
A Model-Based Approach to the Development of
Distributed Control Systems∗

Manuel Bernardo Barbosa (mbb@di.uminho.pt)
Jõao Miguel Fernandes (jmf@di.uminho.pt)

Departamento de Inforḿatica, Escola de Engenharia
Universidade do Minho, Braga, Portugal

Abstract

Distributed Control Systems (DCS) are a class of application with
specific characteristics. This type of system is used in industrial envi-
ronments to control manufacturing processes. Usually they comprise a
controller, a fieldbus network, and a set of Of-The-Shelf (OTS) compo-
nents, interfacing process signals with real-time QoS requirements. In this
paper we present a Model Driven Development (MDD) method that tar-
gets this category of systems. This method focuses on the critical stages
of DCS development. Namely, the specification of system requirements,
the choice of OTS modules and fieldbus system, and the validation of the
design using real-time analysis tools. This MDD method uses the Uni-
fied modelling Language (UML) as support notation, including the ex-
tensions defined in the UML Profile for Schedulability, Performance and
Time Specification.

1 Introduction

The use of MDD methods greatly improves the productivity and reliability of
software systems. There is no reason why this type of methodology should not
bring similar benefits to the development of software for embedded systems.
Previous experiences show that this is indeed the case.

These issues are particularly relevant in the development of embedded sys-
tems with real-time QoS requirements. In this paper we present a MDD method
that targets DCS, a type of real-time system common in industrial environments.

A DCS is composed of several intelligent modules connected to sensors and
actuators that provide an interface to the process being controlled. These mod-

∗Work partially supported by Fundação para a Cîencia e a Tecnologia (FCT) and Fundo Eu-
ropeu de Desenvolvimento Regional (FEDER) under project “METHODES: Methodologies and
Tools for Developing Complex Real-Time Embedded Systems” (POSI/37334/CHS/2001).

1



ules cooperate by communicating through a network system, typically a field-
bus. They may be custom-built for a particular application but, in most cases,
standard OTS components are used. The overall operation of the system is man-
aged by one or more controller devices, which may also operate as gateways to
other information systems.

The need for this type of methodology became apparent in our interaction
with an industrial partner that develops DCS. Traditional software development
MDD methods and real-time system development methods are not able to solve
all the problems raised by the peculiarities of this type of system.

Our MDD method addresses specific aspects of the development of DCS:
the identification of process output/input signals, i.e. system input/output sig-
nals; the selection of the OTS components and fieldbus system; the assignment
of input/output signals to OTS components; the association of input/output sig-
nal events with network message transfers; and the usage of real-time analysis
tools.

It uses the Unified Modelling Language (UML) and it is based on the UML
Profile for Schedulability, Performance and Time Specification [7].

2 Background

2.1 Real-Time System Modelling Using UML

The central difference between modelling a software application and modelling
a real-time system is that it is not possible to model the latter unless quanti-
tative data can be depicted in the model. In fact, for most software applica-
tions, it suffices to model functional requirements. For real-time systems, it is
also necessary to model real-time QoS characteristics consisting of time-related
quantitative information. Even though UML is particularly well suited to de-
velop real-time software [9], a careful adaptation of UML is required due to the
particular characteristics of this type of software.

The usage of UML in the embedded field dates from 1998 [1]. In his
book, Douglass introduces techniques for developing embedded real-time sys-
tems with UML. Another important line of research is the UML-RT proposed in
[8] [11]. UML-RT is strongy based on ROOM [10] and proposes an approach
based on collaboration diagrams. The adoption of UML-RT to model embedded
real-time systems in the telecommunication domain is discussed in [5]. Other
experiences, such as that in [4], show that UML is suitable to provide notational
support in tool-chains for real-time embedded system design.

Recently, another step forward has been taken. OMG defined the UML
Profile for Schedulability, Performance, and Time Specification [7]. This profile
was written to be applicable to a wide range of application areas. It does not
attempt to define a complete set of real-time modelling concepts. This would be

2



Actuators

Controller

Digital

Input Controller
Motion 

Output

Digital
Output
Analog

Encoder

Input

Analog

Fieldbus

SensorSensors

Actuators

Figure 1: Structure of a generic DCS

virtually impossible given the variety of systems that fit this category, the many
design styles that are used and the different modelling approaches that can be
used. For example, only the designer can determine what is an acceptable level
of detail when modelling a particular system. The concepts that are defined
in this profile are kept to a minimum and at a level of abstraction that allows
designers to take advantage of the “power of UML”.

This profile also takes into consideration a very important part of real-time
system development: automatic system analysis. System analysis consists of
producing a specialized view of the system that can be processed automatically
for one of two purposes: calculating the values of parameters still missing in
the model; or assessing a particular characteristic of the system depicted in the
model.

2.2 Distributed Control Systems (DCS)

This work focuses on the development of DCS, a type of process control system
that is common in the manufacturing industry. These systems are used to control
manufacturing processes by collecting process data and acting on the process
according to a specific control algorithm. Figure 1 shows the typical structure
of this type of system.

Systems like this present a set of common characteristics that permit tailor-
ing a development process to them:

Self-containment Restrictions imposed by the control functionality usually
imply that the control loop operation must be isolated from external inter-
action. In most cases, the whole system will present to the exterior a very
simplified interface to allow for the collection of operational data, and the
setting of global operational parameters.

Real-time QoS requirementsInvariably, the specifications for this type of
system include real-time QoS requirements. These will apply to sensing

3



and acting on process signals and, consequently, to all the processing that
must be carried out to acquire, process, generate and transfer the associ-
ated data.

Fieldbus communication systemThe geographical locations where data col-
lection and actuation must be performed are spread around the manufac-
turing floor, separated by distances ranging from a few to several hundreds
of meters. Fieldbus standards such as Profibus and CANopen have been
developed specifically to address the needs of this type of control systems
[2].

OTS embedded componentsThe economic benefits of using OTS compo-
nents compatible with a particular fieldbus standard are well known. They
include reduced system development time and cost, minimal downtimes
through the replacement of damaged or faulty components, etc. However,
the use of OTS components introduces a new problem in real-time system
design: the degree of confidence that may be placed on the overall system
greatly depends on the confidence placed on the reliability of the compo-
nents and on the degree of knowledge that exists regarding their internal
operation.

Fault-tolerance QoS requirementsSome kind of fault tolerance guarantee is
usually implied in the system specification and, often, it will be stated
explicitly. Our project has not yet reached the point where fault-tolerance
issues are addressed and this work does not cover fault tolerance require-
ments.

3 Development Process Overview

The following technological or architectural levels can be distinguished in the
development of a DCS:

1. Hardware/software partition and hardware design

2. Real-time operating systems

3. Real-time network and OTS device software

4. Controller device software

5. Application software

Clearly, from the system characterisation in Section 2.2, the technological
solutions for the first three levels will be very much constrained by the system
specification itself. This in fact means that the entire architecture of the system

4



will be a rather direct consequence of the system specification. At these levels,
the designer will be left with choosing and customizing suitable commercial
products: OTS components and fieldbus system.

Software development will, in most cases, be concentrated on the the upper
levels. It will comprise solely the software running in controller devices and
connecting the control system to the outside world e.g. user interfaces, database
connections, gateway connections, etc.

A development process for this type of system does not have to be built from
scratch. In fact we chose to base our work on the embedded system development
process presented in [3]. However, it was necessary to customize this process to
address the peculiarities of DCS development. We have defined six development
stages that will be described in the following sections.

3.1 Black-box system requirements

A fundamental aspect of system analysis is a correct characterisation of the
requirements for the system’s interaction with the environment.

In the case of DCS three types of external entities may interact with the
system:

• Human users – They observe and adjust system operational parameters.
In this case, typical user interaction requirements, common to other areas
of software development, are at play.

• Input and output process signals (or logical groups of signals e.g. ma-
chines) – This is the process interface itself. The system requirements
include the real-time characteristics of the signals that the system must
acquire from sensors and generate for actuators.

• Other systems – These may collect monitoring information and adjust op-
erational parameters. In this case requirements may be of two types. If
the peer system is a higher-level system, then the application is function-
ing as a gateway, and the requirements are as for human users. If the peer
system is at the same level as the one being designed, it is possible that
real-time requirements apply to this interaction as well.

For each input or output process signal, a minimum set of parameters must
be identified: the physical nature of the signal, the timing characteristics of the
interaction, and the operations that must be perform on that signal.

3.2 OTS device and fieldbus selection

One immediate consequence of using OTS components is that the selection of
the commercial components and fieldbus system that will be used in the system
becomes a fundamental stage in the design process.

5



The selection of this type of equipment for a particular application may
be subject to constraints that are out of the scope of a software development
process e.g. economic and strategic issues. It is clear that the choices made by
the designer, at this level, also depend on restrictions imposed by the physical
environment on which the system will operate. An extensive discussion of the
aspects that must be considered in this design stage can be found in [2].

More relevant for this discussion is an assessment of how the parameters
resulting from the system analysis described in the previous section affect this
design stage. The identification of the required OTS components implies that
these components are assigned to a set of input and/or output signals which
they will be interfacing. The characteristics of these signals will be determinant
in the selection process. The nature of the signal will of course require that a
compatible module is selected e.g. if we want to sense an analog signal, we must
use an analog input module. The real-time QoS requirements for sensing or
actuating on the signal will function as minimum performance requirements for
the OTS module. Whether or not the device will be capable of doing that in run-
time can only be assessed by analysing the entire system, as will be discussed
in Section 3.6.

3.3 OTS device configuration and real-time model

OTS components are themselves complex subsystems, usually designed by a
third party. These components present some degree of configurability, which the
system integrator must customize to ensure that the overall system will operate
correctly.

The configuration of each component will be performed in an implementation-
specific manner. However, the designer will have to derive the configuration
data for all of the components from the requirements associated with the signals
that each of them will be interfacing. This is done using an algorithm that treats
all devices uniformly. Usually this type of algorithm is specific to a particular
fieldbus standard. For example, for a particular type of network, the messages
that a device will be transmitting or receiving are configuration parameters that
apply to all devices.

We believe that, to a great degree, the derivation of the configuration data for
OTS devices can be automated. Nevertheless, for this to be possible, all devices
compatible with a particular fieldbus will have to be modeled consistently, at a
suitably high level of abstraction, based on coherent configuration parameters.

Furthermore, a very important phase in the design of DCS is the real-time
analysis of the entire system. This type of analysis requires all of the system’s
components to be described in sufficient detail, in order to determine their in-
fluence in the system’s behaviour. A more detailed model of the system will
allow for a more precise analysis and, consequently, for less pessimistic design
choices.

6



Figure 2: Model of an OTS CAN device

For the reasons explained in the previous paragraphs, our development method
requires a generic model for the OTS components that are used in the DCS. In
this paper we will be focusing on components that use the CAN network [6] as
a communication link. This discussion will apply to any higher-layer protocol
[2] using CAN, and it can also be easily adapted to other fieldbus technologies.

The generic model we use is shown in Figure 2. It reflects a view of a
CAN-based OTS device where its internal behavior is structured according to
the CAN messages the device is configured to receive and transmit.

This model is unlikely to be a truthful description of the internal structure of
every component. However, it provides just enough detail to permit analysing
the influence that each component will have on the overall operation of the DCS.
The simplicity of this model also reduces to a minimum the number of perfor-
mance parameters that must be known about a given implementation. Ideally,
these parameters should be provided by the manufacturer, but they can also be
measured by the system integrator, if required.

7



Figure 3: Model of the CAN network

3.4 Network configuration and real-time model

One of the determinant factors in the development of DCS is the influence of the
communication infrastructure (fieldbus system) in the operation of the system.

Fieldbusses are communication protocols which operate over a shared medium,
typically in bus configuration. A fieldbus influences the operation of the system
due to the serialisation that it imposes on message exchanges: typically, only
one device can send one message at a time. This implies that other devices
wishing to transmit at the same time will be subject to delays in their operation.
Conflicts are usually solved using a priority system.

This type of operation can be modeled as a resource sharing process that
is common in concurrent systems. Conceptually, the network can be seen as
a shared resource, residing on an independent node. When a device wishes to
transmit a message, it must access the shared resource. The resource will be
blocked until the message is transmitted. Bus access conflicts can be emulated
through the priority system that is usually associated with this type of resource
sharing mechanism.

The class diagram in Figure 3 shows the class that is used to represent the
CAN bus, and its association with multiple CAN controller objects.

For each CAN bus that is used in the DCS (usually there is only one), an
instance of theMCANbusclass will be present in the model. Each CAN inter-
face connected to the network (usually one per device) will be represented by
an instance of one of the CAN controller classes shown in Figure 2. The net-
work activity in the system will be represented in the model through message
exchanges between these object instances, as will be seen in Section 4.

3.5 Controller development and real-time model

The application running on the controller(s) coordinating the operation of the
DCS will be the only parts of the software composing the system that will actu-
ally be designed by the system developer.

Typically, a controller in this type of environment is itself a complex embed-
ded system. The description of a complete development process for this type of
module is not the purpose of this paper. Suitable MDD methods exist [3], and
can be used without change.

8



One additional point that must be considered is that the controller’s influence
on the global behavior of the system must also be taken into account. This
means that, similarly to what was described in Section 3.3 for OTS components,
a suitable model of the controller must be produced.

Typically, the resulting model will not be too different from the class struc-
ture shown in Figure 2. Controllers produce and consume messages like all the
other nodes. The difference being that the data contained in these messages is
usually generated and consumed by the controller itself. There will however
be additional functionality associated with the controller’s interaction with the
outside world, which must also be included in the model, in order to accurately
characterise the workload carried out by the corresponding node.

3.6 Global real-time analysis

Global real-time QoS requirements appear as end-to-end time constraints, that
apply to complex sequences of interactions, between multiple object instances
in the complete system model. These end-to-end time constraints put limits
on the time that may elapse from the time instant at which a triggering event
occurs, until the system’s response to that event is completed. These limits may
represent hard or soft deadlines for the system’s response.

Real-time analysis is a fundamental stage in the design of a DCS with real-
time QoS requirements, where we validate that the solution meets its require-
ments. In some cases this analysis may even include the generation of oper-
ational parameters that can only be calculated based on a global view of the
problem e.g. the assignment of priorities to messages circulating on the net-
work to guarantee response times.

Our model-driven approach must support this type of analysis. This means
that the models must include all the information that is required to carry out the
necessary validation. Moreover, it should be possible to show, within the model,
relevant results obtained during the real-time analysis.

The real-time analysis is usually carried out by specialised tools, which
present an application-specific interface. Nevertheless, it is reasonable to as-
sume that, as long as such tools are able to import and export analysis informa-
tion to data files, it is possible to implement a design environment such as the
one shown in Figure 4. An example of such platform integration can be found
in [4].

A real-time analysis tool for CAN-based systems is being developed within
the Methodes project. It will implement a data import/export feature that will
allow it to read/write real-time analysis data from/to XML files. This data will
be extracted from and reinserted into XMI representations of UML models by
an additional tool, currently being developed at Universidade do Minho.

9



UML

Editor
UML

ModelModel

Model
Processor

Analysis

Analysis
Tool

Figure 4: Design environment

4 modelling Approach

One trait that will be common to all stages of the design process is the need for
a language to document system requirements and design solutions at all techno-
logical levels. For the reasons presented in Section 2, UML is a natural choice
as the notational support for this MDD method. The following sections describe
our use of UML throughout the development stages presented in Section 3.

The diagrams that will be presented constitute a small example that intends
to demonstrate our development process. Due to limitations in the UML editing
tool that was used to produce these diagrams, stereotypes are shown within note
elements, together with the tagged values to which they are related. For the same
reason, whenever note elements are associated with messages, this association is
indicated by including the name of the message in the appropriate note element.

4.1 Black-box system requirements

At this level, the modelling is done through Use-Case Diagrams, Sequence Di-
agrams and Activity Diagrams. These diagrams are used to depict the intended
interaction of the system with external entities or actors.

4.1.1 Use Case Diagrams

Use Case diagrams can be used without any adaptations to depict the system’s
interaction with the exterior. Each external entity appears as an actor, interacting
with the system in a way that is put into context by the use case’s name.

For use cases where no real-time QoS requirements apply, usually those
relating to user interaction or gateway operation, the modelling process is the
classical one used in the UML. Sequence diagrams can also be used in the usual
way to further detail the functionality associated with the use case.

For process interactions, two stereotypes calledMInputSignalandMOut-
putSignalwere defined. They modify actors to represent input and output sig-
nals (from the system’s point of view). Figure 5 shows a use case diagram where

10



Figure 5: Use-case diagram

a system interfaces four process signals. The actors representing the signals are
modified with a stereotype that specifies the nature of the signal. Associated
with the stereotypes that identify the process signals are theMsignalTypeand
MsignalBitstags, which are self explanatory.

This type of information can also be represented using a signal table that
includes all relevant signal characteristics. In this case, if the timing charac-
teristics for the signal are also included in the table, sequence diagrams may be
omitted for these use cases. This approach would be similar to the one described
in [1].

4.1.2 Sequence Diagrams

Sequence Diagrams are also used without major changes to provide detailed
descriptions of the system functionality represented by a particular use case.
However, for use cases with real-time QoS requirements, additional information
must be included. This information consists of performance QoS requirements
and, therefore, we chose to use the notational extensions defined in the perfor-
mance analysis part of [7]. Each sequence diagram depicts an instance of an
actor/system interaction. Represented in the diagram are the system itself, plus
all actors representing related signals.

Input (resp. output) signals are represented as a message from (resp. to)
the actor to (resp. from) the system. These messages are calledupdate and
they represent signal value events that must be read by (resp. produced by) the
system. They are stereotyped asPAopenLoadand an occurrence pattern and
required response time are also indicated. Figure 6 shows two examples.

If there is a cause/effect relationship between two signals, or if their inter-

11



Figure 6: Sequence diagrams: input signal (left), output signals (right)

Figure 7: Activity diagrams: input signal (left), output signals (right)

action with the system is somehow related, they should be shown in the same
sequence diagram.

4.1.3 Activity Diagrams

For each signal acquired or applied to the process, it is necessary to specify what
the control system will do with the input signal values it consumes, and how
these are used to produce new output signal values i.e. the control algorithm.
This is best achieved using activity diagrams.

The examples in Figure 7 show how activity diagrams can be tagged using
the stereotype described in the previous section, to show required end-to-end
execution times.

4.2 Representing DCS architecture

The internal architecture of the system, showing the network infrastructure and
the selected OTS devices can be represented using Deployment Diagrams. In
our approach, each device is represented as a node. StereotypeMOtSComponent
has been defined to identify OTS components, as shown in Figure 8.

12



Figure 8: Global deployment diagram

Figure 9: Deployment for an OTS CAN device

Note that the process signals identified in the requirements analysis are also
shown in this diagram as actors associated with one of the OTS components.
This is how signal assignments are represented. Also note that the communi-
cation infrastructure is represented by a special node stereotyped asMCANnet-
work. Other nodes shown in the diagram in Figure 8, and not stereotyped, will
be hosting controller software developed during the design process.

The (modeled) internal structure of each OTS component (introduced in
Section 3.3) is described through additional Deployment Diagrams such as the
one shown in Figure 9. This diagram shows the objects that emulate the OTS
device internal software. In this case, the OTS component interfaces one input
and one output signals, receiving one message, and transmitting another one.

13



Figure 10: Collaboration diagram

4.3 Real-time modelling

The real-time QoS requirements and characteristics of a system depend on run-
time factors, the most relevant of which are the processing platforms hosting the
running software and the network activity on the fieldbus system. Additionally,
the real-time characteristics of a system apply to interactions between object
instances. These properties are not inherent to the classes involved, but to each
instance itself [3]. In this paper we will be focusing on the interactions that
are relevant for the real-time characteristics of the system, although many more
interactions will exist in the model.

A real-time analysis consists of a schedulability analysis over a specialised
view of the developed system. This is why the tags and stereotypes that we
use to represent the real-time analysis data are taken from the schedulability
part of [7]. The diagrams presented in this section were tailored for a specific
real-time analysis technique. A small description of the parameters required
by this technique are included in Section 4.4. Nevertheless, these models are
sufficiently generic to be easily adaptable to other real-time analysis tools and
even generic schedulability analysis tools that are compatible with [7].

Two UML diagrams can be used to depict interactions between object in-
stances: Sequence and Collaboration Diagrams. Although they are interchange-
able, here we will be using only the latter. Also, in collaboration diagrams it
is possible to position object instances so as to emphasise deployment associa-
tions.

The collaboration diagram in Figure 10 shows the real-time parameters as-
sociated with one of the CAN messages in our example. Note that message
exchanges are stereotyped differently.

One collaboration diagram similar to this one is included in the model for
each CAN message transferred on the bus. Each of these diagrams depicts

14



the complete sequence of object interactions associated with the corresponding
CAN message. Two types of messages can be used as triggers:

• Process signal events that give rise to CAN message transmission (either
event-driven or timer-driven).

• Internal device events that, for some application-specific reason, trigger
the transmission of CAN messages on the bus.

The workload associated with the scheduling job is composed of several
message exchanges stereotyped asSAAction. There are two different uses for
this stereotype:

• Software execution, as in the case of themain methods, which represents
computational load.

• CAN message transmission, as in the case of thedistribute function,
where the load is associated with bus access and transmission delays.

The objects stereotyped as schedulable resources correspond to independent
threads of execution inside a particular device. Collecting the different threads
that are identified in the collaboration diagrams created for each CAN message,
and correlating this information with the architecture information presented in
Section 4.2, an analysis tool is able to enumerate all the threads operating con-
currently in each device, their relative priorities and timing characteristics.

Finally, the objects stereotyped as shared resources in this diagram are all
related with the CAN communication infrastructure. The object instance repre-
senting the CAN bus appears in all collaboration objects involving CAN com-
munication in that particular bus. This resource is shared by all CAN controller
object instances to which it is connected. The combination of the bus access (the
distribute method) operations throughout these collaboration diagrams al-
lows an analysis tool to work out bus access conflicts, task blocking due to
collisions, and bus utilisation parameters. The object instances representing
CAN controllers are shared, within the host device, by message transmission
and message reception routines.

The object instance representing the CAN bus is conceptually deployed on a
node stereotyped asMCANnetwork, as shown in the diagram in Figure 11. The
MCANNetworkstereotype is derived from theSAEnginestereotype defined in
[7]. It is seen as a computational resource with a particular processing speed (in
this case the bus rate), schedulability and utilization. Messages transmitted on
the bus are modeled as processes executing on this conceptual processor.

4.4 Interfacing real-time analysis tools

The collaboration diagrams presented in this paper constitute a small example of
a DCS. This example was created for the real-time analysis tool being developed

15



Figure 11: Deployment Diagram: CAN bus

Figure 12: Real-time analysis data

within Methodes. The information exchanged with this tool is structured as
shown in the class diagram in Figure 12.

In our implementation, this information is extracted from an XMI coding of
the UML model, into an XML file which can be imported into the analysis tool.
This extraction is performed by combining the structural information provided
by the deployment and collaboration diagrams presented in Section 4 with the
quantitative data specified using the stereotypes and tagged values also there
described.

Note that the analysis results can be put back into the model using the re-
verse procedure. For example, in Figures 10 and 11 there are several tags that
do not present numerical values, but variable names beginning with$. Analysis
results can be traced back to these variable names and presented as the values
of the corresponding tags.

5 Conclusions

DCS are a class of application with specific characteristics, such as the use of
OTS components and fieldbuses, and the existence of real-time QoS require-
ments. In this paper we presented a MDD method that targets this category

16



of systems. This method focuses on the critical stages of DCS development.
Namely, the specification of system requirements, the choice of OTS modules
and fieldbus system, and the validation of the design using specialized real-time
analysis tools.

The MDD method that was presented uses UML as support notation, as
well as the extensions defined in the UML Profile for Schedulability, Perfor-
mance and Time Specification [7]. The diagrams shown in this paper constitute
a small example that illustrates the use of UML throughout the DCS develop-
ment process. They apply to CAN-based systems and to real-time analysis tools
developed within the Methodes project. Nevertheless, the approach that was
taken is sufficiently generic to permit a simple adaptation to other fieldbus stan-
dards and analysis tools. Present and future work to be undertaken within this
project includes the evaluation of the use of this methodology by industrial de-
velopment teams and the automation of some of the steps in this development
process.

References

[1] B. P. Douglass.Real-Time UML: Developing Efficient Objects for Embed-
ded Systems. Object Technology. Addison-Wesley, 1998.

[2] M. Farsi and M. Barbosa.CANopen Implementation: Applications to In-
dustrial Networks. Research Studies Press, 2000.

[3] J. M. Fernandes, R. J. Machado, and H. D. Santos. Modeling Industrial
Embedded Systems with UML. In8th ACM/IEEE/IFIP Int. Workshop on
Hardware/Software Codesign (CODES 2000), pages 18–22. ACM Press,
May 2000.

[4] Zonghua Gu, Sharath Kodase, Shige Wang, and Kang G. Shin. A Model-
Base Approach to System-Level Dependency and Real-Time Analysis of
Embedded Software. InIEEE Real-Time and Embedded Technology and
Applications Symposium. IEEE, 2003.

[5] D. Herzberg. UML-RT as a Candidate for Modeling Embedded Real-Time
Systems in the Telecommunication Domain. In2nd International Confer-
ence on the Unified Modeling Language (UML’99). Springer-Verlag, 1999.

[6] ISO11898. Road Vehicles, Interchange of Digital Information - Controller
Area Network (CAN) for high-speed Communication, 1993.

[7] OMG. UML Profile for Schedulability, Performance, and Time Specifica-
tion, 2002.

17



[8] B. Selic. Using UML for Modeling Complex Real-Time Systems. In Frank
Mueller and Azer Bestavros, editors,Languages, Compilers, and Tools for
Embedded Systems, ACM SIGPLAN Workshop LCTES’98, volume 1474
of Lecture Notes in Computer Science, pages 31–40. Springer-Verlag, June
1998.

[9] B. Selic. Turning Clockwise: Using UML in the Real-Time Domain.Com-
munications of the ACM, 42(10):46–54, 1999.

[10] B. Selic, G. Gullekson, and P. T. Ward.Real-Time Object-Oriented Mod-
eling. John Wiley & Sons, 1994.

[11] B. Selic and J. Rumbaugh. Using UML for Modeling Complex Real-
Time Systems. Technical report, ObjecTime Limited & Rational Software,
1998.

18


