several object-oriented methods, or as the result of trans-
forming the previous DFD into object/class diagrams. In
this last situation, we must state that the transformation
of DFDs into an object model is not at all straightfor-
ward. Usually, transforming requirements into a soft-
ware architecture (i.e., the transition from analysis to
design) is not easy and here there is an additional diffi-
culty, that results from the paradigm shift. Both mod-
els obtained from the DFD diagram were also used for
developing prototypes in Java, in order to demonstrate
their adequateness to describe the system. The proto-
types were built with the idea of showing that the models
do constitute a valid solution for the implementation of
the system under consideration. The Java program code
is not included here, but can be downloaded from [63].

As a final note, it intrigues us why the adoption of
use cases, within the context of object-oriented devel-
opment, is so popular and considered a suitable tech-
nique in object-orien-ted design, given that DFDs also
produce a functional decomposition of a system. The
answer could lie on the fact that use cases are a sim-
ple technique to understand and use, and produce good
results in several situations.

For some types of embedded systems, where the sys-
tem is constructed to obey a specific standard and not
to fulfill the needs and expectations of human users, the
usage of DFDs is for modeling purposes more adequate
than use case diagrams. Use case modeling is quite use-
ful when the development team needs to discuss the
requirements of a system with its stakeholders, espe-
cially users, managers, customers and clients. This occurs
because use case diagrams are an easy-to-read notation
and, due to their simplicity and to the intuition behind
the use case and actor concepts, promote the participa-
tion of non-technical stakeholders. These characteristics
are not so important for some types of systems, such
as digital-signal processing systems, that do not have
human users or that are data-triggered and whose func-
tionalities are to be executed in a particular sequence.
DFDs are good for systems that present these charac-
teristics.

Taken into consideration that DFDs are more expres-
sive than use case diagrams, they could be used as use
case diagrams, for users’ requirements capture, omitting
thus some of their constructs (for example, data stores).
Later, more detailed information could be added, by
the designers, this time without the user’s intervention.
Based on the DFDs produced, obtaining an object-ori-
ented architecture should be possible, although it may
not be easy or simple. If this is accepted to be suitable
from the use case diagrams (in conjunction with other
models, such as sequence and collaboration diagrams),
the same thing should also be possible, and easier we
ought to add, with DFDs and those same additional dia-
grams.

As future work, the following four topics deserve
more attention. Firstly, applying the techniques pro-
posed here to complex examples would allow more solid
assessments about the usefulness of those techniques to
be drawn. Secondly, a solid integration of DFDs with
UML can not be only based in using both in a combined
way at the process-level. Additionally, it is fundamen-
tal to investigate, at the semantic and meta-model levels,
what are the implications and consequences of that com-
bination. Thirdly, analyzing the effective ways of extend-
ing the 4SRS method is also a future path for continuing
this work. Finally, it is important to devise a more rig-
orous method for data classification inside DFDs, to
bring out the benefits of object-oriented mechanisms
like inheritance and polymorphism. For instance, we can
easily see that the routingDatagram class in Fig. 14 looks
similar to a parent class of the responseDatagram and
requestDatagram.

Acknowledgements Financial support for J. M. Fernandes from
CIMO (grant HH-02-383) and from FCT and FEDER under
project METHODES (POSI/37334/CHS/2001) and for D. Tru-
scan from the HPY and TES research foundations is gratefully
acknowledged.

References

1. Fernandes, J.M., Lilius, J.: Functional and object-oriented
modeling of embedded software. In: 11th International Con-
ference and Workshop on the Engineering of Computer Based
Systems (ECBS’04) (2004)

2. Truscan, D., Fernandes, J.M., Lilius, J.: Tool support for DFD-
UML model-based transformations. In: 11th International
Conference and Workshop on the Engineering of Computer
Based Systems (ECBS’04) (2004)

3. Hatley, D.J., Pirbhai, I.A.: Strategies for Real-Time System
Specification. Dorset House (1987)

4. Ward, P.T., Mellor, S.J.: Structured Development for Real-
Time Systems. Prentice Hall/Yourdon Press, Englewood Cliffs
(1985) (Published in 3 volumes)

Integration of DFDs into a UML-based model-driven engineering approach 427

5. Dieste, O., Genero, M., Juristo, N., Maté, J., Moreno, A.: A
conceptual model completely independent of the implemen-
tation paradigm. J Syst Softw 68(3), 183–198 (2003)

6. Machado, R.J. Fernandes, J.M., Monteiro, P., Rodrigues, H.:
Transformation of UML Models for Service-Oriented Soft-
ware Architectures. In: Proceedings of 12th IEEE inter-
national conference on the engineering of computer based
systems (ECBS 2005), pp. 173–82 (2005)

7. Ambler, S.W.: Agile Modeling: Effective Practices for Ex-
treme Programming and the Unified Process. Wiley, New York
(2002)

8. Alabiso, B.: Transformation of data flow analysis models to
object oriented design. In: Conference on Object-Oriented
Programming Systems, Languages and Applications (OOP-
SLA ’88), pp. 335–353. ACM Press, New York (1988)

9. Shoval, P., Kabeli, J.: FOOM: functional- and object-oriented
analysis and design of information systems – an integrated
methodology. J Database Manage 12(1), 15–25 (2001)

10. Ward, P.T.: How to integrate object orientation with structured
analysis and design. IEEE Softw 6(2), 74–82 (1989)

11. Periyasamy, K., Mathew, C.: Mapping a functional specifica-
tion to an object-oriented specification in software re-engi-
neering. In: 24th ACM Annual Conference on Computer
Science (CSC ’96), pp. 24–33. ACM Press, New York (1996)

12. de Champeaux, D. et al. Panel: structured analysis and object
oriented analysis. In: ECOOP/OOPSLA, pp. 135–139. ACM
Press, New York (1990)

13. Sodan, A.C.: Yin and Yang in computer science. Commun
ACM 41(4), 103–111 (1998)

14. Kim, J., Ferch, F.J.: Towards a model of cognitive process
in logical design: comparing object-oriented and traditional
functional decomposition software methodologies. In: Con-
ference on Human Factors in Computing Systems (CHI ’92),
pp. 489–498. ACM Press, New York (1992)

15. Glass, R.L.: The naturalness of object orientation: beating a
dead horse? IEEE Softw 19(3), 103–104 (2002)

16. Vessey, I., Conger, S.A.: Requirements specification: learn-
ing object, process, and data methodologies. Commun ACM
37(5), 102–13 (1994)

17. Jackson, M.: Software requirements and specifications: a lex-
icon of practice, principles and prejudices. ACM Press, New
York (1995)

18. Hatley, D.J., Hruschka, P., Pirbhai, I.A.: Process for System
Architecture and Requirements Engineering. Dorset House
(2000)

19. Douglass, B.P., Harel, D., Trakhtenbrot, M.: Statecharts in
use: structured analysis and object-orientation. In: Lectures
on Embedded Systems, LNCS 1494, pp 368–394. Springer,
Berlin Heidelberg New York (1998)

20. Chen, P.: Entity-relationship modeling: historical events, fu-
ture trends, and lessons learned. In: Software Pioneers: Con-
tributions to Software Engineering, pp. 297–310. Springer,
Berlin Heidelberg New York (2002)

21. Swartout, W., Balzer, R.: On the Inevitable Intertwining of
Specification and Implementation. Commun ACM 25(7), 438–
440 (1982)

22. Girault, A., Lee, B., Lee, E.A.: Hierarchical finite state ma-
chines with multiple concurrency models. IEEE Trans Com-
put Aid Des of Integ Circuits Syst 18(6), 742–760 (1999)

23. Howerton, W.G., Hinchey, M.G.: Using the right tool for the
job. In: 6th IEEE International Conference on Complex Com-
puter Systems (ICECCS ’00), pp. 105–115. IEEE CS Press
(2000)

24. Lee, E.A.: Computing for embedded systems. In: 18th IEEE
Instrumentation and Measurement Technology Conference
(IMTC/2001) (2001)

25. Dori, D.: Object-Process Methodology – A Holistic Systems
Paradigm. Springer, Berlin Heidelberg New York (2002)

26. Peleg, M., Dori, D.: Extending the object-process method-
ology to handle real-time systems. J Object Orient Program
11(8), 53–58 (1999)

27. Wang, E.Y., Cheng, B.H.C.: Formalizing and integrating the
functional model into object-oriented design. In: Proceedings
of SEKE ’98 (1998)

28. Becker, L.B., Pereira, C.E., Dias, O.P., Teixeira, I.M., Teixeira,
J.P.: MOSYS: a methodology for automatic object identifi-
cation from system specification. In: 3rd IEEE International
Symposium on Object-Oriented Real-Time Distributed Com-
puting (ISORC 2000), pp. 198–201. IEEE CS Press (2000)

29. Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Loren-
sen, W.: Object-Oriented Modeling and Design. Prentice-Hall
International, Englewood Cliffs (1991)

30. Gall, H., Klösch, R.: Finding objects in procedural programs:
an alternative approach. In: 2nd Working Conference on Re-
verse Engineering, pp. 208–216. IEEE CS Press (1995)

31. Jacobson, I., Lindström, F.: Reengineering of old systems to
an object-oriented architecture. In: Conference on Object-
Oriented Programming Systems, Languages and Applications
(OOPSLA ’91), pp. 340–350. ACM Press New York (1991)

32. Pnueli, A.: Embedded systems: challenges in specification and
verification. In: Sangiovanni-Vincentelli, A., Sifakis, J. (eds.)
Embedded Software, Second International Conference EM-
SOFT 2002, LNCS 2491, pp. 1–14. Springer, Berlin Heidelberg
New York (2002)

33. Lilius, J., Truscan, D.: UML-driven TTA-based protocol pro-
cessor design. In: Forum on specification and design languages
(FDL ’02) (2002)

34. Ambler, S.W.: What’s Missing from the UML? SIGS Publica-
tions, Object Magazine (1997)

35. Fernandes, J.M., Duarte, F.J.: A reference framework for pro-
cess-oriented software development organizations. Software
and Systems Modeling. Springer, Berlin Heidelberg New York
(2004) http://dx.doi.org/10.1007/s10270-004-0063-0.

36. Mellor, S.J., Balcer, M.J.: Executable UML: A Foundation for
Model-Driven Architecture. Addison-Wesley, Reading (2002)

37. Sigfried, S.: Understanding Object-Oriented Software Engi-
neering. IEEE Press (1996)

38. Meyer, B.: Object-Oriented Software Construction. Prentice-
Hall, Englewood Cliffs (1988)

39. Szyperski, C.: Component Software: Beyond Object-Oriented
Programming. Addison-Wesley, Reading (1998)

40. Fernandes, J.M., Machado, R.J.: From use cases to objects:
an industrial information systems case study analysis. In: 7th
International Conference on Object-Oriented Information
Systems (OOIS ’01), pp. 319–328. Springer, Berlin Heidelberg
New York (2001)

41. Lyons, A.: UML for real-time overview. Technical report, Ob-
jecTime Limited (1998)

42. Selic, B.: Turning clockwise: using uml in the real-time domain.
Commun ACM 42(10), 46–54 (1999)

43. Martin, G., Lavagno, L., Louis-Guerin, J.: Embedded UML:
a merger of real-time uml and co-design. In: 9th
ACM/IEEE/IFIP International Symposium on Hardware/
Software Codesign (CODES ’01), pp. 23–28. ACM Press New
York (2001)

44. Lee, E.A., Parks, T.M.: Dataflow process networks. Proc IEEE
83(5), 773–801 (1995)

45. Wolf, W.: Computers as Components: Principles of Embed-
ded Computing System Design. Morgan Kaufman Publishers
(2000)

46. OMG. OMG Meta-Object Facility (MOF). Document for-
mal/01-11-02, http://www.omg.org.

428 J. M. Fernandes et al.

47. Isaksson, J., Lilius, J., Truscan, D.: A MOF-based metamodel
for SA/RT. In: Proceedings of Rapid Integration of Software
Engineering techniques (RISE’04) workshop. Luxembourg,
Luxembourg, 26 November 2004. LNCS 3475, pp. 102-111,
Springer, Berlin Heidelberg New York (2005)

48. Jacobson, I.: Basic use case modeling (continued). Report on
Object Anal Design 1(3), 7–9 (1994)

49. Harel, D., Rumpe, B.: Modeling languages: syntax, semantics
and all that stuff – part i: the basic stuff. In: Technical report
MCS00-16, Faculty of Mathematics and Computer Science,
The Weizmann Institute of Science, Israel (2000)

50. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes,
C.V., Loingtier, J.-M., Irwin, J.: Aspect-oriented programming.
In: ECOOP ’97 – Object-oriented programming, LNCS 1241,
pp. 140–149. Springer, Berlin Heidelberg New York (1997)

51. Selic, B., Gullekson, G., Ward, P.T.: Real-Time Object-Ori-
ented Modeling. Wiley, New York (1994)

52. Jacobson, I., Christerson, M., Jonsson, P., Övergaard, G.:
Object-Oriented Software Engineering: A Use Case Driven
Approach. Addison-Wesley, Reading (1992)

53. Rosenberg, D., Scott, K.: Use Case Driven Object Modeling
with UML: A Practical Approach. Addison-Wesley, Reading
(1999)

54. Ying, L.: From use cases to classes: a way of building object
model with UML. Inform Softw Technol 45(2), 83–93 (2003)

55. Pawson, R.: Naked objects. IEEE Softw 19(4), 81–83 (2002)
56. OMG. Unified Modeling Language Specification. In; Techni-

cal report, OMG (2002)
57. OMG. OMG model driven architecture, July 2001. Document

ormsc/2001-07-01. http://www.omg.org.
58. Sendall, S., Kozaczynski, W.: Model transformation: the heart

and soul of model-driven software developement. IEEE Softw
20(5), 42–45 (2003)

59. Truscan, D., Fernandes, J.M., Lilius, J.: Tool support for DFD
to UML model-based transformations. In: Technical report
519, TUCS, Turku, Finland (2003)

60. Open SystemC Initiative. http://www.systemc.org.
61. http://www.python.org.
62. Porres, I.: A Toolkit for Manipulating UML Models. Software

and Systems Modeling. Springer, Berlin Heidelberg New York
2(4), 262–277 (2003)

63. http://www.abo.fi/ dtruscan/ipv6index.html

Author Biography

João M. Fernandes is an
assistant professor at the De-
partment of Informatics, Uni-
versidade do Minho (Braga,
Portugal). He received a Lic.
degree in Informatics and Sys-
tems Engineering in 1991, a
M.Sc. degree in Computer Sci-
ence in 1994, and a Ph.D. de-
gree in Computer Engineering
in 2000, all from Universidade
do Minho. His Ph.D. thesis,
entitled “An Object-Oriented
Methodology for Embedded
Systems Development”, ad-

dresses the usage of object-oriented concepts, namely UML, to
analyze, design, implement, and test embedded systems. From
Sep/2002 until Feb/2003, he was a post-doctoral researcher at
the TUCS Embedded Systems Laboratory (Turku, Finland).

His research interests focus on Embedded Software, Hard-
ware/Software Co-Design, Methodologies for System Develop-
ment, Software Modelling, Software Process and Management,
and History of Computing. For more information, consult his web-
site at http://www.di.uminho.pt/˜jmf.

Johan Lilius got his MSc
(Tech.) from Helsinki Uni-
versity of Technology, Fin-
land, in 1989, and his DSc
Tech from Helsinki Univer-
sity of Technology, Finland
in 1995. Since 2001, he has
been a Professor in Com-
puter Engineering at Åbo
Akademi University, Finland,
where he also heads the Em-
bedded Systems Laboratory.
His research interests include
UML and model-driven archi-

tecture, hardware/software codesign, model-checking and low-
power design for software.

Dragos Truscan is a Ph.D
student with the Embedded
Systems Laboratory, Turku
Centre for Computer Science,
Finland. He got his Engineer
Diploma in Computer Science
from the Department of Com-
puter Science and Engineer-
ing, University “Politehnica”
of Bucharest, Romania, in
1999. His research interests in-
clude model-driven engineer-
ing, hardware/software co-
design, high-level specifica-
tion of embedded systems,
protocol processors design,

transport-triggered architectures.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

