
Transformation of UML Models for Service-Oriented Software Architectures∗

Ricardo J. Machado† João M. Fernandes‡

Paula Monteiro† Helena Rodrigues†
† Dep. Sistemas de Informação

‡ Dep. Informática
Escola de Engenharia, Universidade do Minho

4700-320 Braga, Portugal

Abstract

The main aim of this paper is to present how to trans-
form user requirements models into a software architecture
for mobile applications. The technique (called “4SRS”) is
essentially based on the mapping of UML use case dia-
grams into UML object diagrams. UML sequence, activity,
and state diagrams and other artifacts can also be consid-
ered within the transformation decisions. The applicability
of this technique is illustrated by presenting some results
from an e-government mobile application.

The development of mobile applications typically follow
a service-oriented approach. A service is a software entity
running on one or more machines and providing a particu-
lar type of function to a priori unknown clients. These ser-
vices must communicate with each other, whose combina-
tion makes up a service-oriented architecture. The commu-
nication can involve either simple data passing or it could
involve two or more services coordinating some activity.
Some means of connecting services to each other is needed,
so workflow is a critical part of making services effective.
When those services react to changes on user context, ap-
plication are context-aware.

For mobile applications, the definition of the underly-
ing service-oriented software architecture must consider the
services themselves as user requirements, as well as the mo-
bile operators entry-points and the final clients interfaces,
and use them to characterize the platform.

1. Introduction

In the past few years, mobile communications and In-
ternet technologies are enabling the access to information

∗ This work has been supported by projects USE-ME.GOV (IST-
2002-002294), METHODES (POSI/CHS/37334/2001), and STACOS
(POSI/CHS/48875/2002).

at any time and anywhere. In a mobile computing environ-
ment, the user interacts with a mobile information space
with info-mobility context-aware services. These are ser-
vices providing information relevant or useful to users in
a given context. It is unreasonable to expect a user to man-
ually configure his/her applications to provide the services
he/she wants to use in a given instant, particularly when the
“most appropriate” service changes as the user moves from
one context to another. This is why mobile applications
must be aware of the current computational and physical
environment surrounding the user and dynamically modify
their behaviour to suit the situation.

An effective software infrastructure for running mobile
applications must be able to find, adapt, and deliver the ap-
propriate services to the user computing environment based
on his/her context. The current trend in the software indus-
try is for service providers to supply reusable functions via
application components called services. These services are
described using a standard description language and, in the
future, using standard ontologies. Such descriptions could
enable automatic composition of services, which in turn
enables an infrastructure that dynamically adapts to tasks.
Building applications involves specifying the right com-
positon of services, building a user interface, and orches-
trating the data flow among the various components [1].

Our approach for identifying the system components for
such architecture (the conceptual model) requires the soft-
ware engineer to start the development by defining the func-
tional model (use case diagram) that reflects the system
functionalities offered to its users from their perspectives
[2] [3]. A system functionality is to be accomplished by the
communication and activity coordination between system
objects, and can be validated, at this level, by the construc-
tion of a specific workflow between system objects.

The problem of obtaining architectural design models
from analysis models is not simple and easy and faces sev-
eral difficulties [4]. Generically, it involves several deci-
sions that cannot be done by a method or a tool, due to



the natural discontinuity between functional and structural
models. Holland and Lieberherr consider that the identifi-
cation of objects and the description of the relationships
between them are two of the three challenges of object-
oriented design [5].

There are many works that propose solutions to tackle
this problem, namely by guiding the transformation of use
case models into object/class models [6] [7] [8] [9]. In [10]
[11], two approaches are proposed for a use case rationale
based on goal identification. These approaches can be used
for a better supported transition for the architectural design
issues. However, they lack an explicit scenario framework
for capturing the semantic intentionality of each use case.
This could be incorporated by adopting some scenario-
based requirements engineering techniques, such as those
suggested in [12] [13].

This paper presents a novel approach for solving a real
problem faced by software engineers, which consists on the
definition of the system objects based on the use cases and
their respective textual descriptions. The strategy uses the
object types (interface, data and control) defined in [6]. Our
approach extends the results presented in [2] [3] [14] and
it incorporates some mechanisms that allow software engi-
neers to relate each object with the use cases that gave ori-
gin to it. Due to the relatively weak support of UML 1.5 to
component-based design, we have decided to use the object
concept of UML to represent system-level entities or com-
ponents.

2. Requirements Modeling

Our approach for identifying the system components re-
quires the software engineer to begin the development pro-
cess by defining the functional model that captures the sys-
tem functionalities offered to its users. Use cases are one
of the most suitable technique for that purpose, since they
are simple and easy-to-read. In fact, they only include three
main concepts (use cases, actors and relations). This low
number of concepts is a fundamental characteristics for
involving, within the requirements capture process, non-
technical customers and clients.

Although use cases are used in several object-oriented
projects, they do not hold any intrinsic characteristic that
can be classified as “pure” object-oriented. However, within
the research community there is a large consensus on the
recognition that use cases are a proper technique for object-
oriented projects [15], namely for discovering and later
specifying the behavior of the system, during the analysis
phase. This is also highlighted by the fact that use cases are
part of UML (Unified Modeling Language) notation [16].
Thus, adopting use cases for user requirements is undoubt-
edly a valid technique, but poses the problem related to

the transformation of use cases into objects or components.
This problem is one of the main topics of this paper.

The case study used in this paper to illustrate our trans-
formation approach is a new open platform for mobile gov-
ernment applications, supporting usability, openness, inter-
operability and scalability. It is responsible for the deploy-
ment of a set of reusable service components that facilitates
user context-aware application development that allow citi-
zen to perform a set of high-level government related activ-
ities, allowing citizens to access the most appropriate ser-
vices at any time, anywhere. Those activities include spon-
taneous communitity interactions such as reporting anoma-
lies and making suggestions or getting thematic informa-
tion on local events, city information, healthcare or educa-
tion. As a particular scenario consider a public institution
that offers a heterogeneous set of services for reporting a
complaint. When the citizen whishes to report a complaint,
the platform will support him/her by having a set of services
coordinating such activity (use case {U0a.2.} in fig. 1).

The requirements for this system were acquired using re-
quirements engineering techniques, and the end-result was
a collection of artifacts, including UML diagrams. We next
present some of the artifacts.

After identifying all the use cases of the system (right
part of fig. 1), the next step is to describe their behav-
ior. There are some alternatives for describing use cases,
namely informal text, numbered steps with pre- and post-
conditions, pseudo-code and activity diagrams [17]. Next,
we present, as an example, the description of the top-level
use case {U0a.1} with informal text. Similar descriptions
were created for the other top-level use cases.

{U0a.1} send alert: Send domain alert or disseminat-
ing domain information to the users informing of do-
main related events and situations or unexpected
domain situations that are happening in the re-
gion. Only users that have previously subscribed
this e-service will receive the alert messages (sub-
scription made via {U0a.4} user profile subscrip-
tion). This is an asynchronous e-service. If technically
possible, the system acquires user context raw in-
formation (location, time, etc) from external context
sources. Also, a contextualization process will as-
sist the system in making the level of granularity
of the information adequate to the geographic lo-
cation of the user context (geographic location
context, time context and activity context). For ex-
ample: (ex. #1: an alert of a dangerous hole in a
street should only be sent to the users geographi-
cally located in that street; ex. #2: an alert of a street
obstructed should be sent to the users geographi-
cally located in that street or in any of the incident
streets; ex. #3: an alert of weather storm should be
sent to all the users in the region). The information as-

2



Figure 1. Top-level use case diagram according to two orthogonal criteria; Left: Functionality; Right:
Domain.

sociated to the alert should always be up-to-date and
match the user-specific request, excluding any ex-
tra information or undesired advertisements. For those
users that require personalized information, a sub-
scription must be made via {U0a.4} user profile and
e-service subscription.

Figure 2. Refinement of use case {U0a.1}.

Since this use case was further refined, as the left dia-
gram in fig. 1 depicts, we also present, as an example, the
textual descriptions of two of its sub use cases.

{U0a.1.1} request external information: The system ex-
plicitly requests for appropriate domain information,
from the known external content providers (regis-
tered via {U0a.1.5} register alert service, for ex-
ample), based on user context (location, time and
activity), acquired and processed via {U0a.1.2} pro-
cess user context, and/or based on user profile,

processed via {U0a.4} user profile and e-service sub-
scription.

{U0a.1.5} register alert service: The system registers do-
main alert services. When a local authority wants to
offer an alert service, it registers it in the system pro-
viding the alert conditions and source of information.
This registration will allow the execution of the follow-
ing use cases: {U0a.1.3} disseminate information and
{U0a.1.1} request external information.

3. Model Transformation

Transforming uses cases into architectural models is a
difficult task and in [3] we presented a technique called
4SRS (4-step rule set) to help on that task. At high-level,
the 4SRS technique is organized as four steps to transform
use cases into objects.

3.1. Step 1 - object creation

In this step, each use case must be transformed into three
objects (one interface, one data, and one control). Each ob-
ject receives the reference of its respective use case ap-
pended with the suffix (i, d, c) that indicates the object cate-
gory (in our approach, object references start with an “O”).
This is a fully “automatic” step, since there is no need to any
kind of particular decisions or rationale for the specific con-
text of each use case. From this step on, there is only ob-
jects as design entities. Use cases are still used in the fol-
lowing steps to allow the introduction of requirements into
the object model.

In the case study presented in this paper, the 4SRS trans-
formation was used in the 2nd level of use case refinement
for orthogonal criteria a). This has considered as eligible use

3



cases for this first step all 22 2nd level use cases (for crite-
ria a): 5 from {U0a.1}, 7 from {U0a.2}, 8 from {U0a.3},
and 2 from {U0a.4}) plus use case {U0a.5} that had no re-
finements at all. This approach gave origin to 69 objects.

3.2. Step 2 - object elimination

In this step, it must be decided which of the three ob-
jects must be maintained to fully represent, in computa-
tional terms, the use case, taking into account the whole sys-
tem and not considering each use case in isolation. These
decisions must be based on the textual description for each
use case. This step aims to decide which of the objects cre-
ated in step 1 must be kept in the object model. This step
also supports the elimination of redundancy in the user re-
quirements elicitation, as well as the discovering of missing
requirements.

This is the most important step of the 4SRS tech-
nique, since the definitive system-level entities are decided
here. To cope with the complexity of the step, it has been de-
composed into several micro-steps.

Micro-step 2i: use case classification
In this micro-step, the software engineer classifies each

use case. To understand what the classification mechanism
can be, we must first study how many combinations of ob-
jects of a given use case do exist. The 4SRS assumes that
each use case gives rise to a maximum of three objects1:
one interface-object (i), one control-object (c) and one data-
object (d). Thus, we come up with 8 different combinations
or patterns (∅, i, c, d, ic, di, cd, icd), if we ignore the links
among objects.

The idea behind this classification is to help on the trans-
formation of each use case into objects. This classifica-
tion would provide some hints on which object categories
to use and how to connect2 those objects. As an ex-
ample of the execution of this micro-step, in the case
study, the use case {U0a.1.5} was classified as be-
ing of type “i-d”, which means that only the interface and
the data objects are kept (the control object will be elimi-
natedin micro-step 2ii).

Micro-step 2ii: local elimination
The aim of this micro-step is to answer, for each object

created in step 1, if it makes sense in the problem domain,
since the creation of objects in step 1 is executed blindly,
not considering the system context for the object creation.

1 In some situations, four or more objects can be created from the same
use case. A typical example is the creation of two interface-objects,
one for input and the other for output purposes. However, consider-
ing three as the maximum number of objects does not result in loss of
generality.

2 Associations are explicitly handled in step 4.

Object {O0a.1.5.c} (control component of use case
{U0a.1.5} register alert service) does not make sense in the
problem domain, as it can be seen by carefully analyzing
its textual description. Use case {U0a.1.5} is only responsi-
ble for allowing services registration by the local authorities
(interface component) and the maintenance of a data repos-
itory of registered services configuration (data component).
Thus, for the use case {U0a.1.5}, only the data and informa-
tion components have been kept, giving origin to the inclu-
sion of the objects {O0a.1.5.d} and {O0a.1.5.i} in the ob-
ject model.

Micro-step 2iii: object naming
In this micro-step, objects that have not been eliminated

from the previous micro-step must receive a proper name
that reflect both the use case from which it is originated and
the specific role of the object taking into account its main
component.

As an example, objects {O0a.1.5.d} and {O0a.1.5.i}
were named “registered alert services” and “alert ser-
vice registration”, respectively.

Micro-step 2iv: object description
Each named object resulting from the previous micro-

step must be described, so that the system requirements they
represent become included in the object model. These de-
scriptions must be based on the original use case descrip-
tions. It is not recommended to firstly introduce require-
ments at this stage that are not based on user requirements
captured via use case descriptions. Exceptions to this rec-
ommendation are allowed, if they are classified as non-
functional requirements (NFR) or as design decisions (DD).

The following object descriptions illustrate how to con-
struct system requirements based on user requirements, by
mapping use case descriptions into the corresponding re-
maining objects.

{O0a.1.5d} registered alert services:This object stores
the attributes about the services registered in the sys-
tem (by “service” in this context we refer to the
application functionalities that the system will of-
fer to its users). This object must store the attributes
that will enable service discovery, service aggrega-
tion, service automatic activation (when applied) and
service access. A proper service description mecha-
nism should be introduced. NFR1: This mechanism
should be extensible, manageable, self explain-
ing and semantically uniform. For service automatic
activation purposes, this object must store informa-
tion about internal and external alert conditions.
This object must store information about the de-
pendencies between registered services and external
content providers. For context-aware service dis-
covery, this object must store attributes defining

4



the service context of use. NFR2: For scalabil-
ity constraints, this must be a distributed object,
mainly in a regional, national or international set-
ting.

{O0a.1.5i} alert service registration: This object defines
the system interface for service registration, deregis-
tration, dynamic configuration and service attributes
query. NFR1: For security constraints this interface
must only be provided to the system components (not
to the users).

Micro-step 2v: object representation
This is the most critical micro-step of the 4SRS tech-

nique, since it supports the elimination of redundancy in
the user requirements elicitation, as well as the discover-
ing of missing requirements. Within the analysis phase, this
micro-step constitutes an internal validation step that as-
sures the semantic coherence of the object model and that
discovers anomalies in the use case model.

In the case study, objects {O0a.2.1.d}registered
anomaly servicesand {O0a.3.1.d}registered thematic ser-
vices, that resulted from the use cases {U0a.2.1}register
anomaly service3 and {U0a.3.1} register thematic infor-
mation service4, are represented by the object {O0a.1.5.d}
registered alert services. This means that, due to func-
tional coherence, object {O0a.1.5.d} can represent a
system-level entity within the object model that is able to
inscribe its own system requirements, as well as those as-
sociated with objects {O0a.2.1.d} and {O0a.3.1.d}.
This is an example of elimination of functional redun-
dancy, since, from the functional point of view, is sim-
pler and correct to support and justify the existence of
a unique data repository for all kinds of registered ser-
vices.

Micro-step 2vi: global elimination
This is a fully “automatic” micro-step, since it is com-

pletely based on the results of the previous one. Those ob-
jects that are represented by other ones, must be eliminated
since its system requirements no longer belong to them.
This micro-step is called “global elimination” due to its
global awareness for generating a coherent and canonical
object model, from the system requirements point of view.

In the example below, this micro-step gives ori-
gin to the elimination of the objects {O0a.2.1.d} and

3 {U0a.2.1} register anomaly service: The system registers available do-
main anomaly processing services in the region. When a local author-
ity wants to offer a processing anomaly service, it registers it in the
system providing relevant information such as context of use.

4 {U0a.3.1} register thematic information service: The system registers
available domain thematic information in the region. When a local au-
thority wants to offer a domain thematic information service it regis-
ters it in the system providing relevant information such context of use
and references to external information providers that may complement
the service.

{O0a.3.1.d}, since the object {O0a.1.5.d} is represent-
ing the system requirements of those objects.

Micro-step 2vii: object renaming

This is the last micro-step of step 2. Its purpose is to re-
name the objects that have not been eliminated from the
previous micro-step and that represent additional objects.
The new names must reflect the plenitude of system require-
ments represented.

In the example, object {O0a.1.5.d} was renamed, since
it is a not-eliminated object (from micro-step 2vi) and it
represents not only itself, but also objects {O0a.2.1.d} and
{O0a.3.1.d}. The chosen name was “registered services”,
so that all system requirements related with the “registered
alert services”, “registered anomaly services”, and “regis-
tered thematic services” are properly represented.

3.3. Step 3 - object packaging & aggregation

In this step, the remaining objects (those that were main-
tained after executing step 2), for which there is an advan-
tage in being treated in an unified way, should give origin
to aggregations or packages of semantically consistent ob-
jects. This step supports the construction of a truly coherent
object model, since it aids in introducing an additional se-
mantic layer at an higher abstraction level, that works as a
“functional glue” for the objects.

Packaging is a relatively immature technique, since it in-
troduces a very light semantic cohesion between the ob-
jects. This cohesion can be easily reversed within the de-
sign phase, whenever needed. This means packaging can be
flexibly used to allow a temporary obtainment of more com-
prehensive and understandable object models.

In the opposite way, aggregation imposes a strong se-
mantic cohesion between the objects. The level of cohesion
in aggregations is more difficult to reverse in next design
phases, which suggests a more scrupulous approach in us-
ing this kind of “functional glue”. This means, aggregation
should only be used when it is explicitly assumed that the
set of considered objects is affected by a conscious design
decision. Typically, aggregation is used when there is a part
of the system that constitutes a legacy sub-system, or when
the design has a pre-defined reference architecture that con-
stricts the object model.

In the case study, no aggregation was used, since there
was no reference architecture, nor any kind of legacy sub-
system. As an example of packaging, objects {O0a.4.1d},
{O0a.2.2d}, and {O0a.3.2d}, all originally obtained from
different use cases, are kept together inside a common pack-
age (package {P7.}user data).

5



3.4. Step 4 - object association

This final step of the 4SRS technique supports the in-
troduction of associations in the object model, completely
based on the information existent in the use case model and
generated in step 2i.

Regarding the information in the use case model, if the
textual descriptions of use cases possess hints on the kind of
sequences use cases are inserted in, this information must
be used to support the inclusion of associations in the ob-
ject model. As an example, use case {U0a.1.5} includes in
its textual description the following sentence “This regis-
tration will allow the execution of the following use cases:
{U0a.1.3} disseminate information and {U0a.1.1} request
external information.”. These hints were sufficient to in-
clude associations from the object {O0a.1.5.d} to the ob-
jects {O0a.1.1d}, {O0a.1.1.i}, and {O0a.1.3.c}. This kind
of hint constitutes a pre-design decision related with the se-
quence of execution of use cases. If not carefully analyzed,
it can give origin to premature scheduling decisions.

Alternatively, the use case model can include other
kind of information to support associations, when there
is UML relations between use cases. As an example, use
case {U0a.1.1}¿usesÀ use case {U0a.1.2}, which jus-
tifies the existence of an association between objects
{O0a.1.1.d} and {O0a.1.2.c}, and between {O0a.1.1.i} and
{O0a.1.2.d}.

Regarding the information generated in step 2i, it must
be used to support the inclusion of associations between ob-
jects originally obtained from the same use case. As an ex-
ample, in step 2i, use case {U0a.1.5} was classified as be-
ing of type “i-d”, which implies that objects {O0a.1.5.d}
and {O0a.1.5.i} must be associated.

4. Logic Architectural Model

In this section, we present the system architec-
tural model, which in addition to an informal descrip-
tion of the objects, express the system requirements. Our
main goal was to define a logic architecture for the sys-
tem that could capture all its functional requirements and
its non-functional intentionalities; the former gave ori-
gin to textual descriptions for each object in the model;
the later have been classified as NFR and DD, design deci-
sion.

An object model shows how significant properties of a
system are distributed across its constituent parts. Fig. 3 rep-
resents the raw object diagram, that identifies the system-
level entities, their responsibilities and the relationships
among them. Its purpose is to direct attention at an appro-
priate decomposition of the system without delving into de-
tails.

The packages used define, each one, decomposition re-
gions, which contain several tightly semantically connected
objects. Within the next design phases, these packages must
be further specified, in what concerns its architectural struc-
ture, by using design patterns.

In fig. 3, we can identify a set of typical service-oriented
components, such as the context processor compo-
nent (package {P3.}process context), the service repository
component (objects {O0a.1.5.d} and {O0a.1.5.i}), the ser-
vice discovery protocol component (objects {O0a.2.5.c}
and {O0a.2.5.i}), the user profile component (pack-
age {P7.}user data), the external providers compo-
nents (packages {P1.}external providers informationand
{P2.}external proviers interface), as well as user inter-
face components (package {P5.}user interface). These
components were obtained by a decision-support tech-
nique that can help software engineers to reason about the
characteristics of the service-oriented platform. To build ap-
plications on top of this architecture involves specifying
the right compositon of services, building a user inter-
face, and orchestrating the data flow among the vari-
ous components. Configuring services and applications
so they can be easily and reliably reused by other devel-
opers and composed into larger applications is a major
chalenge, as already stated by [1].

The resulting raw object diagram can be used in the fol-
lowing development phases to support the definition of spe-
cific sub-projects, by using collapsing and filtering tech-
niques. These techniques allow the redefinitions of the sys-
tem boundary, giving origin, for instance, to the database
project, services formalization, or platform pattern analy-
sis.

Fig. 4 shows the collapsed object diagram that was ob-
tained from the raw object diagram (fig. 3) by hiding pack-
ages details. Therefore, associations appear at a higher level
of abstraction and the resulting object diagram is more
nicely readable.

Fig. 5 shows the filtered object diagram that was ob-
tained from the collapsed object diagram (fig. 4) by consid-
ering the objects {O0a.3.7.d}, {O0a.3.7.c} and {O0a.1.3.c}
as one sub-system for design. This diagram was included
here as an example of how raw object diagram can be used
in the following phases of the product developing process
to highlight parts of the system and allow sub-system spec-
ification and partition for sub-project execution within var-
ious teams. Criteria illegible for filtering can be dependent
on project management issues, functional implementation
domains, etc.

After obtaining the raw object model, it is possible
to specify the complaint service described by use case
{U0a.2.} (fig. 1), through a sequence diagram (fig. 6),
which specifies the sevice as a workflow among object
model components.

6



Figure 3. Raw Object Diagram.

7



Figure 4. Colapsed object diagram.

The user connects to the system and selects the com-
plaint service. Object {O0a.2.2.i} receives the user request,
stores the complaint description in object {O0a.2.2.d},
and contacts object {O0a.2.3.c}. Object {O0a.2.3.c} pro-
cesses the user complaint request and it gets the user
context from object {O0a.1.2.d}. This object contacts ob-
ject {O0a.1.2.c}, which determines the needed external
raw context sources, it receives user context informa-
tion (through {O0a.1.2.i}), and it maps user context
information into appropriate symbolic context informa-
tion. If necessary, it starts a dialogue with the user to get
more precise context information. The user context in-
formation is returned to object {O0a.2.3.c}. Taking into
account the user context, this object determines which ser-
vice is the most appropriate to receive the user complaint
(through interactions with object {O0a.2.5.c}) and it con-
tacts it through object {O0a.2.6.i}.

5. Conclusions

The correct derivation of system requirements from user
requirements is an important topic in requirements engi-
neering research. This activity assures that the design phase
is based on the effective clients needs without any mis-
judgment arbitrarily introduced by the software engineers
during the process of system requirements specification.
One approach to support this derivation is by transforming
user requirements models into system requirements models,
by manipulating the corresponding specifications. User re-
quirements are, typically, described in natural language and
with informal diagrams, at a relatively low level of detail
and are focused in the problem domain. System require-
ments comprise abstract models of the system, at a rela-
tively high level of detail, and constitute the first system rep-
resentation to be used at the beginning of the design phase.

This papers has presented a technique (called “4SRS”)
that aids software enginers to transform user requirements
models into the first logical architecture of the system. The

8



Figure 5. Filtered object diagram.

Figure 6. Sequence diagram for the scenario “make a anomaly report”.

transformation is based on the mapping of UML use case di-
agrams into UML object diagrams, but other diagrams and
artifacts may also be used (namely, UML sequence, activ-
ity, and state diagrams).

The application of this technique is illustrated by pre-
senting some results from the design of a real e-government
mobile application. Taking into account the particular-
ities of this case study, the obtained software architec-

ture presents the typical functional components of mo-
bile context-aware architectures. Within this example,
the 4SRS technique has shown its usefulness by assur-
ing the generation of a seamless specification of the
service-oriented architecture requirements. This genera-
tion was supported by a decision-assisted rationale that
helps software engineers to find the architectural require-
ments, completely based on the elicited user requirements.

9



This transformational approach shows that model continu-
ity is a key issue and highlights the importance of having a
well defined process to relate, map and transform require-
ments models.

Presently, the 4SRS technique forces the software engi-
neer to unfold the use case hierarchy. As future work, we
plan to devise heuristics that help to map directly use cases
and their hierarchical organization into objects, so that the
unfolding is not necessary. This would allow to maintain an
hierarchical structure in the object model analogous to the
existent hierarchy in the use case functional refinement tree.
It is also planned to incorporate OCL inscriptions to sup-
port the formal description of non-functional requirements
into the object model.

References

[1] Guruduth Banavar and Abraham Bernstein. Software Infras-
tructure and Design Challenges for Ubiquitous Computing
Applications. Communications of the ACM, 45(12):92–96,
2002.

[2] João M. Fernandes, Ricardo J. Machado, and Henrique D.
Santos. Modeling Industrial Embedded Systems with UML.
In 8th ACM/IEEE/IFIP Int. Workshop on Hardware/Software
Codesign (CODES 2000), pages 18–22. ACM Press, May
2000.

[3] João M. Fernandes and Ricardo J. Machado. From Use
Cases to Objects: An Industrial Information Systems Case
Study Analysis. In7th International Conference on Object-
Oriented Information Systems (OOIS’01), pages 319–28.
Springer-Verlag, August 2001.

[4] H. Kaindl. Difficulties in the Transition from OO Analysis
to Design.IEEE Software, 16(5):94–102, 1999.

[5] Ian M. Holland and Karl J. Lieberherr. Object-Oriented De-
sign. ACM Computing Surveys, 28(1):273–5, 1996.

[6] Ivar Jacobson, Magnus Christerson, Patrik Jonsson, and
Gunnar Övergaard.Object-Oriented Software Engineering:
A Use Case Driven Approach. Addison-Wesley, 1992.

[7] Ralph-Johan Back, Luigia Petre, and Ivan Porres. Analysing
UML Use Cases as Contracts. In Robert France and Bern-
hard Rumpe, editors,UML’99 - The Unified Modeling Lan-
guage. Beyond the Standard. Second International Confer-
ence, Fort Collins, CO, USA, October 28-30. 1999, Proceed-
ings, volume 1723 ofLNCS, pages 518–33. Springer, 1999.

[8] Doug Rosenberg and Kendall Scott.Use Case Driven Object
Modeling with UML: A Practical Approach. Object Technol-
ogy. Addison-Wesley, 1999.

[9] L. B. Becker, C. E. Pereira, O. P. Dias, I. M. Teixeira, and J. P.
Teixeira. MOSYS: A Methodology for Automatic Object
Identification from System Specification. In3rd IEEE In-
ternational Symposium on Object-Oriented Real-Time Dis-
tributed Computing (ISORC 2000), pages 198–201. IEEE CS
Press, March 2000.

[10] Y. Liang. From Use Cases to Classes: a Way of Building
Object Model with UML. Information and Software Tech-
nology, 45:83–93, 2003.

[11] M. Saeki and H. Kaiya. Transformation Based Approach
for Weaving Use Case Models in Aspect-Oriented Require-
ments Analysis. In4th AOSD Modeling With UML Work-
shop, 2003.

[12] A. G. Sutcliffe, N. A. M. Maiden, S. Minocha, and
D. Manuel. Supporting Scenario-Based Requirements En-
gineering. IEEE Transactions on Software Engineering,
24(12):–, December 1998.

[13] A. van Lamsweerde and L. Willemet. Inferring Declara-
tive Requirements Specifications from Operational Scenar-
ios. IEEE Transactions on Software Engineering, 24(12):–,
December 1998.

[14] João M. Fernandes and Ricardo J. Machado. System-Level
Object-Orientation in the Specification and Validation of
Embedded Systems. In14th Symposium on Integrated Cir-
cuits and System Design (SBCCI’01), pages 8–13. IEEE CS
Press, September 2001.

[15] Grady Booch.Best of Booch: Designing Strategies for Ob-
ject Technology. SIGS, 1996.

[16] Grady Booch, James Rumbaugh, and Ivar Jacobson.The
Unified Modeling Language User Guide. Object Technol-
ogy. Addison-Wesley, 1999.

[17] Geri Schneider and Jason P. Winters.Applying Use Cases: A
Pratical Guide. Object Technology. Addison-Wesley, 1998.

10


