
Tool Support for DFD-UML Model-based Transformations

Dragos Truscan João M. Fernandes ∗ Johan Lilius
Embedded Systems Laboratory

Turku Centre for Computer Science and Åbo Akademi
Lemminkäisenkatu 14A, 20520 Turku, Finland

e-mail: dragos.truscan@abo.fi; jmf@di.uminho.pt; johan.lilius@abo.fi

Abstract

This paper presents a model-based approach that
combines the data-flow and object-oriented computing
paradigms to model embedded systems. The rationale be-
hind the approach is that both views are important for mod-
elling purposes in embedded systems environments, and
thus a combined and integrated usage is not only useful,
but also fundamental for developing complex systems. We
also show that by using models we were able to implement
automated transformations between different views of the
system under design. We exemplify the approach with an
IPv6 router case study.

1. Introduction

The increasing complexity of today’s embedded systems
requires new approaches to be applied to their specification
and design. On one hand there is a need to raise the level of
abstraction to the point where the designer focuses more on
the concepts and different views of the system and less on
the implementation details. On the other hand, the approach
should provide the necessary support for automation, con-
sistency checking and verification, thus reducing the devel-
opment costs and time of the new systems. In order to tackle
these problems, one should use models to describe systems,
starting from the high-level specification until the platform
implementation.

To better exploit the possibility of automation provided
by models, appropriate tool support is needed, allowing the
designer to navigate between different views of the system
in a tool supported manner. Recently, OMG started to pro-
mote a new vision to system development: Model Driven
Architecture [18], where the main emphasis is put on sep-
arating the development process from the implementation
one, making use of models to describe the system at dif-

∗On leave from Dept. Informatics, Universidade do Minho, 4710-057
Braga, Portugal.

ferent steps of the development. The motivation of MDA
is to move focus from platform implementation to solution
(business) modelling.

In the last couple of years object-orientation have con-
stantly gained support and the majority of the software mod-
elling techniques has adopted it. This is probably due to
the observable emphasis on data in system design that the
object-oriented paradigms provide [16]. But as pointed
out in several articles [8, 11], one conceptual model (e.g.
object-oriented methods) is limited to represent only a spe-
cific view of a system, filtering out important details of the
specification. Sometimes several views of the system under
development are needed to capture all (or at least most) of
its features and details. Ideally, a designer should be able
to switch from one view to another at different levels of ab-
straction during the design process.

Beside object-orientated methods, several other lan-
guages have been proposed and used for similar purposes
(i.e. development of embedded systems). One such lan-
guage is provided by the structured-analysis methods intro-
duced in early 70’s, which became quite popular in indus-
trial environments. In recent years, the structured-analysis
methods were largely overshadowed by the object-oriented
design methods, especially after the introduction of UML.
Although nowadays the convention is to use either a pure
object-oriented approach or a pure structured approach we
prefer to view the two approaches as complementary, each
one with its own strengths and weaknesses. We consider
that both object-oriented and structural analysis methods
represent viable and necessary tools in embedded systems’
design, each of them providing important techniques for de-
scribing the system under consideration.

One of the aims of this work is to study the integration of
data-flow diagrams (DFDs), the main tool of the structured
analysis methods, with object-oriented diagrams provided
by UML, using a model-based approach. The main mo-
tivation for this comes from a case study [17], where we
have applied object-oriented techniques and UML to the
design of a protocol processor. In this case study we had

Proceedings of the 11th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’04)
0-7695-2125-8/04 $ 20.00 © 2004 IEEE

in many situations the feeling that there was a functional
and structural view of the system that was not adequately
represented by the diagrams provided in UML. A second
motivator for this work has been the experience of the 3rd
author, that at least in the Turku, Finland region, the em-
bedded systems industry is reluctant to move from struc-
tured to object-oriented methods. There is therefore a need
for studying the interrelation between structured and object
oriented methods. Third but not less important, industry
needs nowadays to cope with high levels of design com-
plexity, that can be tackled using model-based approaches
to provide automation and consistency checking during the
analysis and design phases of embedded systems.

The main contributions of this paper are: (a) to define a
model-based approach that integrates data-flow and object-
oriented views for specification of embedded systems, (b) to
identify a set of model transformations for moving between
the data flow model and the object-oriented one and (c) to
provide tool support for these transformations using auto-
mated scripts. We will use a simplified IPv6 router case
study to illustrate the approach.

Following we present, a brief overview of the related
work on DFD and object-oriented integration (Section 2),
then we will briefly introduce, in Section 3, the SMW tool
that we used to implement the two models and automate the
transformations between the views. Section 4 will present
the main steps of our design flow, where we show how
we perform transformations between structured and object-
oriented views of the specification at system-level, and the
main steps to be taken in order to provide an automatable
approach. In Section 5 a short transformation example is
presented. The paper ends with some conclusions and com-
ments about these transformations.

2. Related work

Many authors have already studied the combination of
DFDs with object-oriented methods. A theoretic survey of
this topic is given in [10]. Here we only discuss some ap-
proaches that are relevant for this work.

Within the Object-Process Methodology (OPM), the
combined usage of objects and processes is recommended
[9]. An Object-Process Diagram (OPD) can include both
processes and objects, which are viewed as complementary
entities that together describe the structure and behavior of
the system. Objects are persistent entities and processes
transform the objects by generating, consuming or affect-
ing them. In addition, states are also integrated in OPDs
to describe the objects. The usage of OPM, for modeling,
specifying, and designing reactive and real-time systems,
was also proposed, by extending the notation with notions
such as timing constraints, events, conditions, exceptions,
and control flow constructs [19].

In [32], the DFD notation is modified and the roles

of the functional models are redefined, in order to use
DFDs while retaining the spirit of object-orientation. Two
types of functional models are suggested: Object Functional
Models (OFM) and Service Refinement Functional Models
(SRFM). OFMs model the services provided by individual
objects, while SFRMs model how the services of individual
objects can be composed to implement the services of their
corresponding aggregation object. In both models, the only
modeling elements are: objects, processes and data-flows.
The data store is not necessary, according to the authors,
since they use an object for that purpose. The interactions
with a data store are modeled as communications with the
corresponding object.

In another proposal [6], the functionality associated with
each use case is described as an E-DFD (an extended ver-
sion of the traditional DFD). A tool, called SysObj, uses
these inputs to automatically generate an object model, that
is viewed as the architecture of the system. This method
is also related to an integrated environment for developing
distributed systems with the object-oriented paradigm [5].

In OMT, DFDs are also used to describe the functional
model of a system [22]. Since in OMT the system is also
specified by two other models (the object and the dynamic
models), DFDs specify the meaning of the operations in the
object model and the actions in the dynamic model. Al-
though there is some attempt at integration, this correspon-
dence is left completely vague and can not be analyzed in
any useful way.

For reverse engineering purposes, the adoption of reverse
generated DFDs (i.e., DFDs obtained after interpreting the
source code) is proposed as the basis to obtain the objects
that a system is composed of [12]. The approach is said to
be hybrid, because it is not fully automatic, requiring in spe-
cific occasions the assistance of a human expert with knowl-
edge of the domain. Again in a reverse engineering context,
it is suggested the combined usage of DFDs and ERDs to
describe the system being modernized [14].

Alabiso also proposes the transformation of DFDs into
objects [3]. To accomplish the transformation he proposes
the following activities: (1) Interpret Data, Data Processes,
Data Stores and External Entities in terms of object-oriented
concepts; (2) Interpret the DFD hierarchy in terms of object
decomposition; (3) Interpret the meaning of Control Pro-
cesses for the object-oriented model; (4) Use data decom-
position to guide the definition of the object decomposition.

Another interesting proposal is the Functional and
Object-Oriented Methodology (FOOM) [24], which is
specifically tailored for information systems. The main
idea behind FOOM is to use the functional approach, at
the analysis phase, to define users requirements and the
object-oriented approach, at the design phase, to specify
the structure and behavior of the system. In the FOOM,
the specification of user requirements is accomplished, in
functional terms, by OO-DFDs (a DFD with data stores re-

Proceedings of the 11th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’04)
0-7695-2125-8/04 $ 20.00 © 2004 IEEE

placed by classes), and in data terms by an initial object-
oriented schema, or an ERD which is easily transformed
into an initial object-oriented schema. In the design phase,
the artifacts from the analysis are used and a detailed
object-oriented and a behavior schemas are created. These
schemas are the input to the implementation phase, where
an object-oriented programming language is adopted to cre-
ate a solution for the system at hand.

3. The SMW Tool

To create and manipulate the UML and DFD models,
we make use of the freely available Software Modelling
Workbench (SMW) tool available for download at URL
www.abo.fi/˜iporres/html/smw.html. The tool is
built upon the OMG’s MOF and UML standards, allowing
edition, storage and manipulation of metamodels. SMW
uses the Python language to describe the elements of a
metamodel, each element being represented by a Python
class. This fact provides the basic scripting mechanisms for
querying and manipulating given models. Moreover, mak-
ing use of the lambda-functions that the Python language
provides, OCL-like idioms are supported. OCL (Object
Constraint Language) is a semi-formal language, developed
by OMG, to add more precision and less ambiguity to the
UML metamodels, beyond the capabilities of the graphical
diagrams. Usually, OCL is used as a declarative language,
to interrogate parts of a UML specification, thus being free
of side effects. More information on the UML profile and
SMW can be found in [21].

SMW allows the creation and usage of user defined pro-
files, based on the MOF standard. The Python implemen-
tation of a given metamodel can be obtained from either a
DTD file or by creating a UML class diagram saved in the
XMI format. In addition, the consistency of models is pro-
vided, well-formedness rules being coded into Python us-
ing OCL-like constructs. To implement the UML and DFD
paradigm we use the UML14 and SA/RT SMW profiles.

The UML14 profile is currently the default profile in
SMW. It has been implemented to support the definitions of
the UML 1.4 standard, where model elements (classes, dia-
grams, associations among them, etc) have been described.
In addition, the constraints and requirements of UML are
enforced using OCL. The SA/RT profile has been built in
the SMW tool to implement the SA/RT metamodel [13].
Structured Analysis for Real-Time Systems, or SA/RT, is a
graphical design notation focusing on analyzing the func-
tional behavior of an information flow through a system.
Data Flow Diagrams (DFD) are the main diagram type used
for structured analysis and for representing data-flows in
the system. The profile is a MOF-based extension of the
SMW tool that allows to graphically operate in the SMW
over SA/RT specifications, thus benefiting from the script-
ing facilities of the tool.

a. Extract
Application Requirements

b. Create
Use Case Diagram

d. Create
Initial Object Diagram

h. Create
Activity Diagrams

f. Create
Data Flow Diagram

g. Build
Data Dictionary

c. Specify
Use Cases

i. Create
DFD-like Object Diagram

j. Create
Class Diagram

Use Case
Diagram

Object Diagram

Data Dictionary

Initial Object
Diagram

Class Diagram

Use Case
Description

Activity Diagrams

Data Flow
Diagram

refinement

e. Refactor
Initial Object Diagram

Requirement List

Figure 1. Integration of UML and DFD models

4. A model-based approach

We see the integration of object-oriented and DFDs from
a modelling perspective, where tool support has to be pro-
vided for obtaining a real model-driven approach for the
analysis and design of embedded systems. The approach
consists of specifying the system following a functional de-
composition and representing it using the benefits of both
object-oriented and DFD views. Some of the ideas pre-
sented here were already analyzed and discussed in [17], but
with a different perspective. There, the main objective was
to define a complete UML-based design flow (or method-
ology) for embedded systems, making special emphasis on
the real implementation of the system. Here our principal
aim is to discuss the possibilities of merging DFDs with
other object models, during the analysis phase activities and
to create a viable tool support for creating and maintaining
these models during the entire life-cycle of the design.

We make use of both UML14 and SA/RT profiles pro-
vided in SMW to be able to model the system under consid-
eration, combining the object-oriented and data flow views
for the analysis and design of embedded systems. The main
phases of the process (Fig. 1) are:

a. Extract Application Requirements
b. Create the Use Case Diagram (UCD)
c. Specify each Use Case in a textual manner
d. Transform the UCD into an IOD
e. Refactor IOD by grouping, splitting and discarding ob-

jects based on their functionality

Proceedings of the 11th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’04)
0-7695-2125-8/04 $ 20.00 © 2004 IEEE

f. Transform the IOD into a DFD
g. Identify Data Flows and build a Data Dictionary
h. Specify process behavior using Activity Diagrams
i. Transform the DFD into an Object Diagram (OD)
or

j. Transform the DFD view into a Class Diagram (CD)

During the design flow we have to change several times
the view of the system to be able to work on specific details
provided by each view. To automate the transition between
these views, model transformations are required. Several
authors recognize the model transformation as the funda-
mental mechanism for model-driven development [23]. A
model transformation takes a source model expressed in a
given language (e.g. UML) and transforms it into a target
model expressed either in the same language (e.g. UML) or
in a different one (e.g. DFD). We consider that model trans-
formation is an important technique for applying software
patterns and refactorings, and to provide a good support for
reuse. In order to provide an automated approach, we make
use of scripts to implement the transformations. A script
is a software application used to interrogate, modify or cre-
ate new artifacts in a model. We consider that there are 3
types of scripts in a model-driven approach: queries, model
transformations and code generation scripts [4].

4.1. Capturing the requirements into Use Cases

We start by analyzing the specification of the router re-
quirements and building a Use Case Diagram (Fig. 2). We
identify two external actors that interact with the router. The
Node is a common network node that requests the router to
forward datagrams and eventually to send back an ICMPv6
error message in case of failure. The Router represents the
neighboring routers that exchange topological information
with our router. Then, we identify the services that the sys-
tem provides to the external environment and extract them
into a list of use cases. We have identified 6 use cases that
provide services for external actors. Each use case is ac-
companied by a short textual description that specifies its
functionality. Due to space reasons, we intentionally omit
technical details of the router specification. More details
can be found in [26].

Using use cases does not necessarily imply that sub-
sequently an object-oriented approach must be followed.
Use cases represent a technique that is quite independent
of object-oriented modelling and can be applied to any sys-
tem, developed either with a structured or object-oriented
approach. Indeed, following we show how we obtain a data
flow diagram starting from a use cases diagram.

4.2. From Use Cases to Initial Object Diagram

From the Use Case Diagram we identify the initial set
of objects in the system by decomposing each use case into

IPv6 router

{1.}
Forward

Datagram

router

node {2.}
Send Error

{3.}
Treat

Request

{4.}
Inform

Topology

{5.}
Update

R'ting Table

{6.}
Create

Request

Figure 2. IPv6 Router Use Case Diagram

{1.i} {2.i} {3.i}

{1.c} {2.c} {3.c}

{1.d} {2.d} {3.d}

{4.i} {5.i} {6.i}

{4.c} {5.c} {6.c}

{4.d} {5.d} {6.d}

node router router router routernode
forwarding
datagram

error
datagram

request
datagram

response
datagram

response
datagram

 request
datagram

Figure 3. Initial Object Diagram

three objects: control, data and interface objects, based on
the approach presented in [11]. The objects have the same
number as the initial use case, but each of them has the ap-
propriate tag name. For instance, the {1.i}, {1.c} and {1.d}
objects (Fig. 3) represent the interface, control and data ob-
jects obtained from splitting the Forward Datagram {1.} use
case. Also, a corresponding actor is created in the initial
object diagram corresponding to the actors in the Use Case
Diagram. Finally, we add associations between objects and
also between objects and the external environment (actors).

We enforce a clear separation of the functionality that
each object category has inside the system. Control objects
deal only with algorithmic and control behavior. Interface
objects are only placed at the border of the system to inter-
mediate between the internal and external communication
of the system. Data objects deal only with storing data and
providing access methods to this data.

When a system is divided into parts, both structure and
behavior are being decomposed along with functionality.
Some authors [15] even consider that all systems are sub-
mitted to functional decomposition even when different de-
composition paradigms are used. Usually the designer is
focusing his effort only on one view during decomposition
but we consider that the other aspects are always present as
side-effects.

The main steps of transforming the Use Case Diagram

Proceedings of the 11th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’04)
0-7695-2125-8/04 $ 20.00 © 2004 IEEE

(UCD) into a an Initial Object Diagram (IOD) are:

1. each Actor in UCD is transformed into an Actor (in-
stance) in IOD

2. for each Use Case in UCD, three objects (interface, con-
trol, data) are created in the IOD

3. in the IOD, an association is drawn between the interface
and control objects belonging to the same use case

4. similarly an association is drawn between control and
data objects belonging to the same use case

5. for each Actor-UseCase association in the UCD, an as-
sociation is drawn between the corresponding Actor and
the interface object generated by the given Use Case

4.3. Refactoring the Initial Object Diagram

According to the 4SRS method [11], by instantiating
scenarios for the initial use cases we decide what objects
are kept or disposed of, and also we identify the commu-
nication (depicted by association) among objects. The re-
maining set of objects are refactored, by decomposing or
grouping together objects of the same type. The interface
objects that are communicating the same information with
the same actor and in the same direction can be grouped
together (for instance {5.i} and {3.i} both receive routing
datagrams, either request or response datagram, from the
router). An interface object that communicates bidirection-
ally with one node, can be split into 2 interface objects
({1a.i} and {1b.i}), one dealing with incoming traffic and
the other with the outgoing traffic. We structure the model
so that all communication between data objects and inter-
face objects is done through control objects. The final result
of the refactoring is presented in Fig. 3.

Although, the splitting and grouping of objects are sup-
ported by scripts, the refactoring process is performed man-
ually based entirely on the designer’s experience. Future
research will look into a more automated approach based
on identification of patterns.

4.4. From Object Diagram To DFD

Sometimes designers need to be able to change the view
they are using. We use the DFD view to be able to identify,
classify and refine the data flows involved in the system.

DFDs use four symbols to represent any system at differ-
ent levels of detail. The four modeling concepts to be rep-
resented are: data flows (movement of data in the system),
data stores (repositories for data that is not moving), pro-
cesses (transformation of incoming data flows into outgo-
ing data flows), and external entities (sources or destinations
outside the system boundary). They provide a data-driven
view of the system useful for describing transformational
systems, such as digital signal-processing systems, compil-
ers, multimedia systems, or telecommunication devices.

We obtain the data flow model of the system from the
initial set of objects (Fig. 3), by noting the direction of the
communication among the objects and then defining data
entities that are being exchanged. Thus, to obtain the data-
flow diagram of the system two steps are required: to spec-
ify the processes (data transformations) and data stores in
the system, and then to identify the data flows involved.

The first step of the transformation process is straight-
forward because of the way the initial object diagram was
structured. In the initial object diagram we have control ob-
jects and interface objects that are processing input commu-
nication from neighboring objects and transforming it into
output communication. This is similar with the behavior
of the processes provided by the DFD concept. This fact
allows us to transform all the control and interface objects
into DFD-specific processes (data transformation). Simi-
larly, data objects in the initial object diagram are trans-
formed into data store elements in DFDs.

Most of the DFD approaches in literature, do not make a
clear distinction among processes with respect to their exe-
cution in time. Our opinion is that we can observe two types
of behavior: processes that start their execution when one of
its input flows becomes active, and processes that execute
continuously, independent of their input flows status. We
name them reactive processes and active processes, respec-
tively. A process is considered to be active if it has no input
flows from other processes or its behavior is self-triggered
(output flows are fired without an input flow triggering the
process). One example of active processes would be a pro-
cess that is periodically reading a data store (Fig. 4, pro-
cesses {1b.c} and {6.c}). Here, the input flows are triggered
by the processes themselves and not by the data stores, de-
spite the fact that there is a data-flow from the data stores
to the given processes. Classifying processes into active
and reactive helps the designer in the next design phases to
specify the internal behavior of each process.

To transform an IOD into a DFD the following steps
must be performed:

1. transform each Actor in the IOD into an External Entity
2. transform interface and control objects into Data Trans-

formations in the DFD
3. transform data objects into Data Stores
4. associations between elements of the IOD are trans-

formed into Data Flows either between external entities
and data transformations, or between data transforma-
tions and data stores, or in-between data transformations

5. we identify and mark active processes in the DFD
In the second step, the associations among the initial ob-

jects are transformed into input and output data flows in
DFD based on the system specification. During the refine-
ment of data flows, we focus on adding new details about
the data entities and types transported over the flows. The
resulting diagram is presented in Fig. 4. Also, a classifica-
tion of the data flows involved in the system is performed by

Proceedings of the 11th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’04)
0-7695-2125-8/04 $ 20.00 © 2004 IEEE

{1a.i}
ReceiveFwd

{1a.c}
Validate

{1.d}
dataStore

{3.i+5.i}
Receive
Routing

 {1b.c}
Forward

{3.c}
Request

{5.c}
Response

{5.d}
Routing Table

{4.c}
Create

Response

{6.c}
Create

Request

{4.i+6.i}
SendRouting

{1b.i}
SendForward

RTEs

 RTEs

RequestDatagram+
Interface(s)

ResponseDatagram+
Interface(s)

RequestDatagram+
RecvInterface

ResponseDatagram+
RecvInterface

ResponseDatagram+
RecvInterface+

ErrorType

RequestDatagram+
RecvInterface+

ErrorType

ForwarddDatagram+
 RecvInterface+

ErrorType

 Foward
Datagram

Routing
Datagram

 FowardDatagram+
RecvInterface

 FowardDatagram+
RecvInterface

 FowardDatagram+
RecvInterface

 FowardDatagram+
FwdInterface

 FowardDatagram+
RecvInterface+

ErrorType

RTEs

RTE#

Foward
Datagram

Routing
Datagram

Trigger
Response

{2.c}
ICMP

{2.i}
SendICMP

ErrorDatagram+
RecvInterface

Error
Datagram

Figure 4. Data-Flow Diagram of the Router

building a Data Dictionary. This is done by analyzing the
data that is moved between data transformations and having
as primary information source the application requirements.
The data flow identification is performed manually and it is
based on designer’s experience. A complete Data Dictio-
nary specification of the IPv6 Router under study can be
found in [10]. Following we only present a small example,
where the datagram types transported through the system
(Router) are classified.

Datagram = ForwardDatagram|RoutingDatagram|ErrorDatagram
ForwardDatagram = IPv6Header+Payload
RoutingDatagram = IPv6Header+UDPHeader+RIPMessage
ErrorDatagram = IPv6Header+ICMPv6Message

4.5. From DFD to UML

One specific situation where the usage of DFDs is help-
ful is in re-engineering activities where the system was pre-
viously developed following the guidelines of some struc-
tured method. Even if the diagrams are no longer available,
it is expected to be easier to reverse-engineer the program
code into DFDs and other complementary models, than to
transform it directly into some object-oriented models.

For obtaining a object-oriented model of the system
starting from the DFD-model we have tried 2 approaches.
In the first approach we transform the DFD model directly

into an object diagram by transforming on an one-to-one ba-
sis the processes and data stores in the DFD model into ob-
jects. The second approach follows a more object-oriented
view where we focus on classifying data in the system and
detecting class methods that operate over that data.

Some similar ideas were already proposed in the FOOM
methodology [24] for developing information systems, but
its usage for embedded systems requires necessarily some
adaptation. The transformation of a functional specifica-
tion in Z into an object-oriented one in Object-Z, for re-
engineering purposes, is also proposed in [20].

4.5.1 From DFD to object-based class diagram

In the first approach, we map the DFD model directly into
an object one by transforming the artifacts in the DFD
model on a one-to-one basis. Basically, the algorithm con-
sists in transforming each data transformation in the DFD
into an object in the Object Diagram, and the data flows
between the data transformations into associations. In addi-
tion, the data flows involved in the system become internal
attributes of the classes (objects), are encapsulated into the
objects and used now to describe the internal state of the
objects. In order to access the data entities inside objects,
corresponding methods are added.

Objects originating from processes placed at the bor-
der of the system will have set() methods to communicate
with the external environment, while the other processes
will have send() methods that receive as parameters the in-
put data flows in the DFD. Objects obtained from active
processes will have in addition a run() method specifying
their state machine, while the objects originating from Data
Stores receive write() and/or read() methods to provide ac-
cess to their data, based on the data flows accessing them.

One should note that the way the elements in the ob-
ject diagram are named, is only to help in automating the
process. Once the transformation process is completed, the
names of different elements can be changed to be more sug-
gestive for the designer. Caution has to be taken that by
changing names, the consistency of the design is not af-
fected. Thus, either the modelling tool or the design method
should provide support to check the consistency of the de-
sign after each transformation step.

After the transformation is completed, we focus on spec-
ifying the behavior of each object. In fact, defining the be-
havioral aspects of the system is the main purpose of this
view. The final object model (Fig. 5) is very similar to
the DFD one, but now we have objects that have an inter-
nal behavior and provide services (implemented by meth-
ods) to the adjacent objects. The newly created objects are
also classified as being active or reactive based on the pro-
cesses from which they were generated. The difference be-
tween them is that the reactive objects execution is triggered
only when one of their methods is invoked, while the ac-

Proceedings of the 11th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’04)
0-7695-2125-8/04 $ 20.00 © 2004 IEEE

{1b.c}
Forward

{1a.i}
receiveForward

«methods»
setFwdDatagram()

{1a.c}
validate

«methods»

sendFwdDatagram()

sendFwdDatagram()

writeFwdDatagram()

{1.d}
dataStore

«methods»

readFwdDatagram(,)
writeFwdDatagram(,)

readFwdDatagram()

«methods»

run()

sendFwdDatagram()

{1b.i}
sendForward

«methods»

sendFwdDatagram()

{2.c}
ICMP

«methods»

sendFwdError()
sendRoutError()

sendRoutError()

setTrigger()

{4.c}
CreateResponse

{3.i+5.i}
receiveRouting

«methods»
setRequest()
setResponse()

{3.c}
Request

«methods»

sendRequestDatagram()

{5.d}
routingTable

«methods»

writeRTE()
readRTE()

readRTE()

«methods»

run()
setTrigger()

sendResponseDatagram()

{4.i+6.i}
sendRouting

«methods»

sendResponseDatagram()
sendRequestDatagram()

{5.c}
Response

«methods»

sendResponseDatagram()

{6.c}
CreateRequest

writeRTE()

«methods»

run()

sendRequestDatagram()

writeRTE()

sendRequestDatagranm() sendResponseDatagram()

sendFwdError() sendFwdError()

sendRoutError()

sendErrorDatagram()

readRTE()

{2.i}
sendICMP

«methods»

sendErrorDatagram()

Figure 5. The DFD-like Class Diagram

tive objects have a state machine (usually implemented by
a run() method) executing continuously.

The transformation script performs the following steps:

1. each data transformation in the DFD is transformed into
a new class/object in the object model

2. transform flows between transformations in DFD into
class associations

3. the classes originating from processes receive input
flows receive set () method and a corresponding attribute

4. active objects receive run() method
5. objects receiving an input data-flow receive send ()

method of the incoming dataflow
6. each data store is transformed into a class/object, with

read and write methods, according with the input/output
direction of the flows connected to the data store
The object diagram in Fig. 5 provides a low level of ab-

straction and data encapsulation, but it proved to be quite
suited for prototyping purposes and functional testing of the
specification. Additionally, it is a good candidate for being
mapped onto a hardware-based platform, because its gran-
ularity is at a relatively low level of detail.

We used this approach to design protocol processing ap-
plications targeted to our TACO processor platform [17].
The TACO protocol processor is based on the Transport
Triggered Architecture (TTA) [7]. In TTA processors data
transports are programmed and they trigger operations -
traditionally operations are programmed and they trigger
transports. A TTA processor is composed of functional
units (FUs) that communicate via an interconnection net-
work of data buses. Resources of the processor are speci-
fied and implemented in a library of components using the

dataTrans
x y

Actor

Attribute:

Operation:

y

receive_x()Actor

Figure 6. Border process pattern

dataTrans2dataTrans1
x y+p1 z

Attribute:

Operation:

y

dataTrans1(x)

Attribute:

Operation:

x

Attribute:

Operation:

z

dataTrans2(y,p1)

z.dataTrans2(y,p1)y.dataTrans1(x)

Figure 7. Interprocess comm. pattern

dataTrans2dataTrans1
zy data

store

vx

Attribute:

Operation:

dataStore

write(y)
read_z()

Attribute:

Operation:

y

Attribute:

Operation:

v

dataTrans2(y,p1)

dataStore.read_z()dataStore.write(y)

dataTrans1(x)

Figure 8. Data Store communication pattern

SystemC language [2]. SystemC is an object oriented (ex-
tension of C++) hardware specification language where the
hardware modules are instances of SystemC classes.

Due to the architectural aspects of the processor a DFD-
like approach proved well suited for the specification and
design phases. Objects in Fig. 5 naturally map to FUs and
the methods of the objects have similar granularity with
the operations provided by the TACO processor. To con-
figure TACO to support a given application one has to se-
lect a number of required resources from the component li-
brary (modeled as SystemC class diagram). The selection is
done by analyzing the object diagram of the of the specifi-
cation and selecting from the SystemC class diagram those
resource supporting operations. Thus, being able to go from
a structural representation to an object oriented one at any
point during the design flow proved to be helpful.

4.5.2 From DFD to class diagram

In the second approach to create an object-oriented model
of the system, we take a view where data involved in the
system plays a central role. This approach is not far from
the structured methods philosophy where determining the
type of data involved in the system is the main task. The
transformation between the models is based on the classifi-
cation and encapsulation of data into classes, along with the
corresponding methods that operate over this data.

Briefly, the algorithm implemented by the transforma-
tion script classifies all the data flows and data stores inside
the DFD, based on their type. For each identified type in the
DFD, a corresponding class is created in the class diagram.

Proceedings of the 11th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’04)
0-7695-2125-8/04 $ 20.00 © 2004 IEEE

forwardDatagram

«attributes»

«methods»
receiveFwd()
validate()
forward()
sendForward()

dataStore

«attributes»
forwardDatagram
receivinInterface

«methods»

read_forwardDatagram()
write_forwardDatagram()

errorDatagram

«attributes»

«methods»
IMCP()
sendICMP()

requestDatagram

«attributes»

«methods»
request()
createRequest()

routingDatagram

«attributes»

«methods»

receiveRouting()
sendRouting()

responseDatagram

«attributes»

«methods»

response()
createResponse()

routingTable

«attributes»
RTEs

«methods»

read_RTEs()
write_RTEs()

Figure 9. The class diagram of the router

In order to add class methods the script looks for three kinds
of patterns in the data flow diagram: data flows communi-
cating with the external environment of the system (Fig. 6),
data flows between two processes (Fig. 7) and data flows
that communicate with data store elements (Fig. 8).

A number of processes (data transformations) operate
over each data flow class inside the DFD. For instance, the
ForwardDatagram data flow (Fig. 4) is processed by differ-
ent data transformations (ReceiveFwd, Validate, Forward,
SendForward, ICMP). Thus, we create the forwardData-
gram class inside the class diagram (Fig. 9) and we add the
DFD processes that affects it as methods of this class. We
consider that a process becomes a method of a class only
if it has as output flow the data flow type represented by
that class. For instance, the ICMP process in Fig. 4 is not
transformed into a method of forwardDatagram because it
outputs an ErrorDatagram.

The Data Stores in the DFD receive a special treatment.
Since they are places that store data and our goal is classi-
fying data in the system, each Data Store element is trans-
formed into a separate class. The newly created class pro-
vides read and write methods for accessing data based on
the input and output flows of the initial data store (see
dataStore in Fig. 8). In addition, we classify the data
inside the ”Data Store” classes based on the data flows that
access the Data Store element.

We consider that here we also have a possible classifica-
tion of classes into active and reactive. The idea behind this
classification is based on the life-cycle of objects instanti-
ated from classes. The active classes are those that instanti-
ate objects of other classes, while the reactive classes are the
ones whose objects are instantiated by others classes. One
example of an active class is the forwardDatagram class
(Fig. 9) because it might instantiate objects of other classes

(i.e. errorDatagram). Classifying classes into active and re-
active is for the moment an ad-hoc approach, but we intend
to further investigate it.

The transformation script performs the following steps:

1. transform distinct data flows and data stores into classes
2. transform each external entity into an actor
3. apply the Inter-process Communication Pattern
4. apply the Border Process Pattern
5. apply the Data Store Communication Pattern

5. Implementing model transformations

As presented in the introduction we use the SMW tool
and its UML14 and SA/RT profiles to model the object ori-
ented and data flow views of the system. Following, we
show how we were able to implement model transforma-
tions between different views of the system, by using the
scripting and modeling facilities of SMW.

A model transformation transforms a source model ex-
pressed in a given language into a target model expressed in
the same or different language by applying a number of el-
ementary operations over model elements. Usually, one has
to select the source elements and then to transform them
into target elements by applying the model transformation.

Due to space reasons we present as example only parts
of one of the transformations (step i. in Fig. 1). We gather
model information (elements) form the DFD by performing
a number of OCL-like queries (lines 1-8):

1 dataFlows=dfdModel.ownedElement.select(lambda x:
2 x.oclIsKindOf(DataFlow))
3 externalEntities=topDfd.ownedElement.select(lambda x:
4 x.oclIsKindOf(ExternalEntity))
5 dataStores=topDfd.ownedElement.select(lambda x:
6 x.oclIsKindOf(DataStore))
7 dataTransformations=topDfd.ownedElement.select(lambda x:
8 x.oclIsKindOf(DataTransformation))

Next, we transform each external entity in the DFD into
a UML actor in the OD, verifying that an actor cannot be
added to the OD more than once (lines 9-15).

9 dfdModel.ownedElement.select(lambda act:
10 act.oclIsKindOf(ExternalEntity) and
11 (s.refinedFlow.connection[0] in act.association
12 or s.refinedFlow.connection[1]))
13 if topAct.name[0] not in actors:
14 newActCl=classDiag.addActor(name=topAct.name[0])
15 actors.append(newActCl.name)

Then for each data transformation in the DFD a new ob-
ject(class) element is added to the OD.

16 dfdModel.ownedElement.select(lambda ts:
17 (ts.oclIsKindOf(DataTransformation) or
18 ts.oclIsKindOf(DataStore)) and
19 classDiag.addClass(name=ts.name))

We mention that although OCL is specified as a declar-
ative language, the Python lambda functions allow us to
use OCL-like constructs in an imperative manner (lines 19,
38, 48, 49).

Proceedings of the 11th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’04)
0-7695-2125-8/04 $ 20.00 © 2004 IEEE

Once the a number of classes are added to the OD, the
script draws the associations among them. First we ana-
lyze those data flows that have as source and target a data
transformation and select them from the model (lines 30-
39). For each pair of source-target data transformations, by
using the function addAssoc() we identify their corre-
sponding classes in the OD model (lines 20-26) and add an
association (lines 20-28). Upon adding a new association,
the target class receives a method and preserves the initial
name of the data flow.

20 def addAssoc(source,destination,theName):
21 umlModel.ownedElement.select(lambda src:
22 src.oclIsKindOf(Class) and
23 src.name==source.name and
24 umlModel.ownedElement.select(lambda dest:
25 dest.oclIsKindOf(Class) and
26 dest.name==destination.name and
27 classDiag.addAssocociation(
28 src, dest, name=theName+"()")))
29 return 1
30 dfdModel.ownedElement.select(lambda f:
31 f.oclIsKindOf(DataFlow) and
32 dfdModel.ownedElement.select(lambda src:
33 src.oclIsKindOf(DataTransformation) and
34 f.connection[0] in src.association and
35 dfdModel.ownedElement.select(lambda dst:
36 dst.oclIsKindOf(DataTransformation) and
37 f.connection[1] in dst.association and
38 addAssoc(src,dst,
39 "send"+string.split(f.name,’+’)[0]))))

Classes originating from data stores receive as attributes
the parameter of the data flows and corresponding meth-
ods to read and/or write those parameters. Below we only
present the addition of a read() method for a given class.

40 dfdModel.ownedElement.select(lambda f:
41 f.oclIsKindOf(DataFlow) and
42 topDfd.ownedElement.select(lambda src:
43 src.oclIsKindOf(DataStore)and
44 f.connection[0] in src.association and
45 topDfd.ownedElement.select(lambda dst:
46 dst.oclIsKindOf(DataTransformation) and
47 f.connection[1] in dst.association and
48 addAssoc(src,dst,"read"+string.split(f.name,’+’)[0])
49 and addAttr(src,string.split((f.name,’+’)[0]))))

The following function adds an attribute with the name
specified by att to the class corresponding to the flow
data flow.

50 def addAttr(flow, attN):
51 className=string.split(flow.name, ’+’)[0]
52 theClass=classDiag.ownedElement.select(lambda cl:
53 cl.oclIsKindOf(Class) and cl.name==className)
54 if attN not in theClass[0].feature.name:
55 attr=Attribute(name=attN,visibility=1,type=myType)
56 theClass[0].feature.insert(attr)
57 return 1

A similar approach is taken to complete the remaining
part of the transformation. A complete version of the trans-
formation scripts can be found in [26].

6. Conclusions

In this paper we have shown how, by using a model-
based approach, we integrated the data-flow and object-
oriented paradigms for the specification and design of em-
bedded systems. Both views are useful due to the different

perspectives they provide on the system under considera-
tion. We have also shown that, by using models, it is possi-
ble to create and manipulate artifacts provided by both DFD
and object oriented paradigms, and also to implement au-
tomated transformations between the different steps of the
design process.

We must state though, that the automated transforma-
tions have to be seen more as an aid to the designer and
not something to replace him or her. Since both models
(UML and DFD) have a user-friendly view by using the
SMW tool, the presented approach supports the human (i.e.
designer) intervention. We mention that the transformations
presented in the paper are not complete examples due to
space reasons. A more complete version and more imple-
mentation details can be found in [26].

The way the diagrams were created and transformed al-
lows the designer to trace what pieces of functionality dif-
ferent elements in the system belong to. Although not ev-
ident in Fig. 9 because of typographical reasons, the ele-
ments in Fig. 2, 3 and 4 bear tags that are preserved from
one transformation to another. For instance, in Fig. 4 we
can trace objects {2.c} and {2.i} as belonging to the Send
Error {2.} use case in Fig. 2.

Moreover, we mention that the above transformations
are, in some situations, reversible allowing the designer to
repeatedly change the view during the system specification
and design. At each change of view, new details specific to
one of the views can be added until the necessary level of
detail is reached. For instance, the object diagram in Fig. 4
can be easily transformed into a DFD similar to the one in
Fig. 2 even if the designer adds new internal details for some
of the objects. To be able to perform the reverse transfor-
mation, one has to avoid object refactoring.

For complex systems, it is inevitable that structural and
dynamic models have to be intertwined or interplayed, dur-
ing the development activities, at different moments and
also at distinct levels of abstraction. The same combination
appears to occur, at an orthogonal perspective, with specifi-
cation and implementation [25]. Our approach promotes a
mapping between structural (object diagram) and dynamic
(DFD) models. If a proper balance between the models is
achieved, the main advantage of the approach is that the
benefits of both models, in terms of expressiveness and fo-
cus, apply simultaneously. However, if both models are bi-
ased towards one of the perspectives, we actually have two
different diagrams for the same purpose, being thus one of
them useless.

For the moment, since we were addressing protocol pro-
cessing applications targeted to hardware platform imple-
mentations we have intentionally avoided referring to spe-
cific object-oriented mechanisms as inheritance and poly-
morphism. Their dynamic nature is in contrast with the
statical nature of the hardware components. Future work in-
cludes investigating a more rigorous method for data classi-

Proceedings of the 11th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’04)
0-7695-2125-8/04 $ 20.00 © 2004 IEEE

fication inside DFDs, that will maximize benefits of object-
oriented mechanisms like inheritance and polymorphism.
For instance, we can see that the routingDatagram class in
Fig. 9 looks similar with a parent class of the responseData-
gram and requestDatagram.

The models presented here could be obtained from
scratch, following some of the techniques proposed by sev-
eral object-oriented methods, or as the result of transform-
ing the previous DFD into object/class diagrams. In this last
situation, we must state that the transformation of DFDs
into an object model is not at all straightforward. Usu-
ally, transforming requirements into a software architecture
(i.e., the transition from analysis to design) is not easy and
here there is an additional difficulty, that results from the
paradigm shift. Both models obtained from the DFD dia-
gram, were also used for developing prototypes in Java, in
order to demonstrate their adequateness to describe the sys-
tem. The prototypes were built with the idea of showing that
the models do constitute a valid solution for the implemen-
tation of the system under consideration. The Java program
code is not included here, but can be downloaded from [1].

7. Acknowledgements

Financial support for D. Truscan from the HPY research
foundation and for J. M. Fernandes from CIMO (grant HH-
02-383) and from FCT and FEDER under project METH-
ODES (POSI/37334/CHS/2001) is acknowledged.

References

[1] http://www.abo.fi/˜dtruscan/ipv6index.html.
[2] Open SystemC Initiative. http://www.systemc.org.
[3] B. Alabiso. Transformation of Data Flow Analysis Models

to Object Oriented Design. In OOPSLA ’88, pages 335–53.
ACM Press, 1988.

[4] M. Alanen, J. Lilius, I. Porres, and D. Truscan. Realizing a
Model Driven Engineering Process. Technical Report 565,
Turku Centre for Computer Science (TUCS), Turku, Fin-
land, Nov. 2003.

[5] L. B. Becker, M. Gergeleit, E. Nett, and C. E. Pereira. An In-
tegrated Environment for the Complete Development Cycle
of an Object-Oriented Distributed Real-Time System. In 2nd
IEEE Intl Symp. on Object-Oriented Real-Time Distributed
Computing, pages 165–71. IEEE CS Press, May 1999.

[6] L. B. Becker, C. E. Pereira, O. P. Dias, I. M. Teixeira, and
J. P. Teixeira. MOSYS: A Methodology for Automatic Ob-
ject Identification from System Specification. In 3rd IEEE
Intl. Symp. on Object-Oriented Real-Time Distributed Com-
puting, pages 198–201. IEEE CS Press, Mar. 2000.

[7] H. Corporaal. Microprocessor Architectures - from VLIW to
TTA. J. Wiley and Sons Ltd., West Sussex, England, 1998.

[8] O. Dieste, M. Genero, N. Juristo, J. Maté, and A. Moreno.
A Conceptual Model Completely Independent of the Imple-
mentation Paradigm. The Journal of Systems and Software,
68(3):183–198, 2003.

[9] D. Dori. Object-Process Methodology — A Holistic Systems
Paradigm. Springer Verlag, 2002.

[10] J. M. Fernandes and J. Lilius. Functional and Object-
Oriented Modeling of Embedded Software. In 11th Intl.
Conf. and Workshop on the Engineering of Computer Based
Systems (ECBS’04), May 2004.

[11] J. M. Fernandes, R. J. Machado, and H. D. Santos. Mod-
elling Industrial Embedded Systems with UML. In Proceed-
ings of CODES 2000, pages 18–22. ACM Press, San Diego,
CA USA, May 2000.

[12] H. Gall and R. Klösch. Finding Objects in Procedural Pro-
grams: An Alternative Approach. In 2nd Working Con-
ference on Reverse Engineering, pages 208–16. IEEE CS
Press, July 1995.

[13] J. Isaksson, D. Truscan, and J. Lilius. A MOF-based Meta-
model for SA/RT. Technical Report 555, Turku Centre for
Computer Science (TUCS), Turku, Finland, Oct. 2003.

[14] I. Jacobson and F. Lindström. Reengineering of Old Sys-
tems to an Object-Oriented Architecture. In Conference on
Object-Oriented Programming Systems, Languages and Ap-
plications (OOPSLA ’91), pages 340–50. ACM Press, 1991.

[15] Kiczales et al. Aspect-Oriented Programming. In ECOOP
’97 - Object-Oriented Programming, volume 1241 of LNCS,
pages 140–9. Springer-Verlag, 1997.

[16] T. Korson and J. D. McGregor. Understanding Object-
Oriented: A Unifying Paradigm. Communications of the
ACM, 33(9):40–60, Sep. 1990.

[17] J. Lilius and D. Truscan. UML-driven TTA-based Protocol
Processor Design. In Forum on specification and Design
Languages (FDL ’02), Sep. 2002.

[18] OMG. OMG Model Driven Architecture, July 2001. Docu-
ment ormsc/2001-07-01, http://www.omg.org.

[19] M. Peleg and D. Dori. Extending the Object-Process
Methodology to Handle Real-Time Systems. Journal of Ob-
ject Oriented Programming, 11(8):53–8, Jan. 1999.

[20] K. Periyasamy and C. Mathew. Mapping a Functional Spec-
ification to an Object-Oriented Specification in Software Re-
engineering. In 24th ACM Annual Conference on Computer
Science (CSC ’96), pages 24–33. ACM Press, 1996.

[21] I. Porres. A Toolkit for Manipulating UML Models. Soft-
ware and Systems Modeling, Springer-Verlag, 2(4):262–
277, Dec. 2003.

[22] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and
W. Lorensen. Object-Oriented Modeling and Design.
Prentice-Hall International, 1991.

[23] S. Sendall and W. Kozaczynski. Model Transformation: The
Heart and Soul of Model-Driven Software Developement.
IEEE Software, 20(5):42–45, Sep/Oct 2003.

[24] P. Shoval and J. Kabeli. FOOM: Functional- and Object-
Oriented Analysis & Design of Information Systems — An
Integrated Methodology. Journal of Database Management,
12(1):15–25, Jan. 2001.

[25] W. Swartout and R. Balzer. On the Inevitable Intertwining
of Specification and Implementation. Communications of
the ACM, 25(7):438–40, Jul. 1982.

[26] D. Truscan, J. M. Fernandes, and J. Lilius. Tool support
for DFD to UML model-based transformations. Technical
Report 519, Turku Centre for Computer Science (TUCS),
Turku, Finland, Apr. 2003.

Proceedings of the 11th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’04)
0-7695-2125-8/04 $ 20.00 © 2004 IEEE

