
A DEMONSTRATION CASE ON THE TRANSFORMATION OF

SOFTWARE ARCHITECTURES FOR SERVICE SPECIFICATION

Joao M. Femandes^ Ricardo J. Machado^, Paula Monteiro^, Helena Rodrigues^
^ Dept. Informdtica & ̂ Dept. Sistemas de Informagao
Universidade do Minho, Braga - Guimaraes, Portugal

Abstract: This paper presents a demonstration case on the successive application of a
model-based technique to assist on the refinement of software logical
architectures. The technique is essentially based on the transformation of use
cases into object diagrams. The applicability of the technique is illustrated by
presenting some results from a mobile application. For mobile software, the
definition of the underlying service-oriented architecture must consider as user
requirements the services themselves, the mobile operators entry points and
the final clients interfaces, and use them to characterize the platform. Within
the presented demonstration case, the specification of one service of the
mobile application was obtained by successively applying the technique.

1. INTRODUCTION

A Model-Driven Development (MDD) approach is a software
development technique that uses models during its execution. With MDD
approaches, the development of software is made by successively
transforming models into other models, until the final system is obtained.

This article presents the 4-Step Rule Set (4SRS) transformation technique
that employ successive transformations of the software architecture, to
satisfy the elicited user requirements. It is mainly based on the mapping of
use cases into object diagrams. The technique's iterative nature and the use
of graphical models ensure that architectures reflect user requirements [1,2].

Since the 4SRS is an MDD method, its description should contain all
elements that are usually present in any software method. It should describe

* Research funded by FCT and FEDER under project STACOS (POSI/CHS/48875/2002).

Please use the following format when citing this chapter:

Femandes, J.M., Machado, R.J., Monteiro, P., Rodrigues, H., 2006, in IFIP Intemational Federation for Information Pro
cessing, Volume 225, From Model-Driven Design to Resource Management for Distributed Embedded Systems, eds. B.
Kleinjoharm, Kleinjohann L., Machado R, Pereira C, Thiagarajan PS., (Boston: Springer), pp. 235-244.

236 From Model-Driven Design to Resource Management for Distributed Embedded Systems

which intermediate and final artefacts should be produced, which notations
should be used to create those artefacts and which tasks should be
performed, and in which sequence, to create the required artefacts.

4SRS associates, to each object found in analysis, a given category:
interface, data, control [3], This categorization originates object models that,
in their essence, are similar to the architectures imposed by the Model-
View-Controller [4] or by the Entity-Boundary-Controller [5] patterns.

The 4SRS technique is organized as four steps: (1) object creation, (2)
object elimination, (3) object packaging & aggregation, and (4) object
association. Additionally, the 2"̂ step is further subdivided in 7 micro-steps.
The application of the 4SRS to obtain the first logical architecture of the
demonstration case is described in [6]. After executing all 4SRS steps, the
logic architecture for the system that captures all its functional requirements
and its non-functional intentionalities is obtained. An object model shows
the distribution of significant properties of a system across its parts.

This paper addresses the problem of deriving the logic architecture of a
given platform service (called service object diagram), from a functional
refinement of the platform architectural model (called platform object
diagram), by successively executing the 4SRS technique. The 1st execution,
whose details are described in [6] supports the platform requirements
analysis by generating one platform object diagram that corresponds to the
logic architecture of the system. This paper explains, for the demonstration
case considered here, the usage of the 4SRS to derive an object diagram that
shows the services the system needs to accomplish its responsibilities.

The 2nd 4SRS execution, which this paper aims to explain, supports
service requirements analysis by generating one service object diagram that
corresponds to the logic architecture of the service to be specified.

The demonstration case is a platform for mobile applications, supporting
usability, openness, interoperability and scalability. It deploys reusable
service components to ease the development of context-aware applications
that allow citizens to perform a set of government-related activities, and to
access the most proper services at any time, anywhere.

2. MODEL-BASED TRANSFORMATIONS

The raw object diagram of the mobile application platform, shown in [6]
and obtained after applying the 4SRS, is used in this paper as a starting point
for discussing the technique. It identifies the system-level entities, their
responsibilities and the relationships among them. Its purpose is to focus at
an appropriate decomposition of the system without delving into details.

The components of that object diagram were obtained by reasoning about
the characteristics of the service-oriented platform. Applications can be built

From Model-Driven Design to Resource Management for Distributed Embedded Systems 237

on top of this architecture by specifying the right composition of services,
building a user interface, and orchestrating the data-flow among the various
components. Configuring services and applications so they can be reliably
reused and composed into larger applications is a major challenge [7].

The resulting raw object diagram (from the 1st execution) can be used in
the subsequent phases to define well-delimited sub-projects, by using
collapsing and filtering techniques. These techniques redefine the system
boundaries, giving origin, for instance, to the database project, services
formalization, or platform pattern analysis. Fig. 1 shows the collapsed object
diagram that was obtained from the raw object diagram by hiding the
packages details. Therefore, links appear at a higher level of abstraction and
the resulting object diagram is easier to be read.

{P1} external providers information I

{P3} process context |

(P5) user interface [

<«interface»»
fOOat.SJl seivtce renfetraMon

<<lnterface>>
{O0a.1.4i) mobile operatof

{P2} external providers Interface I

« d a t a »
l{O0a.1.5.«0 registered

«control.>>
|fO0a.1.4xl presantatlon

:interface»»
koOa.2.5.0 service ijscoverv
Pfotocol interface

«intetface»>
{O0a^.6.Q hrform local authorKy

<<control>>
0)a.2J.c) anomaly pfocessor

<'<control.>>
{O0a3.5.c} sefw:e ciscovef

{P4} deliver information data |

« d a t a »
{O0a.2^(0 anomaly data

Figure 1. Collapsed object diagram.

Fig. 2 shows the filtered object diagram that was obtained by using
collapsing and filtering techniques described in [1] by considering package
{P5} as a subsystem for design. This diagram was included here as an
example of how raw object diagrams can be used during the development
process to stress parts of the system and allow subsystem specification and
partition of subprojects among various teams.

In this paper, we consider the refinement of package {P5} that has given
origin to the AVAccess service. This service is a single point of contact with

238 From Model-Driven Design to Resource Management for Distributed Embedded Systems

the platform and should redirect the user to the appropriate service. In
particular, when the user intends to report a complaint, he needs to access the
AVAccess service and to select the report complaint functionality.

{P5} user interface

<<control.»
{00a.1.3.c) Information

«control»
{Da.3.7.cl thematic request

<<control"
fOt)a.1.4.c) presentation

Figure 2. Filtered object diagram for package {P5} service derivation.

Criteria illegible for filtering depend on project management issues,
functional implementation domains, etc. Fig. 3 depicts the filtering process
executed over Fig. 1 to obtain a {P5}-centric filtered object diagram. During
the filtering process, all entities not directly connected to {P5} must be
removed from the resulting filtered object diagram.

ITERATIVE ARCHITECTURAL REFINEMENT

The development of mobile applications typically follows a service-
oriented approach. A service is a software entity running on one or more
machines and providing a particular type of function to unknown clients.
These services must communicate with each other, to give rise to a
service-oriented architecture. The communication can involve either simple
data passing or two or more services coordinating some activity. Some
means of connecting services to each other is needed, so workflow is a
critical part to make services effective. When those services react to changes
on user context, applications are said to be context-aware.

For mobile applications, the definition of the underlying service-oriented
software architecture must consider the services themselves as user
requirements, as well as the mobile operators' entry points and the final
clients interfaces, and use them to characterize the platform.

{P5} can be considered as the system to be designed and apply, once
more, the 4SRS technique to support its architectural refinement (in Fig. 2).
The iterative application of the 4SRS technique suggests the construction of
a new use case diagram (called service use case diagram) that captures the
users requirements of the new subsystem to refine. From this use case
diagram, the corresponding raw object diagram is derived (called service
object diagram). This approach contrasts with the one that suggests the

From Model-Driven Design to Resource Management for Distributed Embedded Systems 239

application of design patterns [4, 8] to impose into the logical architecture a
already proven reference architectural model. Our proposal does not reject
this pattern-oriented view, only defers it into latter stages of development.

<<contrcil.»>
{00a.1.3.c) infof matron
Idtssetnlnalor

fO0a.1.5.«nWflefed sefvfces

V

2.6 jj iiffbtmtoWautht

<<contfol.»>
{0a.3.7.c] thematic request
Ipfocessof

{00a^5.c} s^ygrftscowef
Ipfotoco)

-^ ^

(P7) user data |

Figure 3. Filtered object diagram for package {P5} service derivation.

The use case diagram in Fig. 4 was created to support the architectural
refinement of {P5} to obtain the raw object diagram of the AVAccess
service. This service constitutes the example considered in this paper to
show the iterative application of the 4SRS technique. All the external entities
in this diagram correspond to architectural elements connected to package
{P5} in Fig. 2. Object {O0a.l.3.c} in Fig. 2 did not give rise to any actor in
Fig. 4, because the architectural refinement of package {P5} did not consider
the functionality that is associated with that object. The user actor is present
in Fig. 4, since it was already connected to the use cases that gave origin to
the objects inside package {P5}, during the development process described
in [6]. Actors in Fig. 4 must be viewed as external components, from the
point of view of the AVAccess service. To attain better actor semantics
within the associations with the obtained use cases, actor {O0a.3.7.c} in
Fig. 4 was specialized into two different actors: Application System Context
Aggregation Service and Application System Service Repository.

The AVAccess service is the platform component where all user requests
are redirected by default. Its service components or end services are architec
tural components developed and deployed by the local authorities and are the
ultimate components to be accessed by the user. They appear as result of

240 From Model-Driven Design to Resource Management for Distributed Embedded Systems

Other architectural decisions. The AVAccess service is a single point of
contact and should redirect the user to the appropriate end service. Users
usually start the interaction with the system by contacting this component.

ApplicationSyslem ApplicationSyslem
ConlsxtAggregatJon Service Repository
Service

_JUO i) add user terminal

(ijai>regis1er newuser

[JUO 2) remove u s ^ P ; ; ^

(U0.7} restore subscription

jUO.6} suspend subscription

{U0.10) un-subscribe s(

(UP 8} cbecl< subscription st

Figure 4. Use case diagram for AVAccess service.

One example of a description for the top-level use cases is next
presented. Similar descriptions were created for the other top-level use cases.
(UOJj register new user: the user provides user personal information to the AVAccess
system. Its personal information consists ofuserName, password, and, optionally, user profile
information. The AVAccess service parses user personal information and sends it to
subsystem User. The A VAccess sys-tem sends back the information on success/no success of
this operation. The information sent to the user is format-ted by the subsystem Presentation.
The system must know terminal model information.

TABULAR TRANSFORMATIONS

The execution of the 4SRS transformation steps can be supported in
tabular representations. Moreover, the usage of tables permits a set of tools
to be devised and built so that the transformations can be partially
automated. These tabular representations constitute the main mechanism to
automate a set of model transformation steps.

The table for supporting the transformation steps uses one row for each
object and one column for each step. The 1st column corresponds to the
execution of step 1. The first row allows the insertion of both the reference
and the name of the use case. The next three rows allow the insertion of one
interface, one data, and one control objects for that use case. For the
demonstration case, there is no use case refinement, so step 1 is applicable to
all (10) use cases in Fig. 4, which gave origin to 30 objects. Fig. 5 depicts 4
different rows for each of the two previously exemplified use cases.

The 2nd column corresponds to the execution of micro-step 2i. In this
micro-step, each use case is classified as one of the 8 different combinations
or patterns (0, i, c, d, ic, di, cd, icd). This classification helps on the
transformation of each use case into objects, and provides hints on which
objects to use and how to connect them. For the demonstration case, {UO.l}

From Model-Driven Design to Resource Management for Distributed Embedded Systems 241

was classified as "i", meaning that only the interface object is kept (the
control and data objects will be eliminated in micro-step 2ii). {U0.5} was
classified as "icd", which means that all objects are kept.

St«ft4^>f<xt<tm»mti

{IJ0.1} (eyi$1«r H « W in«r

{ O O l c }

j{O0.1.dl

{ 0 0 1 , !

aVQJSi} 9ub«ai l>* s«fvJc«

(O O S c l

{00 5 d)

(00 5 1)

«ta«^t«iMtott

•

,cd

«itmt»«ti«tt

-
«

-

-
-
-

register user

interface

sobscnbese^ce

defined activities

m t e r f a c r ' ' " "

^t» t kt tiU

allows the parse of the

user personal...

will process the
request subscnbe..

interface with the data
of the. .

sends the subscnbe
service information ..

tiwtti

JV '«hl*dtt^n^**^tti(im

itself

/
/

•••"/
i tself /

(CO 1 ,) - * -

i«pi*««tti)^

(00 .2 i }
(O0.3i)
(00 .4 i)

. {O0.5i(

4{O0.6.i}
/ {00 7 i}
f (00 .8 i }

{00.9 i}

{CO.101)

(O 0 9 d)

-

-
-

— T —

nnanagemment

interface

available
activities

{OO.B.d}
(00.5.i(

{ 0 0 . 5 . 0
{OO.Si}

(OO.Scl
{00 .5d)

Figure 5. Table for supporting the 4SRS technique.

The 3rd column supports the execution of micro-step 2ii. In this micro-
step one decides if each object created in step 1 makes sense in the problem
domain, since the creation of objects in step 1 was blindly executed. Objects
that are to be eliminated are marked with "x" and objects that are to be kept
are marked with "-". For the demonstration case, {UO.l} got two of its
originated objects eliminated, since they do not make sense in the problem
domain. {UO.l} is only responsible to send the new user information from
the user to other subsystems and vice versa, which means that data and
control dimensions are not within the scope of this use case.

The 4th column is dedicated to the execution of micro-step 2iii. In this
micro-step, objects that have not been eliminated from the previous micro-
step must receive a proper name that reflects both the use case from which it
is originated and the specific role of the object, considering its main
component. {OO.l.i}, for instance, was named register user interface.

The 5th column is related to the execution of micro-step 2iv. Each named
object resulting from the previous micro-step must be described, so that the
system requirements they represent become included in the object model.
These descriptions must be based on the original use case descriptions. For
the demonstration case, the following descriptions were obtained:
{OO.l.i} register user interface: allows the parse of the user personal information and sends it
to the destination subsystem, and sends back the information on success/no success of the
request.
{OO.S.c} subscribe service: will process the request Subscribe service. Will request to the user
all the additional information needed to perform the request of the user.
{OO.S.d} defined activities: interface with the data of the available activities in the system
(could be a XML file).

242 From Model-Driven Design to Resource Management for Distributed Embedded Systems

{00.5.1} subscribe service interface: sends the subscribe service information to the
destination subsystem, and sends back the information on success/no success of the request.

The 6th and 7th columns correspond to the execution of micro-step 2v.
This is the most critical micro-step of the 4SRS technique, since it supports
the elimination of redundancy, in the user requirements elicitation, and the
discovering of missing requirements. The "is represented by" column stores
the reference of the object that represents the object being analyzed. If the
analyzed object is represented by itself, the corresponding "is represented
by" column must refer to itself The "represents" column stores the
references of the objects that the object analyzed will represent. {OO.l.i}
does not delegate in other objects its representation and it additionally
represents a considerable list of other objects (each one of these objects must
refer to {OO.l.i} in their columns "is represented by").

The 8th column is related to micro-step 2vi. This is a fully "automatic"
micro-step, since it is based on the results of the previous one. The objects
that are represented by other ones must be eliminated, since its system
requirements no longer belong to them.

The 9th column is used for micro-step 2vii. Its purpose is to rename the
objects not eliminated in the previous micro-step and that represent
additional objects. For the demonstration case, object {OO.l.i} was renamed
"users management interface" to reflect the list of objects it represents.

The 10th column supports the execution of step 3. Since aggregations and
packages were not used in the demonstration case, column 10 is not filled.

The n th column supports step 4. The associations in the demonstration
case were solely derived from the use case classification in step 1. The
classification of {U0.5} as type "icd" suggests the existence of three internal
links relative to the objects generated from the same use case. However, "id"
link (between the interface and the data objects) was not allowed.
Additionally, the following two tabular transformations imposed some
constrictions to the object connectivity exercise: (1) in step 2v, it was
decided that {O0.5.i} is represented by {OO.l.i}; (2) in step 2vi, {00.5.1}
was eliminated. These two decisions imply the existence of the following
associations: (1) between {OO.S.c} and {OO.S.d}, suggested by the "icd"
classification; (2) between {O0.5.c} and {OO.l.i}, due to the transitivity of
the suggested association between {O0.5.c} and {O0.5.i} through the
delegation executed by {00.5.1} in {OO.l.i}.

5. SERVICE SPECIFICATION

Fig. 6 depicts the raw object diagram for the AVAccess service, obtained
after a new application of the 4SRS technique over the global logical
architecture of the application represented in Fig. 2. Object {O0a.4.1.i} in

From Model-Driven Design to Resource Management for Distributed Embedded Systems 243

Fig. 2 is mapped into object {OO.l.i} in Fig. 6. This object receives user
requests for user management and service subscription. In the case of use
case {U0.5}, {OO.l.i} uses the functionalities of {O0.5.d} and {OO.S.c}.

{OO.l.i} users management
interface

1 fOO.g.cl select service

{po.5.c} subscribe service |

{O0.5.d} available activities 1

Figure 6. Raw object diagram of the AVAccess service.

Object {O0a.2.2.i} in Fig. 2 maps into object {OO.l.i} in Fig. 6. This
object receives user requests in case of execution of use case {U0.9} and
object {OO.l.i} uses the functionalities associated with objects {O0.9.c} and
{OO.S.d}. The obtained raw object model (Fig. 6) constitutes the semantic
reference for the service to be designed, since it has emerged from the
software logical architecture (Fig. 2) of the platform by adopting a
complementary functional refinement at architectural level.

After obtaining this new architectural refined raw object model, the
underlying service can be described by a set of diagrams to specify the
corresponding architectural component, namely, a class diagram for the
static characterization of the service component, a statechart for the life
cycle characterization of the service, a set of activity diagrams for methods
specification and a set of sequence diagrams for interface and protocol
specification. These additional views of the same service are not generated
from the application of 4SRS technique, even though they are easier
constructed after obtaining the raw object diagram of the service (Fig. 6).

CONCLUSIONS AND FUTURE WORK

A software infrastructure for running mobile applications must find,
adapt, and deliver the right services to the user computing environment
based on his context. The current trend in software industry is for service
providers to supply reusable functions via components called services.
Building applications involves specifying the right composition of services,
building a user interface, and defining the data flow among the components.

For mobile applications, the definition of the underlying service-oriented
architecture must consider the services themselves as user requirements, as

244 From Model-Driven Design to Resource Management for Distributed Embedded Systems

well as the mobile operators entry points and the final clients interfaces, and
use them to characterize the platform. Within the presented demonstration
case, the specification of one service of a mobile application was obtained by
recursively applying the 4SRS technique. The technique has shown its
usefulness by assuring the generation of a seamless specification of the
service-oriented architecture requirements.

The proposed iterative usage of the 4SRS technique allows designers to
build a new use case diagram that captures the users requirements of the new
system to refine a service. From this use case diagram, a raw object diagram
can be derived. This approach is complementary to the use of design patterns
by allowing a functional refinement of requirements at architectural level,
considering the specific aspects of the system under design. This
transformational approach shows that model continuity is an important topic
and highlights the importance of defining a well-defined process to relate,
map and transform requirement models [9]. In the presented case, the 4SRS
has allowed the specification of one particular service, considering all the
architectural decisions previously taken to specify the platform where the
service is supposed to run, by assuring a continuous mapping between the
platform and the service models.

As future work, the 4SRS technique will be extended to consider the
transformation of objects diagrams into class diagrams, which seem a crucial
step for software-intensive systems.

REFERENCES

1. J.M. Femandes, RJ. Machado. From Use Cases to Objects: An Industrial Information
Systems. OOIS 2001, Calgary, Canada, pp. 319-328, Springer, August, 2001.

2. J.M. Femandes, R.J. Machado, H.D. Santos. Modeling Industrial Embedded Systems
with UML. CODES 2000, San Diego, California, U.S.A., pp. 18-22, 2000.

3. I. Jacobson, M. Christerson, P. Jonsson, G. Overgaard. Object-Oriented Software
Engineering: A Use Case Driven Approach. Addison-Wesley, 1992.

4. F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal. Pattern-Oriented
Software Architecture: A System of Patterns. John Wiley & Sons, 1996.

5. I. Jacobson, G. Booch, J. Rumbaugh. The Unified Software Development Process.
Object Technology. Addison-Wesley, 1999.

6. R.J. Machado, J.M. Femandes, P. Monteiro, H. Rodrigues. Transformation of UML
Models for Service-Oriented Software Architectures. ECBS 2005, Greenbelt,
Maryland, U.S.A., pp. 173 182, 2005.

7. G. Banavar, A. Bemstein. Software Infrastructure and Design Challenges for
Ubiquitous Computing Applications. Communications of the ACM, vol. 45, no. 12,
pp. 92-96, 2002.

8. R. Ahlgren, J. Markkula. Design Pattems and Organisational Memory in Mobile
Application Development. PROFES 2005, Oulu, Finland, pp. 143-156, 2005.

9. R.J. Machado, I. Ramos, J.M. Femandes. Specification of Requirements Models. In A.
Aumm and C. Wohlim (Eds.), Engineering and Managing Software Requirements,
pp. 47-68, 2005.

