
A Two-Year Software Engineering M.Sc. Degree designed
under the Bologna Declaration Principles

João M. Fernandes
Departamento de Informática

Universidade do Minho
4710-057 Braga, Portugal

Ricardo J. Machado
Departamento de Sistemas de Informação

Universidade do Minho
4800-058 Guimarães, Portugal

ABSTRACT
This paper presents and discusses the syllabus of a second cycle
degree on Software Engineering in which any student that finishes
any undergraduate Computing degree (Computer Engineering,
Computer Science, Information Systems, Information
Technology, and Software Engineering) can enroll. In the first
year, the degree is composed of two 30-ECTS modules, one
dedicated to software analysis and design and the other devoted to
software quality and management. Each module is composed of
five curricular units, being one of them dedicated to the
experimental integration of the module’s topics. The second year
allows two different paths to be followed by the students. The
professional path includes a 30-ECTS industrial project, while in
the scientific path students must write a 45-ECTS master
dissertation. The degree is mainly structured to consider the
Bologna Declaration that is now being used in Europe to recast all
university degrees. Additionally, we also considered the Software
Engineering 2004 Curriculum Guidelines and the Knowledge
Areas described in the SWEBOK.

Keywords
Software engineering, Bologna declaration, master degree,
project-led engineering education.

1. INTRODUCTION
Across Europe, a great number of Computing departments are
concerned with the process of restructuring their curricula,
according to the Bologna declaration, announced in June 1999, by
the ministers of education of several European countries [8]. At
Universidade do Minho (UMinho), located in the cities of Braga
and Guimarães (Portugal), all five-year undergraduate degrees are
being restructured to take into consideration the principles of the
Bologna Declaration. Among those degrees, three belong to the
Computing field: Informatics and Systems Engineering,
Mathematics and Computing Science, Management Informatics.
These degrees are to be restructured in two cycles: a three-year
first cycle and a two-year second cycle. This paper explains the
syllabus of a second cycle degree (Master Course) on Software
Engineering which can be enrolled by any student that finishes
any undergraduate first cycle Computing degree at UMinho (or at
any other institution that offers degrees with the similar learning
outcomes).

The degree was designed to consider the principles stated in the
Bologna Declaration. It runs in 4 semesters and consists of a total
of 120 ECTS (European Credit Transfer and Accumulation
System). The first year of the course is divided in two modules of
30-ECTS and the second year includes either two 15-ECTS
modules and an industrial project, or one 15-ECTS module and a
research-oriented master dissertation. Each 30-ECTS module is

composed of five curricular units, being one of them dedicated to
the experimental integration of the module’s specific curricular
topics. These project-oriented curricular units are included to
make the degree follow the project-led engineering education
(PLEE) paradigm [10].

Due to several causes (like, lack of resources and facility of
grading), many software engineering courses/degrees compromise
the project experience by reducing the team sizes, project scope,
and risk. The solution relies usually in dividing the students
among small groups (two to four persons), solving all the groups
the same software engineering project. In the proposed degree, we
suggest to introduce two two-semester software engineering
experimental curricular units, in which all students work together
to develop a new software system, or to diagnose and analyze the
process or the artifacts of a software system developed by third
parties. This approach provides a more realistic project experience
for the students and facilitates the participation of software houses
in the learning activities. This constitutes an important factor to
ensure that students tackle modern industrial problems, shortening
the links between students and their potential future employers.
This also solves, at least partially, the fact that educators rarely
have the time required to manage real software projects in
addition to their normal pedagogical duties [3]. In fact, an
important part of education in an academic setting is the practical
application of concepts. The application of software engineering
in the academic environment is quite different from software
engineering in a professional context [4]. In any case, it is the task
of teachers to provide realistic experience to better prepare
students for work in professional settings.

Team-based projects are a well-known mechanism to motivate
students by giving them the chance to participate in the type of
work and environment that can be found in a software house [2,
5]. When such learning mechanism is adopted, it is reported that
students can learn more about “real” software engineering than
with less ambitious frameworks [7, 9]. However, the usage of a
format that resembles the context of a software house is more
difficult to implement, which unfortunately makes it quite
uncommon in software engineering education.

For project-like curricular units, the proposed degree adopts a
company-based framework, in which students collaborate in the
accomplishment of a software product- or process-related activity
(analysis, design, implementation, test, maintenance, evolution,
management) as if they were employees of a software house.
Within the project, students are organized in a simulated software
development environment, with each student being responsible for
specific individual and group tasks. In [13], Way has introduced
several attributes that are not typical in a software engineering
course, such as class-wide product brainstorming sessions,
overlapping subgroups of students, distributed group working,

0-7695-2703-5/06/$20.00 (c) IEEE

Proceedings of the International Conference
on Software Engineering Advances (ICSEA'06)
0-7695-2703-5/06 $20.00 © 2006

weekly engineering meetings, and business and marketing
strategic planning aimed at releasing the finished product to the
outside world.

Nowadays, being a software engineer requires not only mastering
a programming language, but also know-how in several technical
and managerial topics. The proposed degree must include modern
topics on software engineering, such as open-source software
development, service–oriented architectures, integration with
legacy systems, usage of components and libraries, model-driven
development, software methods for embedded and pervasive
systems, and construction of web-based applications [11].
Additionally, we also considered the recommendations existent in
the Software Engineering 2004 Curriculum Guidelines [12] and
the Knowledge Areas described in the SWEBOK [1].

2. BOLOGNA DECLARATION AND ECTS
In June 1999, 29 European ministers in charge of higher education
met in Bologna (Italy) to lay the basis for establishing a European
Higher Education Area by 2010 and promoting the European
system of higher education worldwide. In the Bologna
Declaration, the ministers affirmed their intention:

• to adopt a system of easily readable and comparable degrees;
• to adopt a system with two main cycles (undergraduate and

graduate);
• to establish a system of credits (such as ECTS);
• to promote mobility by overcoming obstacles;
• to promote European co-operation in quality assurance;
• to promote European dimensions in higher education.

In short, ECTS is considered to be a common framework for
Academic Recognition. ECTS is a way of ensuring equivalent
academic recognition between colleges and universities and its
adoption in Europe is becoming a reality. The system is based on
transparency and mutual trust. ECTS is a student-centered system
based on the student workload required to achieve the objectives
of a program, objectives preferably specified in terms of learning
outcomes and competences to be acquired. ECTS was introduced
in 1989, within the framework of Erasmus, now part of the
Socrates program. ECTS is the only credit system, which has been
successfully tested and used across Europe. ECTS was set up
initially for credit transfer. The system facilitated the recognition
of periods of study abroad and thus enhanced the quality and
volume of student mobility in Europe.

ECTS is based on the principle that 60 credits measure the
workload of a full-time student during one academic year. The
student workload of a full-time study program in Europe amounts
in most cases to around 1500–1800 hours per year and in those
cases one credit stands for around 25 to 30 working hours.

Credits in ECTS can only be obtained after successful completion
of the work required and appropriate assessment of the learning
outcomes achieved. Learning outcomes are sets of competences,
expressing what the student will know, understand or be able to
do after completion of a process of learning, long or short.

Student workload in ECTS corresponds to the time required to
complete all planned learning activities like attending lectures and
seminars, studying, and preparing projects and exams.

Credits are allocated to all educational components of a study
program (such as curricular units, courses, placements,
dissertation work, etc.) and reflect the quantity of work each
component requires to achieve its specific objectives or learning
outcomes in relation to the total quantity of work necessary to
complete a full year of study successfully.

3. DEGREE SYLLABUS
3.1 Pre-Requisites
To enroll in this degree, students must have, at least,
competencies and skills in the following SEEK (Software
Engineering Educational Knowledge) Areas [12]:

• CMP — Computing Essentials (Computer Science
foundations, Construction technologies, Construction tools,
Formal construction methods)

• FND — Mathematical & Engineering Fundamentals
(Mathematical foundations, Engineering foundations for
software, Engineering economics for software)

These skills are obtained in any first cycle computing degree at
UMinho, and typically in any 3-year degree in Computer
Engineering, Computer Science, Information Systems,
Information Technology, and Software Engineering. More
specifically, we expect students to be able to adopt rigorous
methods of analysis and specification to build programs, and to
use proper tools (editors, compilers, interpreters, debuggers, and
integrated development environments - IDEs) to execute them.

3.2 General Structure
The degree runs in 4 semesters and consists of a total of 120
ECTS. Its general structure is presented in table 1.

first semester second semester

Module on Analysis and Design (30 ECTS)
first
year

Module on Quality and Management (30 ECTS)

Professional path Scientific path

first sem. second
sem. first sem. second

sem.

first module
(15 ECTS)

Module
(15 ECTS)

second
year

second
module (15

ECTS)

Industrial
Project

(30 ECTS) Master Dissertation
(45 ECTS)

Table 1 – Generic structure for the degree
The course’s first year is divided in two one-year modules of
30-ECTS. Each 30-ECTS module of 5 curricular units, being one
of them devoted to integrate the module’s topics, by adopting a set
of laboratorial experiments. The second year includes either a
professional or a scientific path. In the former, students enroll,
during the first semester, in two 15-ECTS modules and, in the
second semester, develop an industrial project. In the latter,
students enroll, during the first semester, in just one 15-ECTS
module and start a research-oriented master dissertation, which
they continue in full-time in the second semester. Each 15-ECTS
module is composed of 3 5-ECTS curricular units.
Each 15- or 30-ECTS module must obey the following issues:

0-7695-2703-5/06/$20.00 (c) IEEE

Proceedings of the International Conference
on Software Engineering Advances (ICSEA'06)
0-7695-2703-5/06 $20.00 © 2006

• There is a unique assessment (i.e. it exists only one unique
mark for the module, even though it is composed of 5 internal
curricular units).

• The module is supported by a set of teachers, being one of
them the coordinator.

• Each laboratory must include all the subjects of the other
internal curricular units. It must be accompanied by all
teachers of the module, so that they can adjust their materials
to better support the execution of the project.

• The project must develop not only the technical competences
of the students, but also planning and management skills.

The 15-ECTS modules must address one application area of the
main topics of the master course. Each 15-ECTS module must
incorporate the methodological approaches covered by the first
year modules. Examples of these 15-ECTS modules are:
(1) data-oriented enterprise applications; (2) pervasive software
and ubiquitous services; (3) real-time, embedded and critical
systems; (4) industrial informatics and automation. Students must
choose either one or two 15 ECTS modules, depending on the
chosen path (professional or scientific).

3.3 Module on Analysis and Design
Analysis and design are activities included in the software
development process. The development refers to the software
lifecycle phases responsible for conceiving, designing, building,
and testing a software artifact. Within the development, one finds
the implementation phase (also designated construction).
Excluded from the development are, for example, the economic
viability studies, the maintenance tasks, and the effective usage of
the software system. These issues are included in the module on
quality and management.
The main aim of this 30-ECTS module on analysis and design of
software is to provide students with the methodic skills to tackle
any software development project. More specifically, we expect
students to be able to analyze and design highly-complex
software, to obtain correct and reliable solutions based on sound
engineering principles.
This module is organized around 5 Knowledge Areas (KAs), as
defined in [1], whose internal curricular units that support them
sum up 30 ECTS. The assessment and grading is made through a
unique global exam that may touch all the topics covered within
the module.
Curricular unit ECTS
Analysis and Modeling of Requirements (AMR) 5
Software Architectures (SA) 5
Formal Methods (FM) 5
Usability and Interaction (UI) 5
Laboratory of Software Development (LSD) 10
Table 2 – Curricular units for the 30-ECTS module on (Software)
Analysis and Design

3.3.1 Analysis and Modeling of Requirements
The area of software requirements deals with the acquisition,
analysis, specification, validation, and maintenance of software
requirements. Requirements are the properties that a given system
(still in project) will exhibit when its development is finished.
This area (KA #1 “Software Requirements” [1], and MAA
“Software Modeling & Analysis” [12]) is recognized as being
extremely important for industry, since its activities have a great
impact on the development process. Upon successful completion
of this curricular unit, students should be able:

• to define what type of procedures the requirements
engineering team is supposed to execute at the development
process, by identifying the formal involvement of the
stakeholders, along requirements engineering process;

• to define the way requirements are to be elicited and the
techniques to use to correctly gather requirements from all the
(human and non-human) sources;

• to detect and solve the conflicts among the captured
requirements, to define the boundaries of the system under
project and the way it interacts with its environment, and to
transform user requirements into software requirements;

• to handle the structure, quality and verifiability of the
requirements document, which normally includes: (1) the
definition of the user requirements; and (2) the specification
of the software requirements that establishes the agreement
between clients and developers of the software;

• to examine the requirements document to guarantee that it
correctly describes the needed system, through inspections or
formal revisions, and rapid prototyping of its interfaces;

• to manage the change of requirements to ensure a
well-defined semantics for them, and their traceability during
the development process.

3.3.2 Software Architectures
Software design (KA2 “Software Design” [1], and DES “Software
Design” [12]) is both the process of defining the architecture, its
components, the interfaces and other characteristics of the system
(or component), but also the result of that process. From the
process perspective, software design is the activity where
requirements are analyzed to produce the description of the
internal organization of the system. From the product perspective,
software design (the result of the process) must describe the
system’s architecture (i.e., how the system is decomposed and
organized in components), the interfaces between components,
and also the components themselves, with a given level of detail
that permits their construction. Upon successful completion of this
curricular unit, students should be able:
• to evaluate the importance of a software architecture for the

effective availability of a solution;
• to define the different types of architectural models for

describing the system’s structure, the decomposition with
layers or by control elements;

• to analyze the existing solutions and its level of flexibility and
reuse;

• to analyze and evaluate the qualities of an architecture
(conceptual integrity, correctness and completion, and
constructability), the attributes that reveal in design time
(changeability, portability, reuse, integrity and testability), and
the attributes that appear in execution time (performance,
safety, dependability, usability, and functionality);

• to reuse pre-defined, efficient and already-tested solutions
within the problem domain, using, for example, architectural
structures and viewpoints, architectural styles, design patterns,
program families, and frameworks.

3.3.3 Formal Methods
The formal methods area (KA9 “Software Engineering Tools and
Methods”; “software engineering methods” sub-area [1]) includes
all usages of discrete mathematics to tackle software engineering
problems. The application of formal methods to the development
of software uses formal languages to describe software artifacts

0-7695-2703-5/06/$20.00 (c) IEEE

Proceedings of the International Conference
on Software Engineering Advances (ICSEA'06)
0-7695-2703-5/06 $20.00 © 2006

(specifications, architectures and code), which allows the formal
proof of properties and their reification to support the
implementation. This curricular unit covers the development of
software based on Formal Methods, with an emphasis on
specification techniques based on discrete mathematics that allow
the synthesis of the system’s implementation, assuring its
correctness by construction and by verification. Upon successful
completion of this curricular unit, students should be able:

• to identify the role and importance of formal methods within
the development of complex software systems;

• to constructively model the requirements of a software system
with a formal specification language;

• to reason with rigorous models, by identifying the proof
properties;

• to use an environment to prototype formal specifications.

3.3.4 Usability and Interaction
Usability (KA2 "Software Design" (sub-area Key Issues in
Software Design) [1], DES – Software Design / VAV – Software
V&V [12]) is a property of the interaction of a given system and
its users defined by the ISO 9241-11 standard as “the extent to
which a product can be used by specified users to achieve
specified goals with effectiveness, efficiency and satisfaction in a
specified context of use”. Ensuring the usability of a system
requires its development in such a way that its users achieve their
goals efficiently and satisfactorily. The definition and evaluation
of the usability aims, the task analysis, or the definition of the
most appropriate interaction paradigms to a given context are
examples of issues that have a great impact in the development
process. The Usability Engineering gathers a set of methods,
techniques and tools, derived from the Human-Computer
Interaction area, that make usability a central issue in software
development. Upon successful completion of this curricular unit,
students should be able:

• to identify the different types of models relevant in the
usability engineering process;

• to apply usability analysis techniques;
• to develop an interface with toolkits and existing components,

creating for that purpose a software architecture to support the
interactive system.

3.3.5 Laboratory on Software Development
This unit aims to integrate in a single implementation project, all
the competencies acquired in the other curricular units of the
module. The implementation phase (KA3 “Software
Construction” and KA9 “Software Engineering Tools and
Methods”, software engineering tools sub-area) [12], PRF –
Professional Practice [1]) is a fundamental act in software
engineering, since it consists on the construction of software in
accordance with the user requirements to accomplish the
non-functional requirements.
The implementation activities are directly related with the design,
since the former must transform into code the architectures
conceived and decided within the execution of the latter. This
transformation is becoming each time more automatic, which
demands the intensive usage of software IDEs. This unit must
follow a PLEE (Project-Led Engineering Education) approach.
Thus, the topics included in the other curricular units of the
module on analysis and design must directly contribute to the
effective execution of the laboratorial experiments of this unit. A
careful coordination among the teachers must be assured, so that

this curricular unit effectively integrates a broad set of skills and
competences within the software development. Upon successful
completion of this curricular unit, students should be able:

• to construct, integrated in a team, correct complex software
systems, in accordance with the requirements, by combining
analysis, design, coding and test activities;

• to apply in practical situations, as typically found in the
software industry, the skills acquired in the module;

• to use tools (meta-CASE, frameworks, IDEs) to support all
the activities inherent to software development;

• to adopt standards to ensure an uniformity both in process and
notation and to promote the interoperability and portability of
the designed solutions.

3.4 Module on Quality and Management
Software Management refers to activities responsible for
planning, coordinating, measuring, monitoring, controlling, and
documenting all the development tasks, either during the project
or after it (where, one may include, for example, maintenance
tasks). Software management is considerably distinct from the one
followed in other engineering fields, due to the specific
characteristics of the software and its underlying process.
The main aim of this 30-ECTS module on quality and
management of software is to provide students with the methodic
skills to control and plan the software development activities, to
obtain with a systematic, disciplined and quantifiable approach
solutions that are economically viable.
This module is also organized around 5 SWEBOK KAs, and their
internal curricular units sum up 30 ECTS. The assessment and
grading is made through a unique global exam that may touch all
the topics covered within the module
Curricular unit ECTS
Project Management (PM) 5
Software Process and Maturity (SPM) 5
Quality and Test (QT) 5
Maintenance and Evolution (ME) 5
Laboratory of Software Engineering Management (LSM) 10
Table 3 – Curricular units for the 30-ECTS module on (Software)
Management and Quality

3.4.1 Project Management
In the management of software engineering projects (KA7
“Software Engineering Management”, software project
management sub-area [1], MGT – Software Management [12]),
one applies knowledge and tools to the project activities, to fulfill
the defined requirements. Upon successful completion of this
curricular unit, students should be able:

• to establish the connection between the organizational and the
software engineering activities, by dealing with the
management of strategic, human-resources, communication,
clients, supplying and outsourcing issues;

• to apply techniques and tools to the project activities for
fulfilling the established requirements;

• to formally authorize the beginning of the project, by
proceeding viability studies, establishing the requirements
revision, and defining the requirements revision policy;

• to define the best way to finish a project to achieve the
proposed aims, through process and project planning
definition, deliverables characterization, effort/cost

0-7695-2703-5/06/$20.00 (c) IEEE

Proceedings of the International Conference
on Software Engineering Advances (ICSEA'06)
0-7695-2703-5/06 $20.00 © 2006

estimation, resources allocation, risk management, and quality
management.

• to coordinate persons and other resources to fulfill the plan.
• to analyze, in some critical points of the project, the

fulfillment of the system’s requirements.

3.4.2 Software Process and Maturity
The software engineering process can be seen at two different
levels. The first level focus on the activities executed during the
acquisition, development and maintenance of the software
artifacts. The second level is related to the definition,
implementation, measurement, management, improvement, and
change of the software engineering process itself. Upon successful
completion of this curricular unit, students should be able:
• to promote the assessment of software process and to monitor,

in collaboration with software engineers, the software process
improvement efforts;

• to identify the positive and negative aspects of the software
process, through the acquisition, analysis, and interpretation
of quantitative data;

• to define the software process for facilitating the human
communication and comprehension in the execution of the
software engineering tasks;

• to propose changes to a software process, so that the needs of
the developers are fulfilled.

3.4.3 Quality and Test
The quality of a product is normally described as the set of
characteristics (of the product or the service) that must exist to
satisfy the required needs. Within software engineering, quality
can be understood as the efficient, effective and comfortable
usage, by part of a group of users, of a software system for a set of
valid functionalities and under some given conditions. All these
restrictions justify the huge dependency among software quality
and the fields of requirements engineering and software metrics.
Software quality is an activity that spans over all the software
process and that may require the explicit treatment of
non-functional issues like, for example, the dependability, the
reliability, the portability, the maintainability, and the availability.
Other quality aspects directly related with the software
engineering process are the code style, the reusability of objects,
the requirements traceability, the code modularity, and
independence among curricular units.
Software testing constitutes a mandatory phase of the software
development, and simultaneously a technique to evaluate and to
improve the product quality, through the identification of its
defects and problems. Test consists on the dynamic verification of
the software systems’ behavior with respect to the expected
behavior, using a set of finite test cases, specially chosen to cover
the most critical cases. Upon successful completion of this
curricular unit, students should be able to:
• to characterize the quality attributes of the software artifact

and to plan the needed processes to obtain it;
• to define the procedures to be executed for ensuring that the

software product fulfils its requirements and that it reaches the
highest possible level of quality, taking into account the
project restrictions;

• to indicate how quality plans are being implemented, and also
how adequately are the initially specified requirements being
incorporated into the software products under development;

• to use metrics for obtaining indicators as a tool to support
quality analysis and decision taking in software engineering
management;

• to use different kinds of software tests, either related with the
artifact being tested (unit, integration, or system testing) or the
test aims (acceptance, installation, alpha and beta,
conformance, regression, performance, recovery,
configuration, and usability testing);

• to organize tests according to the way they are generated (ad
hoc, specification-based, code–based, fault-based testing) or
the implementation knowledge (black-box or white box
testing);

• to plan and execute the testing process, using metrics related
to programs (accounting failures and faults) and related to the
kind of tests (assessing how adequate are the tests being
used);

• to organize the test activities, taking into account the human
resources, the tools, and the metrics.

3.4.4 Maintenance and Evolution
The maintenance phase starts as soon as a software product is
deployed, even though some tasks are supposed to start earlier
(during development), since to deal with deficiencies,
technological changes, and modifications of user requirements it
is necessary to be prepared as earlier as possible. Upon successful
completion of this curricular unit, students should be able to:

• to define the maintenance process that best fits the software
under consideration;

• to identify the technical, managerial, and financial factors that
affect maintenance;

• to adopt the most adequate maintenance techniques and to
effectively execute them;

• to assess in software audits the conformance of software
processes and products to regulations, standards, plans and
applicable procedures;

• to assess the importance of software portability and to identify
the restrictions to its achievement;

• to use component-based programming models and to assess
the impact that functional modifications (new releases or
products) may bring to the software architecture;

• to use metrics for assessing the quality of the produced
software architectures and its level of maturity and
evolvability.

3.4.5 Laboratory on Software Engineering
Management
This unit aims to integrate all the competencies acquired in the
other curricular units of the module, by analyzing and diagnosing
real software cases (both at the process– and product–level). Since
managing engineering activities requires indicators, the definition
of software-related metrics is of great importance. Metrology is a
topic typically offered in traditional engineering curricula. In what
concerns software engineering, although physical measures do not
exist, the need for metrics is crucial to effectively conceive
software engineering as a real branch of engineering. Under these
circumstances, metrology techniques must be use to
systematically quantify software artifacts and their corresponding
processes to obtain numeric representations of their properties.
It is recommended that industrial partners may collaborate in this
experimental curricular unit by making available real cases and

0-7695-2703-5/06/$20.00 (c) IEEE

Proceedings of the International Conference
on Software Engineering Advances (ICSEA'06)
0-7695-2703-5/06 $20.00 © 2006

reports that can be studied and analyzed in laboratory. The topics
included in the other curricular units of the module on quality and
management must directly contribute to the effective execution of
the laboratorial experiments of this unit. Upon successful
completion of this curricular unit, students should be able:

• to construct, integrated in a team, correct complex software
systems, in accordance with the requirements, by combining
analysis, design, coding and test activities;

• to apply in practical situations, as typically found in the
software industry, the skills acquired in the module;

• to use tools (meta-CASE, frameworks, IDEs) to support all
the activities inherent to software development;

• to adopt standards to ensure an uniformity both in process and
notation and to promote the interoperability and portability of
the designed solutions.

3.5 Project or Dissertation
The last part of the degree is composed either by a 30-ECTS
industrial project or a 45-ECTS research–oriented master
dissertation. Internally, this dissertation is divided in a 15-ECTS
part, during the first semester, to write the thesis proposal and a
30-ECTS part, during the second semester, to develop the thesis
and write the thesis. Both the project and the dissertation must be
developed within the topics associated with the first year modules
and supervised by teachers who are experts in software
engineering.
The industrial project is the best choice for students that plan to
become professional software engineers, because it provides an
environment where they participate in a real software project
within a development team (typically, a software house). This
participation is however controlled by the university tutor, which
is responsible for escorting his activities and for helping him in
some specific points.
The master dissertation provides the right framework for students
who wish to follow a career more oriented towards research. This
alternative requires students to define a research problem, to
devise a solution for it, to write a document describing the
conducted research, and to present and defend publicly the thesis.

4. SUMMARY
In this paper we have discussed a two-year degree in software
engineering, designed to cope with the principles of the Bologna
Declaration. This degree is also strongly influenced by SWEBOK
and the SE2004.

This ensures that the students will receive education on a broad
set of areas related to software engineering. The authors believe
that this degree does not present the deficiencies noted by [6]. We
believe that the proposed degree:

(1) puts emphasis on the principles of software development;
(2) includes important topics such as specification and testing,

which are to be taught in great detail.
(3) covers the major issues of software development in such a

way that students understand what choices are available and
how to use them.

(4) exposes students to software design;
(5) includes important areas of the discipline, such as real-time

and embedded systems.

5. ACKNOWLEDGMENTS
The main ideas and the general architecture of the master courses
in the Computing field at U.Minho, according to the Bologna
Declaration, belong to José M. Valença. The authors would like
also to thank fruitful discussions with João A. Carvalho, Pedro
Ribeiro, Luís S. Barbosa, António N. Ribeiro, and José F. Campos
that somehow are reflected in the proposed degree.

6. REFERENCES
[1] Abran A., Moore J.W. Bourque P., Dupuis R. (eds.), Guide

to the Software Engineering Body of Knowledge: 2004
Edition – SWEBOK, IEEE CS Press, 2004.

[2] Adams, E. J. A Project-Intensive Software Design Course.
25th ACM SIGCSE Technical Symposium on Computer
Science Education, Indianapolis, Indiana, pp. 112–6, March
1993.

[3] Coppit D., Haddox-Schatz J.M., Large Team Projects in
Software Engineering Courses, 36th SIGCSE Technical
Symposium on Computer Science Education, St. Louis,
Missouri, USA, pp. 137-41, ACM Press, 2005.

[4] Fenwick Jr. J.B., and Barry L. Kurtz, Intra-curriculum
Software Engineering Education, 36th SIGCSE Technical
Symposium on Computer Science Education, St. Louis,
Missouri, USA, pp. 540-4, ACM Press, 2005.

[5] Habra N., Dubois E., Putting into Practice Advanced
Software Engineering Techniques through Students Project.
7th Conference on Software Engineering Education, San
Antonio, Texas, LNCS 750, pp. 303–16, Springer-Verlag,
January 1994.

[6] Knight J.C., Leveson N.G., Software and Higher Education,
Communications of the ACM 49(1):160, January 2006.

[7] McCauley, R. A., Adams, E. J., Gotterbarn, D. J.,
Northrop,L. M., Saiedian, H. and Zweben, S.. Organizational
issues in teaching project-oriented software engineering
courses. ACM SIGCSE Bulletin , Fifth SIGCSE Symposium
on Computer Science Education, Volume 26, Issue 1,
392-393, 1994.

[8] Meyer B., Zwaenepoel W., Europe’s Computer Scientists
Take Fate into Their Own Hands, Communications of the
ACM 49(2):21–4, March 2006.

[9] Northrop, L.M., Success with the Project-Intensive Model for
an Undergraduate Software Engineering Course. SIGCSE
Bulletin 21(1):151–5, February 1989.

[10] Powell P.C., Weenk G.W.H., Project-Led Engineering
Education, Lemma, Utrecht, The Netherlands, 2003.

[11] Shaw M., Software Engineering Education: A Roadmap, In
“The Future of Software Engineering”, Finkelstein A. (ed.),
ACM Press, 2000.

[12] Software Engineering 2004, Curriculum Guidelines for
Undergraduate Degree Programs in Software Engineering,
IEEE CS & ACM, 2004.

[13] Way T.P., A Company-Based Framework for a Software
Engineering Course, 36th SIGCSE Technical Symposium on
Computer Science Education, St. Louis, Missouri, USA,
pp. 132-6, ACM Press, 2005.

0-7695-2703-5/06/$20.00 (c) IEEE

Proceedings of the International Conference
on Software Engineering Advances (ICSEA'06)
0-7695-2703-5/06 $20.00 © 2006

