Model Checking Embedded Systems with PROMELA *

Oscar R. Ribeiro!, Jodo M. Fernandes!, Luis F. Pinto?
'Dept. Informatica, 2Dept. Matematica
Universidade do Minho, Braga, Portugal

oscar.rafael@di.uminho.pt

Abstract

The design process for embedded systems can ben-
efit from the usage of formal methods, if some prop-
erties of the systems are checked, before design and
implementation decisions are accomplished. This pa-
per presents a model checking approach using the Spin
tool, to verify some important properties of embedded
systems, namely liveness, deadlock-freedom, and struc-
tural conflicts among transitions. The systems are mod-
elled with a variant of Petri Nets, called SIPN (Syn-
chronous and Interpreted Petri Nets), and this paper
discusses how SIPN models should be specified with the
PROMELA language (input format for the Spin model
checker). The approach is exemplified with a case study.

1. Introduction

Embedded systems are a special type of computer
based software systems that present, among others, the
following characteristics: reactive, concurrent, safety-
critical [4]. For developing these systems, the design
process should use formal methods, before final design
and implementation decisions are taken.

Concurrency is considered “the” essential feature of
reactive systems [15], a class of systems in which em-
bedded systems are included. Development of embed-
ded software requires meta-models (models of com-
putation) that explicitly support concurrency. A con-
current software system is a collection of sequential
processes which in abstract are executed in parallel
[22, 3, 13, 11], i.e. it is not required that a separate
physical processor is used to execute each process. A
process is a set of instructions in a programming lan-
guage which are executed sequentially. Thus the seman-

* This work was partially supported by projects METHODES
(contract ref. POSI/2001/CHS/37334) and STACOS (con-
tract ref. POSI/CHS/48875/2002)

tics of concurrent systems is usually based on the no-
tion of a global state, where the instructions of each
process define a set of events denoting transitions be-
tween states. However, in a concurrent system an event
affects and is affected by a limited number of other
events (event scope). Events with disjoint scopes are
free to occur independently.

Petri Nets (PNs) [20] constitute meta-model for ex-
pressing concurrent systems, due to their extensive
body of results, both theoretical and practical. For de-
veloping embedded systems, the application of PNs for
modeling, simulation, verification, and synthesis pur-
poses is covered in the literature. The SIPN meta-
model was obtained by the enrichment of a safe PN
with guarded transitions, synchronous firing, and also
enabling and inhibitor arcs [5]. With these characteris-
tics, the models that can be obtained are easier to syn-
thesize. Synchronous circuits represent the largest por-
tion of circuit designs and the state of the art in synthe-
sizing synchronous systems is more advanced and sta-
ble than the corresponding one for asynchronous cir-
cuits [16].

Model checking [2] is a verification technique that
is based on the idea of exhaustively exploring of the
reachable state space of a system. The model checker
Spin [7, 8] is a verification system, which accepts a spec-
ification language called PROMELA (a Process Meta
Language) [6, 8, 21]. Spin has two main modes of oper-
ation: simulation and verification. Verification requires
exhaustive search, whereas simulation does not and
thus can deal with bigger state spaces. Testing can only
indicate errors and never their absence. It is quite use-
ful, but verification is the only way to guarantee that
a system is free of errors, an essential condition for
safety-critical systems.

This work presents a model checking approach, us-
ing the Spin tool, to verify important properties of em-
bedded system such as liveness, deadlock-freedom, and
the absence of structural conflicts among transitions.
It discusses in detail how SIPN models of embedded

systems should be specified with the PROMELA lan-
guage. It is also presented how the properties to be
verified are expressed with Temporal Logic (TL) for-
mulas.

In section 2, we present a formalization of the SIPN
meta-model and some of its properties, and in sec-
tion 3, we discuss how to represent SIPN models with
PROMELA language. In section 4 the reactor case
study is presented, namely the usage of the model
checking approach.

2. SIPN Meta-model

In this section, we introduce the meta-model
of SIPNs. We follow the definitions of net and
place/transition-systems introduced in [20]. We use
place/transition-systems where each place has a uni-
tary capacity, and the weight of each arc is also uni-
tary. This meta-model has been enriched in three
different ways. Firstly, two new types of arcs are al-
lowed: enabling arcs (also known as read arcs, test arcs,
or positive context arcs), and inhibitor arcs (also neg-
ative context arcs) [23, 17, 12, 9]. Secondly, each tran-
sition has now an associated guard which is a propo-
sitional formula where variables represent input
signals of the modeled system, i.e., guards over transi-
tions are formulas containing external variables, which
can influence the enabling of transitions. Another dif-
ference to the basic meta-model of PN is the presence
of synchronism, that affects the usual notion of ac-
cessibility, using simultaneous firing of all enabled
transitions.

Definition 2.1 The structure of a synchronous
and interpreted Petri net (written structure of a
SIPN) is a tuple N = (P,T,F,E,I,G) such that:

1. (P,T,F) is a basic net, i.e. P, T are disjoint fi-
nite sets and F C (P x T)U (T x P) is a binary
relation called flow relation, whose elements are
called arcs. The elements of P and T are called
places and transitions respectively.

2. E,1 C P xT are sets of enabling and inhibitor
arcs respectively; the sets E, I and F' are expected
to be all disjoint;

3. G:T — PROP is a mapping associating a propo-
sitional formula to each transition.

Often P, T, F, E, I, G are denoted by Py, Tn, Fy,
En, Iy, Gn respectively. A marking to N is a map-
ping from Py into the set {0,1}. [|

It is useful for each transition to determinate the set
of all places connected with it through a normal, in-
hibitor or enabled arc.

Definition 2.2 Let N be a structure of a SIPN. For
eacht € Ty, *t = {p|pFx t} is called the preset of
t, t* = {p|tFx p} is called the postset of t, "t =
{0 pEx t}, and °t = {p| pIx 1}.

For T' C Ty, let *T' = U,epr *t, T'°
PT" = Uper Bt and °T" = J,cq °t.

As shown later, the behaviour of a net is influenced
by the interpretation of the variables appearing in its
guards (external events). Thus, to simulate the be-
haviour of a net, every possible valuation of the vari-
ables in the guards of its transitions must be consid-
ered. In rigour, we take a valuation of a net N to be a
mapping from the set of all the variables occurring in
the guards of N into the two-valued set {0, 1}. The set
of all valuations to N is denoted by Vy . In the next def-
initions we consider only conflict-free STPNs.

= UteT’ t*,
|

Definition 2.3 Let N be the structure of a SIPN, M a
marking to N, v € VN and t € Tn. The transition t is
enabled for M and v, written as enabled (¢, M, v),
if

pG’tM p
pet’M

1 (p)
2 (p)
3. Vpert M (p)
4 (p)
5

pGOtM p

. the interpretation of the guard associated with t us-
ing the valuation v is true.

The set of all enabled transitions for M and v is de-
noted by Tenabled(]%,v)-

The transition t is place enabled for M, written as
p—enabled (t, M), when the first four of previous con-
ditions (which are related only with the places linked
to the transitions) are verified. A set A C Ty is said
to be enabled, denoted as enalbed (A), if there exists
a marking M and a vaeluation v, such that all tran-
sitions in A are enabled for M and v. The set A is
p—enabled (p—enabled(A)) if there exists a marking
M, such that all transitions in A are p—enabled. |

Usually, the firing in a PN is defined as the fir-
ing of one, and only one, enabled transition at each
time [20]. Thus, from the same marking, we can get
different next markings depending on the selected en-
abled transition. We use a generalization of the tradi-
tional firing notion, where the next marking is obtained
through the simultaneous firing of all the enabled tran-
sitions with the actual marking and valuation. There
are several papers, that discuss simultaneous firing of
sets of transitions (usually called steps) [18].

Definition 2.4 Let N be the structure of a SIPN, M
a marking to N and v € V. The marking M’ to N, ob-
tained from M with the valuation v through the simul-
taneous firing of all t € Ty, enabled for M and v,
written M[) M, is defined as:

0 Zf pe .Tenabled(Mﬂ))
vZDGPN M’ (p) =41 Zf pe Tenabled(M,v). (1)
M (p) otherwise.

In other words, the input places of all enabled transi-
tion become empty, one token is added to the output
places of all enabled transition and the other places are
left unchanged. |

We can consider the above definition as a mathemati-
cal relation between two markings and one valuation.
Thus the reflexive and transitive closure is defined as
follow.

Definition 2.5 Let N be a SIPN, and M a marking
to N. A marking M’ to N is accessible from M, writ-
ten M[x)M', if

1. M =M, or

2. E'MN M[*>MH A (HUGVN MHDUMI)'

The set of all markings to N accessible from M is de-
noted by [M). A firing sequence is a sequence with the
form Mo[), Ma[), .- .[), Mk[),, .- where k € N, for all
i, M; is a marking to N, and v;_1 € Vn. By defini-
tion of simultaneous firing we can observe that a tran-
sition t € T can be fired in a firing sequence if there
exists a natural i, such that enabled (¢, M;, v;). |

Definition 2.6 A pair N = (N, My) where My is the
initial marking to N, is called an SIPN. |

Let us now consider the formulation of the liveness
property in the STPN meta-model. It is important to re-
tain that often the verification of liveness is very expen-
sive and sometimes even impracticable. To overcome
this difficulty, we follow some of the liveness levels pro-
posed in [19].

Definition 2.7 Let N = (N, My) be a SIPN and t €
Tx. The transition t is:

dead (Lo-Live) when t can never be fired for any
marking accessible from My, i.e.
- enabled (t, M’ v);

vM’e[Mo) VueVN

L1 -Live if exists at least an accessible marking from
My, for which t can be fired, i.e.
enabled (t, M’ v);

HM’e[Mo> 3vevN

L4-Live(or live) if t is L1-Live for all markings ac-
cessible from My, i.e.
VMG[MQ Ly-Live (N, M, t) .

The SIPN N is said to be Ly-Live if every transi-
tion in the net N is Ly-Live, where k =0,1,2,3,4.

As a matter of fact, liveness of levels Lo and L3
means that, for each transition t € T : given any nat-
uwral k, t can be fired at least k times in some firing
sequence; and t appears infinitely, often in some fir-
ing sequence. |

In the next sections we define a methodology to check
if a given SIPN verifies the above properties.

3. Checking SIPN Models

Verification is the process of analysing a system for
some desired properties. There are two widely used ap-
proaches to verification: theorem proving and model
checking.

In the theorem proving approach the system and its
desired properties are expressed as formulas in some
appropriate logic. Such logic is given by a formal sys-
tem, which defines a set of axioms and a set of infer-
ence rules. Theorem proving is then the process of find-
ing a proof of a property from the axioms of the sys-
tem. Model checking is a technique based on the cre-
ation of a finite model of a system and checking that a
property is valid in the state-space. In that technique
it is important to use algorithms and data structures
that permit large search spaces.

In this section we discuss how to represent SIPN
models with the PROMELA language, to verify some
of their properties. A PROMELA model is constructed
from three basic types of objects: processes, data ob-
jects, and messages. The principal process is called
init. Many of PROMELA notational conventions de-
rive from the C language, including declaration and ini-
tialization of variables The do-loop statement gives a
cyclic non-deterministic choice of one guard, and each
guard has actions associated with it. For a given SIPN
the corresponding PROMELA model has three parts:

e the definition of the p—enabled condition for each
transition;

e the definition of the fire condition for each transi-
tion;
e the do-loop in the init function.
The first two parts are simple to obtain, because
they depend only upon the structure of the SIPN.

The do-loop is harder to obtain because it must in-
clude all the possible subsets of transitions that may

fire simultaneously. To define the alternative choices
of the do-loop, some calculations must be performed
based on the guards of each transition.

Firstly, we calculate the subsets of transitions which
may be simultaneously p—enabled (recall that set of
transitions is p-enabled if there exists a potential mark-
ing place enabling all transitions in it). Notice that sub-
sets of this sets are still sets of p—enabled transitions,
and thus, we need only to consider the maximal sub-
sets of p—enabled transitions (independently of their
guards’ valuation). Let us denote the set of such max-
imal subsets by PEMAXS.

Secondly, for each MT € PEMAXS, we calculate
its maximal subsets of enabled transitions, i.e. we con-
sider the maximal subsets of MT whose guards can
be made true under the same valuation. Let 7' =
{t1,...,tr} be such a subset of MT. Although all the
transitions in 7" could be enabled to fire simultane-
ously, given a marking it may only p—enabled some of
transitions in 7”. Thus when calculating the guards of
the do-loop we must consider the firing of all its sub-
sets. (Observe that if a marking place enables all tran-
sitions in T, we still have to consider potential sit-
uations where only some of the guards of 7" transi-
tions are being validated). Without loss of generality
we study what happens to the subset 77\ {tx}. There
exists a marking for which all transitions in 7"\ {¢x}
are p—enabled and t; is not p—enabled.

The corresponding guard in the do-loop is given
by the conjunction C; A C5. Condition Cy is sim-
ply the conjunction of p—enabled conditions of the
transitions in 7" \ {¢x}. For condition Cj, firstly
we calculate the set T” of transitions which con-
tains the transition ¢, and the transitions in the set
Uaepemaxsaasangny A\ T \A{te}).

Secondly, we calculate the subset T"" of T" consist-
ing of a transitions not validated by none of the valua-
tions which validate the transitions in 7"\ {t; }. Condi-
tion (5 is then the conjunction of the negations of the
p—enabled conditions relative to transitions in 7.

Doing this to all subset T” of MT, and all MT
in PEMAXS, we obtain a do-loop which models the
structure of the SIPN, where the non-deterministic
choices correspond to the choice of a valuation, for a
given marking.

The enabled conditions of the transitions are the ba-
sic elements used to specify the behavioural properties
of the STPNs.

In the PROMELA model, there is no explicit rep-
resentation of the transitions’ guards. Thus, the en-
abled condition, for a transition ¢, is the disjunction
of all guards in the do-loop, in which the p—enabled
condition for ¢ occurs. Notice that the enabled condi-

tion of two or more transitions is not the conjunction
of the corresponding enabled conditions to that transi-
tions, but the disjunction of the guards in the do-loop,
in which p—enabled conditions for all considered tran-
sition occur.

We have written an application (in Haskell [10]) to
generate the PROMELA model from the correspond-
ing SIPN description.

In the next section we show some results from the
use of this application in the considered case study.

4. Case Study: The Reactor

In order to illustrate how to model check STPNs with
PROMELA (and the Spin tool), using the ideas in the
previous sections, we consider a case study.

The example, used in [1, 14], is a reactor that con-
trols the filling of a tank (see figure 1).

S1 S2
M OpenS1 M OpenS2

J B
Start
FullC1 FullC2
EmptyCl1 Cl c2 EmptyC2
OpenCl OpenC2
FullR I ;I% Turn
EmptyR R
H‘ OpenR
Back Go
- T |—=
OpenT EmptyT
Begin P Py End

Figure 1. The environment of the reactor

4.1. First Version

The behaviour of the reactor is modelled by the
SIPN in figure 2.

The input signals to transitions (e.g. FullC1, End)
are identified with the values of the guards for tran-
sitions, assuming also that a transition guard is al-
ways true if there is no input signal to it (e.g. t4). The

po

OpenS1 OpenS2

Back|

EmptyCl1

pll

tl]i

EmptyR
pls

Go

t12
End

ple,
OpenT

EmptyT

Figure 2. An SIPN for describing the dynamic
behaviour of the reactor

guards are complemented with a context to be consid-
ered when interpreting the variables occurring in the
guards. For example the variables F'ullR and EmptyR
could never be both true at the same time, thus the
formula — (Full R A EmptyR) must be included in the
context.

In our Haskell specification an SIPN is a triple with
an initial marking, a set of formulas (context) and a set
of transitions. Each transition has a guard, and the sets
of pre-places, post-places and the places linked through
enabling and inhibitor arcs. In figure 3 we have the
Haskell representation of the reactor’s SIPN.

Using the application which implements the con-
cepts presented in the previous section, we obtain the
PROMELA model corresponding to the SIPN shown in
figure 2. A fragment of this PROMELA model is pre-
sented in figure 4. We show the lines of the PROMELA
model that are linked to the simultaneous firing of tran-

© W N ;R W N R

G oot ot A A A A A A AR AR DWW W WM W WM NNNNNNRNNRRERB BB B BB 8
N0 R W N RO O XN O R RN RO O ® N0 0A WD R O ©O®NO0R RN R O ©® N0 W N R O

tl = Trans "tl1l" [Place "pl"] [1 []
(Var "Start")
[Place "p2", Place "p3", Place "p6"]

t2 = Trans "t2" [Place "p2"] []1 []
(Var "Fullcl")
[Place "p4d"]
t3 = Trans "t3" [Place "p3"] []1 []
(Var "Fullc2")
[Place "pb5"]
t4d = Trans "t4" [Place "p4", Place "p5"]
[1] [Place "p7"]
(var wn)
[Place "p8",Place "p9",Place "pl0O"]
t5 = Trans "t5" [Place "p8"] []1 I[]
(Var "FullR")
[Place "p7"]
t6 = Trans "t6e" [Place "p7"] [] I[]
(Neg (Var "FullR"))
[Place "p8"]
t7 = Trans "t7" [Place "p9"] [1 []

(Var "EmptyCl")
[Place "p2",Place "pll"]

t8 = Trans "t8" [Place "plO0"] [] []
(Var "EmptyC2")
[Place "p3",Place "pl2"]

t9 = Trans "t9" [Place "p6"] [] []
(Var "Begin")
[Place "pl3"]

t1l0 = Trans "tl1l0" [Place "pll",Place "pl2",

Place "pl3"] [1 I1]

(var " ")
[Place "pl4"]

tll = Trans "t1l1l" [Place "p8",

Place "pl4d"] [1 T[]

(Var "EmptyR")
[Place "pl5"]

tl2 = Trans "t1l2" [Place "pl5"] [] I[]
(Var "End")
[Place "plé6"]

t13 = Trans "t13" [Place "pl6"] [] I]
(Var "EmptyT")
[Place "p6"]

reactor =[tl, t2, t3, t4, t5, te, t7,
t8, t9, tl10, tll, tl2, t13]
reactor_context=
[Or (Neg (Var "FullCl"))

(Neg (Var "EmptyCl")),
Or (Neg (Var "Fullc2"))
(Neg (Var "EmptyC2")),
Or (Neg (Var "FullR"))
(Neg (Var "EmptyR")),
Or (Neg (Var "Begin"))
(Neg (Var "End"))]
reactor_m0 = [Place "pl"]
sreactor = (reactor, reactor_mO0,

reactor_context)

Figure 3. Haskell representation of the reac-
tor’s SIPN

© 0 N oA W N R

I I I I O N S Y
DGR DN RO © KN A W N RO

#define pen_t4 (p4&&p5&&!p7&&!p8&&!p9&s&!plO)
#define fire_t4 p4=0;p5=0; p8=1; p9=1; pl0=1;
#define pen_t10 (pll&&pl2&s&pll3&s!pld)
#define fire_t10 pll=0; pl2=0; pl3=0; pld=1;
#define enabled_tl1_t7 \
(pen_tl&&pen_tbh&&pen_t7&&pen_t8&&pen_t12) | |
(pen_tl&&pen_t5S5&&pen_t7&& pen_t1l2)

| | (pen_tlé&&pen_t7&&((!pen_t6) || (!pen_t5)))
do

:: pen_tl && pen_t4 && pen_tl0 && pen_tl2 —>
atomic{fire_t1l; fire_t4; fire_t10; fire_t12;}
1 pen_t4 && pen_tl0 && pen_tl2 ->
atomic{fire_t4; fire_t10; fire_t12; }

: pen_tl && pen_t4 && pen_tl0 && pen_tl3 ->
atomic{fire_t1l; fire_t4; fire_t10; fire_t13;}
:: pen_t4 && pen_tl0 && pen_tl3 —>
atomic{fire_t4; fire_t10; fire_t13; }

1 pen_tl && pen_t4 && pen_tl0 ->
atomic{fire_tl; fire_t4; fire_t10; }

: pen_t4 && pen_tl1l0 ->

atomic{fire_t4; fire_t10; }

od

Figure 4. Fragment of the PROMELA model to
reactor’s SIPN

sitions t4 and 19 and the corresponding p-enabled and
fire conditions. We used the PROMELA model in the
graphical interface to Spin, called Xspin [8].

We can simulate the behaviour of the reactor. Us-
ing the interactive mode of simulation we can select a
given line of the do-loop we want to execute, that cor-
responds to the subset of transitions we want to fire si-
multaneously. Implicitly we are selecting a valuation to
the variables.

To verify some properties, we used the TL editor of
the Xspin.

Next we present how we verified the properties of the
reactor. Structural conflicts among transitions happen
when two or more transitions share a place in their pre-
sets, or postsets. In this SIPN we have five structural
conflicts as follows:

1. place p8 is an output place of transitions ¢4 and
l6;

2. place p8 is an input place of transitions t5 and ¢11;

3. place p2 is an output place of transitions ¢; and
t7;

4. place p3 is an output place of transitions ¢; and
is;

5. place p6 is an output place of transitions ¢; and
t13.

In the PROMELA model, the enabled conditions for
the sets of transitions in structural conflict are defined
with a #define statement. To verify if those struc-
tural conflicts give rise to undesired behavioural situ-
ations, we must check if the transitions in conflict are
never enabled at the same time. For example, the con-
flict between t; and t; can be specified by the tempo-
ral formula O—-enabled t1 _t7. Part of the definition of
enabled t1 t7 is presented in figure 4, in lines 6 to 10.
The verification result of this formula is valid, thus the
transitions never fire simultaneously.

Another important property to verify for the reactor
SIPN is the liveness, which ensures that all the tran-
sitions are live. When trying to verify the liveness of
transition t4 (written in TL as OCenabled _t4), we ob-
tain the result not valid. Running the suggested guided
simulation, we see that the SIPN has a cycle, because
transitions t5 and tg could fire infinitely. We could in-
troduce fairness on the PROMELA model to permit
the fair firing of transitions, but the SIPN meta-model
does not take into account this possibility.

4.2. Second Version

To solve the problem detected in the first version
of the SIPN, we must remove the cycles. The modi-
fied SIPN is presented in figure 5.

The properties successfully verified for the previous
SIPN are still valid in this one. About the liveness prop-
erties, we studied the following;:

e the transition t4 is L1 — Live: Cenabled _t4 ;
e the transition t4 is Ly — Live: OOenabled _t4

e the transitions ¢4 and t19 are both L, — Live:
O(Cenabled_t4) A O(Cenabled_t10).

All these formulas have the walid result for the verifi-
cation.

While the stirrer (Mix) in the tank R is turning,
the two tanks C1 and C2 do not open their gates.
This property can be specified in TL by the formula:
O(p7 — —enabled__t4). The result of verifying this for-
mula is valid.

5. Conclusions

In this paper, a model checking approach using
PROMELA and the Spin tool is presented. This ap-
proach allows important properties of embedded sys-
tem, such as liveness, deadlock-freedom, and the ab-
sence of structural conflicts among transitions, to be
verified. The need to verify properties of a computer-
based system is of paramount importance, namely
when the systems are safety-critical.

P2 OpenS1
2
FullC1
p4
e REEEEEEE L
|
P8
I
I
|
! t5
! FullR Emp:
boop?
I
T Turn
t6,
not FullR
pl7

EmptyR
pls,
Go
t12
End
ple6,
OpenT
t13
EmptyT

Figure 5. A modified SIPN (without cycles) for
describing the dynamic behaviour of the reac-
tor

In the proposed approach, the behavior of the em-
bedded systems are modelled with a variant of Petri
Nets, called SIPN. In relation to traditional PNs,
SIPNs present guards associated to transitions, in-
hibitor and enabling arcs, and synchronous firings of
the transitions. Due to this synchronous nature of
the firings, the description of the SIPN models with
PROMELA is not trivial, because the associated Spin
tool assumes the existence of a finite-state system
where only one transition fires at each instant. There-
fore, the paper discusses in some detail how SIPN mod-
els should be specified with the PROMELA language,
so that it is possible to model check them.

The approach is exemplified with a case study, the
reactor. The example shows that with the Spin tool,
the safety and liveness properties of a system can be
verified, before that system is implemented. The pa-

per also presents how the properties to be verified are
expressed with TL formulas.

References

[1] M. Adamski. Direct Implementation of Petri Net Spec-
ification. In 7th Int. Conf. on Control Systems and
Computer Science, pages 74-85, 1987.

[2] E. M. Clarke, O. Grumberg, and D. A. Peled. Model
Checking. MIT Press, January 2000.

[3] L. A. Cortés, P. Eles, and Z. Peng. Verification of em-
bedded systems using a petri net based representation.
In 13th Int. Symp. on System Synthesis, pages 149-55.
IEEE CS Press, September 2000.

[4] S. Edwards, L. Lavagno, E. A. Lee, and
A. Sangiovanni-Vincentelli. Design of Embedded
Systems: Formal Models, Validation, and Synthe-
sis. Proceedings of the IEEE, 85(3):366-90, 1997.

[5] J. M. Fernandes, M. Adamski, and A. J. Proenca.
VHDL Generation from Hierarchical Petri Net Specifi-
cations of Parallel Controller. IEE Proceedings: Com-
puters and Digital Techniques, 144(2):127-37, Mar.
1997.

[6] G. J. Holzmann. Design and Validation of Computer
Protocols. Prentice Hall, New Jersey, 1991.

[7] G. J. Holzmann. The Model Checker Spin. IEEFE
Trans. on Software Engineering, 23(5):279-95, May
1997.

[8] G.J.Holzmann. The Spin Model Checker: Primier and
Reference Manual. Addison-Wesley, September 2003.

[9] R. Janicki and M. Koutny. On Causality Semantics
of Nets with Priorities. Fundamenta Informaticae,
38(3):223-55, 1999.

[10] S. P. Jones. Haskell 98 Language and Libraries. Cam-
bridge University Press, Apr. 2003.

[11] J. B. Jorgensen and S. Christensen. Executable De-
sign Models for a Pervasive Healthcare Middleware
System. In 5th Int. Conf. on the Unified Modeling
Language (UML 2002), volume 2460 of LNCS, pages
140-9. Springer, Oct. 2002.

[12] J. Kleijn and M. Koutny. Process Semantics of P/T-
Nets with Inhibitor Arcs. In 21st Int. Conf. on Ap-
plication and Theory of Petri Nets (ICATPN 2000),
volume 1825 of LNCS, pages 261-81. Springer-Verlag,
June 2000.

[13] R.J. Machado and J. M. Fernandes. A Petri Net Meta-
Model to Develop Software Components for Embed-
ded Systems. In 2nd IEEE Int. Conf. on Application
of Concurrency to System Design (ACSD’01), pages
18-22. IEEE CS Press, June 2001.

[14] R. J. Machado, J. M. Fernandes, and A. J. Proega.
Specification of Industrial Digital Controllers with
Object-Oriented Petri Nets. In IEEE Int. Symp. on In-
dustrial Electronics (ISIE ’97), volume 1, pages 78-83,
July 1997.

[15]

[16]
[17]

[18]

[19]

[20]

[21]

[22]

23]

Z. Manna and A. Pnueli. The Temporal Logic of Reac-
tive and Concurrent Systems: Specification. Springer-
Verlag, New York, USA, 1992.

G. D. Micheli. Synthesis and Optimization of Digital
Circuits. McGraw-Hill, Inc., 1994.

U. Montanari and F. Rossi. Contextual Nets. Acta
Informatica, 32(6):545-96, 1995.

M. Mukund. Petri Nets and Step Transition Systems.
International Journal of Foundations of Computer Sci-
ence, 3(4):443-78, 1992.

T. Murata. Petri Nets: Properties, Analysis and Ap-
plications. In Procedings of the IEEE, pages 541-80,
April 1989.

W. Reisig. Petri Nets - An introduction. Springer-
Verlag, Heidelberg, Germany, EATCS monographs on
theorical computer science edition, 1985.

T. C. Ruys. Towards Effective Model Checking. PhD
thesis, University of Twente, Department of Computer
Science, 2001.

M. Sgroi, L. Lavagno, Y. Watanabe, and
A. Sangiovanni-Vincentelli. Synthesis of Embed-
ded Software using Free-Choice Petri Nets. In
36th ACM/IEEE Design Automation Conference
(DAC’99), pages 805-10. ACM Press, 1999.

W. Vogler. Partial Order Semantics and Read Arcs. In
Mathematical Foundations of Computer Science, pages
508-17, 1997.

