Functional and Object-Oriented Views in
Embedded Software Modeling

Joao M. Fernandes
Dep. Informética
Universidade do Minho
Braga, Portugal
jmf@di.uminho.pt

Abstract

The main aim of this article is to discuss how the func-
tional and the object-oriented views can be inter-played in
order to model the various modeling perspectives of an em-
bedded system. We discuss if the object-oriented model-
ing paradigm, most likely the predominant one to develop
nowadays software, in the broader sense of the term, is also
adequate for modeling embedded software and how it must
be conjugated with the functional paradigm. More specif-
ically, we present how Data Flow Diagrams (DFDs), the
main diagram in the traditional structured methods, can be
integrated in an object-oriented development strategy based
on the Unified Modeling Language (UML).

1 Introduction

In software engineering, when a new approach appears
in the scene with the promise of solving all the problems
faced by its professionals, the typical reaction is yet to
abandon the old one. What actually happens is that ideas,
concepts and techniques of both, the old and the new, ap-
proaches are merged and the final result is a combined solu-
tion. The object-oriented modeling paradigm is nowadays
one of the most used approaches to develop software and,
when it was proposed in the 80s, their advocates stated that
it could overcome some, if not all, of the weaknesses asso-
ciated with the structured methods. Some results indicate
that, when the characteristics of the problem are well suited
to an object-oriented approach, substantial time savings
over traditional functional decomposition can be achieved
in logical design [1]. But almost certainly we could make a
similar claim in favor of structured methods if an adequate
problem is used.

Setting up a framework for comparing analysis tech-
niques and achieving useful conclusions is not an easy task.

Proceedings of the 11th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’04)
0-7695-2125-8/04 $ 20.00 © 2004 IEEE

Johan Lilius

Computer Science Department
TUCS and Abo Akademi University

Turku, Finland
Johan.Lilius@abo.fi

This may be the reason why there is not yet a definite
“proof”, even if not formal, that shows that the object-
oriented paradigm is definitely better than structured meth-
ods [2], and some authors even suggest the reverse [3]. In
fact, attempts to prove formally that one approach is bet-
ter than another are seldom effective, in any domain. This
is extremely harder in information technologies, because in
real-world scenarios, there is hardly ever an opportunity to
develop the same system in two different and independent
ways and compare them.

If a careful comparison is undertaken, one can see that
object-oriented and structured methods do not differ so
much on the meta-models they use. For example, the set of
diagrams suggested by the OMT methodology is, according
to M. Jackson, surprisingly close to the traditional propos-
als of Structured Analysis [4]. In our opinion, there is not
too much surprise in this fact, since object-orientation can,
in an historical perspective, be seen as an evolution (and
not a revolution) of the structured methods. Some authors
even assume a more drastic position, by considering that
“object-oriented methods are structured methods, just like
all the others that precede them” [5].

In fact, object-oriented and structured methods both rec-
ognize the need to use three models to specify a complex
software system: a functional model, a control model and a
data model. For example, the usage of statecharts was pro-
posed in both approaches apparently with successful results
[6]. Additionally, the now classical software engineering
techniques and guidelines, originally conceived for struc-
tured design, namely modularity, data hiding, low module
coupling, and high module cohesion, are still relevant and
useful in object-oriented design [7].

The major discrepancy between structured and object-
oriented analysis relies presumably on the way those three
models are used, namely, the order in which they are cre-
ated. Object-oriented methods have the class diagram (a
data-oriented model) as its main modeling tool, while struc-

YF]',F.

COMPUTER

SOCIETY

tured methods use DFDs (an activity-oriented model) as its
principal diagram. The popularity of object-orientation is
probably due to the observable emphasis on data in system
design that has increased considerably in the last years. It
is our belief however that in embedded systems an activity
oriented view of the system is typically more useful.

In this paper, we explore in detail how to integrate DFDs
into UML. This integration could look superfluous, since
UML is a huge language with many modeling elements,
that is considered adequate and useful for a great number
of application areas. However, it is not at all an universal
language that could be deployed in any problem domain.
Specifically, UML does not include DFDs or any similar di-
agram, which represent, in our opinion, a useful model for
some kinds of software, namely embedded software.

The proposed integration could also look forced or anti-
natural, because we are trying to unite two apparently
discordant approaches for developing software systems.
Nonetheless, in our opinion, software engineers should not
take a religious or dogmatic attitude when it comes to
choose or use a specific model. We believe that currently
the question that must be answered by the software engi-
neers is not which models to create, but how to nicely in-
tegrate different models, if all of them are deemed valuable
for the description of the system. This question is, in fact,
a today’s problem, when UML, for example, is adopted as
a modeling language, because it includes several diagrams
that are only loosely related. The proper integration of the-
ories and concepts is considered nowadays as one of the key
challenges in the field of embedded systems:

“Our answer to the question of what are the new
theoretical challenges raised by the (...) field of
embedded systems is that, what we need, is not a
new theory of embedded systems. (...) What is
required is the integration of the relevant theories
and methods into a coherent development process
and making it work.” [8].

This paper discusses the unification of two different
modeling perspectives: the functional and the object-
oriented views. The discussion is especially oriented to-
wards the development of embedded software, but we be-
lieve that the ideas and arguments presented here can also
be adapted in a large extent to other types of software. In
addition, we also focus the attention on the analysis phase
of the development process, giving less importance to the
other phases, namely design, implementation, and test.

This paper is based on a Technical Report [9], where a
full list of references can be found. Additionally, the pro-
posals made here to unify the functional and the object-
oriented views are used in the technical report to model an
IPv6 router system. It is also important to notice that the
UML version under consideration in this paper is 1.4.

Proceedings of the 11th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’04)
0-7695-2125-8/04 $ 20.00 © 2004 IEEE

2 Functional and object-oriented views

We understand the functional view, also designated dy-
namic or behavioral, as the system’s perspective that centers
around the behavior of the system. Similarly, the object-
oriented view is understood as the perspective that focus on
the structure of the system, namely its data. In fact, it is
commonly acknowledged that one major component of the
object-oriented analysis techniques is based on the Entity-
Relationship concepts [10].

For complex systems, it is inevitable that structural and
dynamic models have to be intertwined or interplayed, dur-
ing the development activities, at different moments and
also at distinct levels of abstraction. For instance, the whole
system can be seen as a module and a state-machine can be
devised for it. We can later decompose the system in sub-
systems and create, for each one, an activity diagram that
represents the respective function. The sub-systems can, by
themselves, be decomposed in objects, which can have their
life-cycle represented by a Petri net. We can go as many
levels as we want and, as modelers, we are always chang-
ing from structural models to dynamic ones and vice-versa.
The same combination appears to occur, at an orthogonal
perspective, with specification and implementation [11].

A similar systemic view was proposed in [12]. There,
a combination of Finite-State Machines (FSMs) with other
concurrent models of computation (namely, dataflow, syn-
chronous/reactive and discrete event) is suggested. The idea
is that an FSM can be nested within a module in a concur-
rency model, which is to be interpreted as the FSM describ-
ing the behavior of that module. Conversely, a subsystem
in some concurrency model can be nested within a state
of an FSM, which means that the subsystem is active only
when the FSM is in that specific state. The hierarchy can
be placed anywhere and is arbitrarily deep. A proposal with
identical practical consequences is the “tool box” approach
to software specification, where each system’s module may
be specified individually using the technique most adequate
for it [13]. This approach seems very useful for specifying
complex systems, that are generally composed of several
components, each one with its own idiosyncrasies.

One of the main strengths of these approaches is that,
for example, the concurrency model can be selected to best
suit the problem at hand, based upon its particular charac-
teristics. Consequently, developers are not restricted to a
single meta-model, as usually occurs. Hence, the following
meta-models, which seem useful for embedded computing
can be adopted and mixed: continuous time and differential
equations, discrete time and difference equations, state ma-
chines, synchronous/reactive models, discrete-event mod-
els, cycle-driven models, rate monotonic scheduling, syn-
chronous message passing, asynchronous message passing,
timed CSP, publish and subscribe [14].

YF]',F.

COMPUTER

SOCIETY

Unfortunately, it exists a culture of rivalry in the soft-
ware community with respect to the two major paradigms.
Nowadays, the convention is to use either a “pure” object-
oriented approach or a “pure” functional approach. We pre-
fer to view them as complementary, each one with its own
strengths and weaknesses. We think that a proper mixture of
the approaches is possible, so that the best of both worlds
can be achieved. There were several attempts to combine
these two approaches [15] [16] [17] [18], but none of them
is widely used. Although some researchers [19] argue that
object-oriented analysis and structured analysis are funda-
mentally incompatible, we believe that the topic deserves
more research effort in order to understand if the integra-
tion can be effectively achieved and, if a positive answer is
obtained, how that can be accomplished.

In fact, merging divergent aspects or ideas appears to be
a recurring solution in many areas of knowledge, with ex-
tremely good results in some cases. Werner K. Heisenberg,
1932 Nobel Prize laureate in Physics, observed that:

“It is probably quite true generally that in the
history of human thinking the most fruitful de-
velopments frequently take place at those points
where two different lines of thought meet. These
lines may have their roots in quite different parts
of human culture, in different times or different
cultural environments or different religious tradi-
tions: hence if they actually meet, that is, if they
are at least so much related to each other that
a real interaction can take place, then one may
hope that new and interesting developments may
Sollow.” [20].

Computing science seems also to benefit when opposite
or dualistic aspects are taken into consideration. Indeed,
significant improvement had always been achieved when
the fruitful integration of a dual pair was possible [21]. That
observation was also a motivation for this work.

3 UML

One common aspect of structured and object-oriented
methods is that they usually adopt graphical notations for
describing the system under analysis. For a graphical nota-
tion to be useful it must be clear and intuitive, so that both
clients and designers can understand it, but also precise and
rigorous, so that computer tools can analyze, simulate and
validate it. One drawback of graphical representations is
that they are not adequate for capturing detail. A graphical
model that has excessive information becomes as hard to
read as an equivalent textual description.

One of the languages that is gaining exponential popu-
larity and usage is the Unified Modeling Language (UML).
UML is a graphical modeling language, that supposedly

Proceedings of the 11th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’04)
0-7695-2125-8/04 $ 20.00 © 2004 IEEE

unifies and integrates the different notations used before
by several software methodologies. This notation became
a real necessity, because, between 1989 and 1994, the num-
ber of object-oriented methods increased from fewer than
10 to more than 50 [22]. UML constitutes the de facto stan-
dard notation and semantics for properly describing soft-
ware built with object-oriented or component-based tech-
nology. It is undoubtedly a step in the right direction, but
it is not a perfect or universal modeling language [23]. We
believe that UML, as it stands today, must be, in some con-
texts and for some application domains, complemented with
other meta-models or at least adapted (by stereotyping it) to
address those meta-models.

The main problem with UML is that its semantics is not
precise. This is a recurring problem of graphical notations,
since they seem to carry a higher risk of vagueness than
textual languages; for instance, lines and boxes suggest less
need of preciseness than identifiers and assignment state-
ments [4]. The reason for this to happen is that graphical
languages are typically used without a compiler. Although
this can also occur with textual languages (we can use a
simple text editor to write the program), it is more frequent
to process them with compilers. Therefore, the exclusive
use of graphically-based and intuitive notations is often in-
sufficient for correctly specifying a given system.

Since UML is a multiple-view meta-model, a serious
consequence is that inconsistencies, among the diagrams
used for specifying the system, may occur. This also hap-
pens when the designers are using computer tools for edit-
ing the diagrams, since usually those tools do not per-
form all kinds of checks necessary to guarantee full consis-
tency. In large projects, where it is common to have several
team members modifying the same set of diagrams, consis-
tency is even more difficult to guarantee. Several attempts
have been made to remedy this problem, because it usually
proves to be costly in software development projects.

The most common way to use UML diagrams during
analysis is to start with use case diagrams and to proceed
with sequence diagrams, to describe some scenarios of the
interaction between the system and its actors. Later, a class
diagram is created, taken into consideration the previous di-
agrams. Usually a state-chart diagram is associated to each
class for describing the corresponding behavior.

Although UML includes nine diagrams, using only the
referred four during analysis seems to be sufficient for the
majority of developers. In fact, collaboration diagrams
are not included, because they are similar to sequence di-
agrams, activity diagrams are usually ignored, since they
represent a subset of statechart diagrams and component
and deployment are not at all used or only used in later de-
velopment stages.

We find two major problems with this typical usage, in
what concerns the development of an embedded system.

YF]',F.

COMPUTER

SOCIETY

Firstly, the “jump” from use cases and scenarios to classes
is, in our opinion, a very big one. This step requires too
much ingenuity and there is not an evident direct relation-
ship between use cases and classes. We think that there
exist many similarities between this transformation step and
the transition from analysis to design in structured methods,
which was vastly criticized to be one of the biggest limita-
tions of those methods. Instead, what we need to develop
complex embedded systems is a seamless process, from re-
quirements until the coding phase, that preserves the behav-
ior and integrity of the models in each development step [8].

Secondly, for embedded software, the attention should
be focused towards object diagrams, instead of class dia-
grams. The majority of the methodologies for developing
software do not pay too much attention to the object dia-
gram. In fact, software developers concentrate too much on
the class structure and too little on the object structure [24].

Finally, it is important to discuss what are the most typ-
ical mistakes that prevent organizations to get more value
from using UML in their software projects [25]. Firstly, it
is crucial that the UML models do not possess a level of
detail similar to the final executing system. Models are ab-
stractions of the reality and serve “only” to visualize, spec-
ify, document the software. Therefore, producing quality
executable programs is, almost always, the main aim of any
project. Secondly, some companies utilize UML just as a
documentation notation. This is a very limited way of tak-
ing advantage from UML, since using it as a communication
medium among the various stakeholders proves usually use-
ful. Thirdly, it is important that every developer should use
and understand UML to get the most value from it. If pro-
grammers (i.e., the developers that actually write the final
code) do not strongly rely on the UML models to construct
the system, then big mismatches between the UML models
(that represent the user’s and system’s requirements) and the
final system will arise easily and naturally.

4 Combining DFDs with UML

The combined usage of DFDs with other UML models
can be accomplished in several ways and this combination
must be interpreted in a very broad sense. This results from
the fact that the development of a software system proceeds
in steps, where several different models are being refined
and detailed, but also transformed, merged, split, integrated,
etc. Therefore, in this context, the term “combined” used
above can mean several different things. One possibility is
that DFDs are used during the development process and that
they are transformed into UML diagrams or vice versa. A
distinct interpretation consists in not using DFDs at all, and
give some UML diagram a DFD flavor. Another possible
alternative is to use DFDs and UML diagrams, and propose
techniques for integrating their usage.

Proceedings of the 11th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’04)
0-7695-2125-8/04 $ 20.00 © 2004 IEEE

Under these circumstances, the question that is important
to answer is how and when can DFDs be used within the
development process of an embedded system. The way to
tackle this question can be divided in three more specific
ones, to which we hope to give real answers in this paper:

1. Are DFDs an useful model for embedded software?

2. In which phase of the development process must DFDs
be introduced?

3. Which views should DFDs cover?

We do think that DFDs can be, in some contexts, an
useful model for embedded software. This idea can be
largely confirmed by the widespread usage of data-flow
oriented meta-models for describing digital and embedded
systems, namely Process Networks [26] and Control/Data
Flow Graphs (CDFG) [27]. It is important to stress that
the meta-model behind CDFG has many resemblances to
the one associated to DFDs with control extensions (as pro-
posed in the Ward-Mellor method, for example).

However, for developing embedded software, we do not
believe that it is possible to rely on a “one-size-fits-all” so-
lution, due to the wide range of applications covered by this
software field. This means that in some situations DFDs
may be an adequate model of computation, but that in oth-
ers they are not. We think that a data-flow model may be
the most adequate one for transformational systems, that is,
systems that continuously repeat the same data transforma-
tion on streams of data [28]. Application areas, where the
data-flow paradigm of computation is evidently useful and
widely adopted, include for example multimedia systems,
telecommunication devices, and digital signal-processing
systems. Furthermore, DFDs are also very good at produc-
ing systems based on a menu structure, because the idea
of functional decomposition and leveling is just right for a
menu-based development.

The incorporation of DFDs into UML can not be made
without first deciding if they are merely added as a new dia-
gram or whether it is possible to view them as an extension
or adaptation of an existing UML diagram. The combined
use of DFDs with other UML models, if deemed useful,
can be accomplished with at least two approaches (fig. 1).
In the first alternative, the DFD meta-model is mapped into
UML concepts, while in the second both meta-models are
available as originally devised.

We think that the first alternative is preferable, because
it allows us to restrict to the UML meta-model in what con-
cerns the model’s back-end processing (model transforma-
tion, validation, code generation). This restriction allows
the usage, without any modification, of any tool that sup-
ports UML for edition, documentation, validation, simula-
tion and code generation purposes. However, this solution
forces the DFDs to be adapted to a given UML diagram,

YF]',F.

COMPUTER

SOCIETY

which means that we are not able to use DFDs at their max-
imum expressiveness. Another argument in favor of the first
alternative is that almost all people involved in UML agree
that it already offers a reasonable number of modeling dia-
grams, sufficient for the vast majority of modeling purposes,
and that it should not be further extended, namely in what
concerns the number of diagrams.

DFD —--- » UML DFD UML
back-end back-end
procesing tools procesing tools
(a) (b)

Figure 1. Two alternatives for integrating
DFDs in UML: (a) DFDs mapped into UML
concepts; (b) DFDs added to the UML meta-
model.

In any case, to take full advantages of DFDs, the designer
must be completely aware of their associated meta-model.
So, even in the situation where a UML diagram is adapted
to be viewed as a DFD, the designers have to understand the
complete set UML+DFD. Under this assumption, the argu-
ment that adapting a UML diagram may result in confusion
and misunderstandings is not a strong one.

We propose three major ways of using, in an integrated
way, DFDs within an object-oriented system development.

1. DFDs to refine the use case model;
2. DFDs to detail the behavior of a system’s component;
3. DFDs to be transformed into class diagrams.

The rationale behind these proposals is always to have,
as the major model to drive the implementation phase, some
object or class diagram, so that an object-oriented program-
ming languages can be used, but also to include the DFDs
in the modeling process.

A full discussion of these topics with a more complete
list of references can be found in [9]. Due to space limi-
tations, we will concentrate on the first proposal, and only
shortly discuss points 2 and 3.

5 DFDs to refine the use case model

It is commonly accepted, within the object-oriented
community, that the analysis of a software system should
be started with uses cases. A use case diagram represents
a functional view of the system. Similarly, in structured

Proceedings of the 11th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’04)
0-7695-2125-8/04 $ 20.00 © 2004 IEEE

methods, a system is seen as a provider of functions to the
user, which is an adequate view for requirements capture.

However, using use cases does not necessarily imply that
subsequently an object-oriented approach must be followed.
Use cases represent a technique that is quite independent of
object-oriented modeling and can be applied to any system,
developed either with a structured or object-oriented ap-
proach [29]. In any case, adopting use case diagrams should
not be seen as an opportunity to follow again a functional
decomposition of the system. This is the reason for our pro-
posals to incorporate always object-oriented diagrams in the
modeling process.

In this context, it seems that the transformation of a use
case model into a DFD-like model is not at all awkward
or forced, since both meta-models can be used naturally
for focusing on the same modeling perspective. DFDs can
be made more detailed, since they include processes (sim-
ilar concept to use cases) and external entities (identical to
actors in use case models), but also data stores and data
flows, which indicate data-dependencies among processes
and are not directly representable in a use case diagram.
Even though UML provides two relationships, «include»
and «extend», to connect use cases among them, they are
not related to data or control flows, but rather with depen-
dencies between use cases. We will not explore further this
topic, since the relationships seem to confuse the designers,
instead of helping them.

We clearly notice that DFDs are more detailed than use
cases. As a matter of fact, it is usually difficult to perceive
how use cases interact, especially whenever there are many
of them in a diagram. An interesting solution to this limita-
tion is to use an activity diagram that shows how use cases
are related and also alternatives and decisions [30].

As already stated, we would like, if possible, to use UML
as the notation to represent the systems being modeled.
Therefore, the meta-model behind DFDs must be mapped
into UML concepts. Generically speaking, any UML dia-
gram could be used for this purpose, as long as stereotypes
are associated to its constructs. In the extreme case, we
were only using the syntax of the diagrams, but would asso-
ciate a very different semantics to it. But we prefer to adapt
a UML diagram whose respective model of computation is
as close as possible to the DFD’s one. However, this choice
should be taken with care, since different diagrammatic rep-
resentations do not necessarily have the same effectiveness
or computational power [31].

Before choosing which UML diagrams best match with
DFDs, it is important to notice that DFDs are not repre-
senting only the behavior of the system. We can also think
about DFDs as defining a given structure or architecture for
the application being analyzed: they are dividing or decom-
posing it in its modules or subsystems and also showing the
communication paths amongst those modules. As a mat-

YF]',F.

COMPUTER

SOCIETY

ter of fact, DFDs can be used to describe only the structure
of a system, showing just its components and the channels
through which information flows [32]. With this view on
DFDs, no behavioral aspect is being modeled.

In the case of DFDs, the behavior is usually organized
as a tree of processes and only the leaf ones (also called
functional primitives) must be associated with a descrip-
tion, traditionally a PSPEC (Process Specification), that
specifies concisely and briefly the intended behavior. In
fact, when a system is divided in parts both structure and
behavior are being decomposed. For example, some au-
thors consider that the design methods that have evolved to
work with object-oriented, procedural and functional lan-
guages all tend to break the systems down into units of be-
havior [33]. They consider that all systems are submitted
to a functional decomposition, even if, for each computa-
tional paradigm, different units of behavior (objects, pro-
cedures, and functions) are considered. Similarly, it seems
thus acceptable that we consider that all those design meth-
ods force equally the systems to a structural decomposition.

5.1 Selection of a UML diagram to represent
DFDs

Considering that DFDs can be viewed as a structural no-
tation, we had considered initially the following UML di-
agrams as possible solutions to represent DFDs: object di-
agrams, collaboration diagrams, component diagrams, de-
ployment diagrams, and activity diagrams. Despite the fact
that class diagrams constitute also a static model, they are
not considered here as a primary option, because we con-
sider that for developing an embedded system an object di-
agram is more valuable than a class diagram [34].

Component diagrams and deployment diagrams were re-
jected from the very beginning, because they are intended
to represent the physical layout of a software system. Ad-
ditionally, these so-called implementation diagrams are still
in a very elementary form. Object diagrams were also not
considered as an alternative, since a collaboration diagram
with no messages is equivalent to an object diagram. The
meta-model of collaboration diagrams is indeed a superset
of that for object diagrams.

Activity diagrams could also look as the best candidate
for this adaptation. At first glance most people think that
activity diagrams look like DFDs. Although both diagrams
are activity-oriented models, there are some fundamental
distinctions between them. Not realizing these distinctions
and concentrating just on the similarities appears to be one
of the main difficulties for practitioners to use activity dia-
grams, because it is not easy to make the shift from data-
oriented to functional-oriented thinking. The problem is
that activity diagrams show control dependencies among
activities, rather than data ones as happens with DFDs. In

Proceedings of the 11th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’04)
0-7695-2125-8/04 $ 20.00 © 2004 IEEE

addition, an activity diagram constitutes a state diagram that
models a sequence of actions and conditions taken within a
process, while a pure DFD can model concurrent processes
without considering control decisions.

Our opinion is that collaboration diagrams constitute
the most appropriate UML model for representing DFDs.
The decomposition that DFDs impose could be equally
achieved with collaboration diagrams. Although collabo-
ration diagrams and DFDs could look similar, at least su-
perficially, there is however an important difference. DFDs
constitute a static view of the system, in the sense that all the
system’s connections and all its processes, used during the
system’s life cycle, are represented. Contrarily, a collabora-
tion diagram represents a dynamic view of the system and
allows the visualization of a unique point in time, showing
what are the interactions within a particular subset of the
objects that a system is composed of. This means that col-
laborations diagrams can be adapted but also that they must
be slightly modified.

For example, the ROOM methodology [35] and its
UML-based successor, UML — Real Time [36], propose
an approach based on collaboration diagrams. The actor
concept of ROOM is captured by the UML-RT’s «capsule»
stereotype, which is a specialization of the class concept.
Simple capsules have their functionality realized directly
by the associated state machine, while complex capsules
combine the state-machine with a network of internal sub-
capsules. This internal architecture is specified as a collab-
oration diagram.

In the MOOSE methodology, the similarity between the
Object Interaction Diagrams (OIDs), that show the interac-
tions among objects, and the structured analysis’ DFDs is
also noted [37]. The main difference lies on the semantics
for the objects interactions, which is strongly distinct from
the semantics for the passage of data between processes.

Embedded system specification and design consists in
the description of the system’s desired functionality and in
the mapping of that functionality for implementation by a
set of components [28]. Thus, starting from use cases, to
describe the system functionality, and proceed to objects, to
specify the components of the system, as proposed here, ad-
dresses directly those aspects. Even if some compromises
are to be considered, the main idea is that collaboration di-
agrams can be viewed as representing simultaneously the
architecture of the system and its data-flow view. If this
approach is taken into account, DFDs are to be seen as a re-
finement of use cases, and so they can represent the whole
system. Although this seems to contradict the recommen-
dation that DFDs should not be used as the main diagram
to represent the whole system, we believe that this is not
the case. In fact viewing collaboration diagrams as DFDs,
does not imposes a functional decomposition of the system,
since the DFDs’ processes are now represented as objects.

YF]',F.

COMPUTER

SOCIETY

Thus, we can view the system according to its data-flow
view, even if it is essentially an object-oriented or object-
based system.

5.2 Transforming use cases into objects

If use case diagrams are to be transformed into DFDs,
represented as collaboration diagrams, the main question is
thus how to transform use cases into objects, since these
are the constituents of collaboration diagrams. This kind of
transformation is not simple and easy at all and face several
problems. Firstly, despite the existence of some proposals
for automatically obtaining objects, namely the SysObj tool
[38], it generically involves several decisions that can not
be done by a method or a tool, caused by the natural dis-
continuity between functional and structural models.

Holland and Lieberherr go a little further and consider
that the identification of objects and the description of the
relationships between them are two of the three challenges
of object-oriented design [7]. In fact, the rules for a given
domain are defined by the relationships among things and
their formalization as associations of various kinds are often
far more interesting than the objects [30].

To tackle these crucial questions, namely the identifica-
tion of objects from use cases, some proposals exist [39]
[40], but usually they concentrate on classes rather than real
objects. This difference, that might apparently look superfi-
cial, entails a distinct approach and focus. A strategy, called
4-Step Rule Set (4SRS), was already devised to assist the de-
signers in the transformation of use cases into objects [41].

The 4SRS associates, to each object found during the
analysis phase, a given category: interface, data, control'.
Each one of these categories is intimately related to one
of the three orthogonal dimensions, in which the analysis
space can be divided (information, behavior and presenta-
tion) [39]. This categorization gives rise to object models
that, in their essence, are similar to the architectures im-
posed by the Model-View-Controller (MVC) pattern [42].
The division has also strong resemblances to the typical 3-
tier client/server architectures commonly used within En-
terprise Resource Planning (ERP) systems, which divide
the software application into three layers: the presentation,
the business logic, and the database.

An interface-object models behavior and information
that depend on the system’s interface, i.e., the dialogue of
the system with the actors that interact with it. A data-
object predominantly models information, whose existence
must be lengthy (temporary storage should not be modeled
as data-objects). Apart from the attributes that characterize
the data-object, the behavior associated to the manipulation
of that information must also be included in the data-object.

't is also possible to designate these three categories as boundary, en-
tity, and function, respectively.

Proceedings of the 11th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’04)
0-7695-2125-8/04 $ 20.00 © 2004 IEEE

A control-object models behavior that can not be naturally
associated to any other object. For instance, the functional-
ity that operates on several objects and that returns a result
to an interface-object is a control-object.

With this categorization of objects, object and collabora-
tion diagrams become similar to DFDs that are composed of
data stores, processes, and external entities. We think that
it is relatively easy to adapt the main ideas of the 4SRS to
transform use cases diagrams into DFD-like diagrams, and
that this transformation is valuable to develop embedded
software. However, it is crucial to avoid creating excessive
functional control-objects that dictate the behavior of data-
objects, with no associated “intelligence”. In fact, there ap-
pears to be a strong tendency, which is important to con-
trariate, for control-objects to usurp the responsibilities of
data-objects [43]. Furthermore, it is not unusual to see data-
objects and control-objects becoming respectively the data
representation and the processes, i.e., to have a clear separa-
tion between data and processes that object-orientation was
supposed to avoid. Thus, we emphasize that an object, inde-
pendent of its category, should be viewed as a rich modeling
entity with both attributes and methods, and, eventually, a
state-oriented model associated with it.

This approach leads naturally to a component-based
modeling style, because the objects can be seen as logical
components, which hide their internal details and accom-
plish the communication to other components through well-
defined interfaces. The objects that are created by the 4SRS
must be viewed at a higher level of abstraction if compared
with the traditional perspective in object-oriented analysis
and design. The objects are not to be viewed as, for ex-
ample, a stack or a queue, which have a small scope, are
centered on data and are passive. When developing com-
plex systems, some lower-level classes will be used for sure,
but generally these classes are not visible during analysis or
even design. We must see an object as a component of the
system. This view is similar to ROOM’s one, where they
define “an object as a software machine, or as an active
agent implemented in software” [35]. In ROOM, a wider
perspective is even taken and an object is additionally de-
fined as “a logical machine, which is an active component
of a system and which may be implemented as software, as
digital hardware, or even with some nonelectronics-based
technology”.

In fact, within the 4SRS, data-objects can be seen as data
stores. The data store notation in DFDs is used to save in-
formation that is used within the system. Although data-
objects are much richer than data stores, since they can also
have associated methods, this perspective does not conflict
with the object-oriented view of data objects.

The data being modeled can be as small as an item (vari-
able or record) or as big as a table or even a complete
database. However, it is more adequate to view the DFDs’

YF]',F.

COMPUTER

SOCIETY

data stores at a very high level of abstraction. In other
words, DFDs should not be used to model the details of
the information perspective of the system, since other dia-
grams are used for that. One proposal that follows this view
suggests an adaptation of DFDs, where each data store sym-
bol is thought to represent a complete database rather than
a single table [44]. This avoids redundancies and conflicts
with the data model of the system, usually represented by
an entity-relationship diagram or a class diagram.

The interface-objects can be equally understood as ports
of the system. For every actor connected to a use case?, it
is necessary to introduce an interface-object to handle the
communication between the actor and the system. Alter-
natively, interface-objects can be seen as the processes re-
sponsible for receiving the inputs and/or sending the out-
puts, when that perspective makes sense.

The control-objects can be viewed as DFDs’ processes.
They are used to operate on data received from the out-
side (from an interface-object) or stored internally (in data-
objects) and to generate new data to be sent to the outside
(to an interface-object) or stored internally (in data-objects).

6 Other uses of DFDs
6.1 DFDs to detail the behavior of a component

We do not explore in detail this hypothesis of using
DFDs in this paper. This possibility was already suggested,
for example, by Ivar Jacobson in a conference panel [19].
Briefly, we can comment that the UML meta-model defines
an association between ModelElement and Statemachine,
called behavior [45, p. 2-145]. Almost all the elements that
can be included in the UML diagrams are ModelElement.
However, there is also the following well-formed rule [45,
p. 2-156]:

self.context.notEmpty implies
(self.context.oclIsKindOf (BehavioralFeature) or
self.context.oclIsKindOf (Classifier))

This means that only behavioral features and classifiers
can have state machines. A BehavioralFeature is a method
of a class and a Classifier can be a Class, a Use Case, an Ac-
tor, a DataType, a Component, an Artifact, a ClassifierRole,
an Interface, a Subsystem and a Signal.

This means that we can define the behavior of any clas-
sifier element using a statechart (or an activity diagram).
Thus, it is possible to update this association so that we can
define the behavior of a model element using a statechart,
an activity diagram but also a DFD diagram.

With this approach, it is fundamental to realize that
DFDs are not being adopted as the main description for

2In a use case diagram, it is possible to have actors that are not con-
nected to use cases. An actor of that type is called secondary.

Proceedings of the 11th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’04)
0-7695-2125-8/04 $ 20.00 © 2004 IEEE

specifying the systems. If we follow this guideline,
the problems of top-down functional decomposition are
avoided, but the benefits of their data-flow flavor still re-
main. In UML this aim can be easily achieved since it pro-
motes a multiple-view modeling approach, thus distributing
the different system’s views to several diagrams.

The main disadvantage of this approach is that it forces
the designer to use DFDs as they are, and thus forces the
back-end tools to support both DFDs and UML.

6.2 DFDs to be transformed into object/class dia-
grams

Assuming that generically DFDs are not an adequate tool
for capturing the user’s requirements, they are however use-
ful in later phases of the development. One specific situa-
tion where the usage of DFDs is helpful is in re-engineering
activities if the system was previously developed following
the guidelines of some structured method. Even if the dia-
grams are no longer available, it is expected to be easier to
reverse-engineering the program code into DFDs and other
complementary models, than to transform it directly into
some object-oriented models.

Therefore, we propose that DFDs could be transformed
into object or class diagrams. Some similar ideas were al-
ready proposed in the FOOM methodology [18] for devel-
oping information systems, but its usage for embedded sys-
tems requires necessarily some adaptation. The transforma-
tion of a functional specification in Z into an object-oriented
one in Object-Z, for re-engineering purposes, is also pro-
posed in [17].

7 Conclusions

Although the combination between the functional and
the object-oriented approaches is almost universally seen as
a “bad” approach to software modeling, we believe that it
can give, in some specific situations, good results, if not
seen as an infallible solution, but instead used with some
precaution. We believe that for programming purposes (i.e.,
for the process of creating a text-based program from the
models that describe the system’s behavior and architec-
ture), object-oriented programming languages offer many
advantages that should not be put apart by any organization
that develops software, embedded one included.

In this paper the combination of the functional and
object-oriented approaches, represented respectively by
DFDs and UML was analyzed. The emphasis of the discus-
sion was put in the questions related to the analysis phase
and to embedded software systems. The rationale was al-
ways to have, as the major model to the implementation
phase, some object or class diagram, so that an object-
oriented programming languages could be used, but also to

YF]',F.

COMPUTER

SOCIETY

include DFDs in the modeling process. We have suggested
three main directions to achieve that combination: (1) DFDs
to refine the use case model; (2) DFDs to detail the behavior
of a system’s component; and (3) DFDs to be transformed
into class diagrams, in a re-engineering situation.

In fact, it is quite intriguing why the usage of use cases,
within the context of object-oriented development, is so
popular and considered a suitable technique, if they, sim-
ilarly to DFDs, decompose functionally a system. The an-
swer, in our opinion, lies on the fact that use cases are a
simple technique to understand and use, and produce good
results in several situations.

For some types of embedded systems, where the system
is constructed to obey a specific standard, and not to ful-
fill the needs and expectations of human users, the usage
of DFDs is, for modeling purposes, more adequate than use
cases diagrams. Use case modeling is quite useful when
the development team needs to discuss the requirements of
a system with its stakeholders, especially the users, man-
agers, customers, and clients. This occurs because use case
diagrams are an easy-to-read notation and, due to their ex-
tremely simplicity and the intuition behind the concepts of
use case and actor, promote the participation of the non-
technical stakeholders. This characteristics is not so impor-
tant for some types of systems, such as digital-signal pro-
cessing systems, that do not have human users or that are
data-triggered and whose functionalities are to be executed
in a particular sequence. In contrast, DFDs are good for
systems that present these characteristics.

Taken in consideration that DFDs are more expressive
than use case diagrams, they could be used as use case dia-
grams, for users’ requirements capture, omitting thus some
of their constructs (for example, data stores). Later, more
detailed information could be added, by the designers, this
time without the user’s intervention. Based on the DFDs
produced, obtaining an object-oriented architecture should
be possible (although we do not claim that it is easy or sim-
ple). If this is agreed to be suitable from use case diagrams
(in conjunction with other models, such as sequence and
collaboration diagrams), that should also be possible, and
easier we ought to add, with DFDs and those same addi-
tional diagrams.

As future work, the following topics deserve more atten-
tion. Firstly applying the techniques proposed here to com-
plex examples would allow more solid assessments about
the usefulness of those techniques to be drawn. Secondly, a
solid integration of DFDs with UML can not be only based
in using both in a combined way at the process-level. Ad-
ditionally, it is fundamental to investigate, at the semantic
and meta-model levels, what are the implications and con-
sequences of that combination. Thirdly, analyzing the ef-
fective ways of extending the 4SRS is also a future path for
continuing this work.

Proceedings of the 11th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’04)
0-7695-2125-8/04 $ 20.00 © 2004 IEEE

Acknowledgments

The first author acknowledges the financial support from
CIMO, under grant HH-02-383, that partially supported his
post-doctoral studies at TUCS, and from FCT and FEDER
under project METHODES (POSI1/37334/CHS/2001).

References

[1] J. Kim and F. J. Lerch. Towards a Model of Cognitive Pro-
cess in Logical Design: Comparing Object-Oriented and
Traditional Functional Decomposition Software Methodolo-
gies. In Conference on Human Factors in Computing Sys-
tems (CHI "92), pp. 489-98. ACM Press, May 1992.

[2] R.L. Glass. The Naturalness of Object Orientation: Beating

a Dead Horse? IEEE Software, 19(3):103—4, 2002.

I. Vessey and S. A. Conger. Requirements Specification:

Learning Object, Process, and Data Methodologies. Com-

munications of the ACM, 37(5):102-13, 1994.

M. Jackson. Software Requirements & Specifications: A

Lexicon of Practice, Principles and Prejudices. ACM Press,

1995.

D. J. Hatley, P. Hruschka, and I. A. Pirbhai. Process for

System Architecture and Requirements Engineering. Dorset

House, New York, 2000.

B. P. Douglass, D. Harel, and M. Trakhtenbrot. Statecharts

in Use: Structured Analysis and Object-Orientation. In

G. Rozenberg and F. Vaandrager, editors, Lectures on Em-

bedded Systems, vol. 1494 of LNCS, pp. 368-94. Springer-

Verlag, 1998.

I. M. Holland and K. J. Lieberherr. Object-Oriented Design.

ACM Computing Surveys, 28(1):273-5, 1996.

A. Pnueli. Embedded Systems: Challenges in Speci-

fication and Verification. In A. Sangiovanni-Vincentelli

and J. Sifakis, editors, Embedded Software, Second Inter-
national Conference, EMSOFT 2002, vol. 2491 of Lec-
ture Notes in Computer Science, pp. 1-14. Springer-Verlag,

Oct. 2002.

[9] J. M. Fernandes. Functional and Object-Oriented Model-

ing of Embedded Software. Technical Report 512, TUCS,

Turku, Finland, Feb. 2003.

P. P-S. Chen. Entity-Relationship Modeling: Historical

Events, Future Trends, and Lessons Learned. In M. Broy

and E. Denert, editors, Software Pioneers: Contributions to

Software Engineering, pp. 297-310, Springer-Verlag, 2002.

[11] W. Swartout and R. Balzer. On the Inevitable Intertwining

of Specification and Implementation. Communications of

the ACM, 25(7):438-40, 1982.

A. Girault, B. Lee, and E. A. Lee. Hierarchical Finite State

Machines with Multiple Concurrency Models. IEEE Trans-

actions on Computer-Aided Design of Integrated Circuits

and Systems, 18(6):742-60, June 1999.

W. G. Howerton and M. G. Hinchey. Using the Right Tool

for the Job. In 6th IEEE International Conference on Com-

plex Computer Systems (ICECCS '00), pp. 105-15. IEEE

CS Press, Sep. 2000.

3

—

[4

—

—_
W
[t}

[6

[t

[7

—

[8

—

[10]

(12]

[13]

YF]',F.

COMPUTER
SOCIETY

[14]

[15]

[16

—_

[17

—

[18

=

[19]

[20]

[21]

[22

—

[23]

[24

—

[25

—_

[26]

[27

—

[28]

[29

—

[30]

E. A. Lee. Computing for Embedded Systems. In /8th IEEE
Instrumentation and Measurement Technology Conference
(IMTC/2001), May 2001.

B. Alabiso. Transformation of Data Flow Analysis Mod-
els to Object Oriented Design. In Conference on Object-
Oriented Programming Systems, Languages and Applica-
tions (OOPSLA ’88), pp. 335-53. ACM Press, 1988.

P. T. Ward. How to Integrate Object Orientation with Struc-
tured Analysis and Design. [EEE Software, 6(2):74-82,
1989.

K. Periyasamy and C. Mathew. Mapping a Functional Spec-
ification to an Object-Oriented Specification in Software Re-
engineering. In 24th ACM Annual Conference on Computer
Science (CSC ’96), pp. 24-33. ACM Press, 1996.

P. Shoval and J. Kabeli. FOOM: Functional- and Object-
Oriented Analysis & Design of Information Systems — An
Integrated Methodology. Journal of Database Management,
12(1):15-25, 2001.

D. de Champeaux, L. Constantine, I. Jacobson, S. Mel-
lor, P. Ward, and E. Yourdon. Panel: Structured Anal-
ysis and Object Oriented Analysis. In European Con-
ference on Object-Oriented Programming / Conference on
Object-Oriented Programming Systems, Languages and Ap-
plications (ECOOP/OOPSLA 90), pp. 135-9. ACM Press,
Oct. 1990.

W. Heisenberg. Physics and Philosophy: The Revolution in
Modern Science. Harper & Row, 1958.

A. C. Sodan. Yin and Yang in Computer Science. Commu-
nications of the ACM, 41(4):103-111, 1998.

G. Booch. UML in Action. Communications of the ACM,
42(10):26-28, 1999.

G. Engels, R. Heckel, and S. Sauer. UML — A Univer-
sal Modeling Language? In M. Nielsen and D. Simpson,
editors, Application and Theory of Petri Nets 2000, 21st In-
ternational Conference, ICATPN 2000, vol. 1825 of LNCS,
pp- 24-38. Springer-Verlag, June 2000.

S. Sigfried. Understanding Object-Oriented Software Engi-
neering. IEEE Press, 1996.

G. Booch. Growing the UML. Software and Systems Mod-
eling, 1(2):5-9, 2002.

E. A. Lee and T. M. Parks. Dataflow Process Networks.
Proceedings of the IEEE, 83(5):773-801, May 1995.

W. Wolf. Computers as Components: Principles of Em-
bedded Computing System Design. Morgan Kaufman,
Sep. 2000.

D. D. Gajski and F. Vahid. Specification and Design of Em-
bedded Hardware-Software Systems. [EEE Design & Test
of Computers, 12(1):53-67, 1995.

I. Jacobson. Basic Use Case Modeling (Continued). Report
on Object Analysis and Design, 1(3):7-9, 1994.

S. J. Mellor and M. J. Balcer. Executable UML: A Foun-
dation for Model-Driven Architecture. Object Technology.
Addison-Wesley, 2002.

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Proceedings of the 11th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’04)
0-7695-2125-8/04 $ 20.00 © 2004 IEEE

J. Hahn and J. Kim. Why Are Some Representations (Some-
times) More Effective? In 20¢th International Conference on
Information Systems (ICIS *99), pp. 245-59. Association for
Information Systems, 1999.

D. Harel and B. Rumpe. Modeling Languages: Syntax, Se-
mantics and All That Stuff - Part I: The Basic Stuff. Tech-
nical Report MCS00-16, Faculty of Mathematics and Com-
puter Science, The Weizmann Institute of Science, Israel,
Sep. 2000.

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. V. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-Oriented
Programming. In M. Aksit and S. Matsuoka, editors,
ECOOP ’97 - Object-Oriented Programming, 11th Euro-
pean Conference, vol. 1241 of Lecture Notes in Computer
Science, pp. 140-9. Springer-Verlag, 1997.

J. M. Fernandes, R. J. Machado, and H. D. Santos. Mod-
eling Industrial Embedded Systems with UML. In 8th Int.
Workshop on Hardware/Software Codesign (CODES 2000),
pp- 18-22. ACM Press, May 2000.

B. Selic, G. Gullekson, and P. T. Ward. Real-Time Object-
Oriented Modeling. John Wiley & Sons, 1994.

B. Selic. Using UML for Modeling Complex Real-Time
Systems. In F. Mueller and A. Bestavros, editors, Lan-
guages, Compilers, and Tools for Embedded Systems, ACM
SIGPLAN Workshop LCTES 98, vol. 1474 of LNCS, pp. 31—
40. Springer-Verlag, June 1998.

D. Morris, G. Evans, P. Green, and C. Theaker. Object-
Oriented Computer Systems Engineering. Applied Comput-
ing. Springer-Verlag, London, UK, 1996.

L. B. Becker, C. E. Pereira, O. P. Dias, I. M. Teixeira, and
J. P. Teixeira. MOSYS: A Methodology for Automatic
Object Identification from System Specification. In 3rd
IEEE International Symposium on Object-Oriented Real-
Time Distributed Computing (ISORC 2000), pp. 198-201.
IEEE CS Press, Mar. 2000.

1. Jacobson, M. Christerson, P. Jonsson, and G. Overgaard.
Object-Oriented Software Engineering: A Use Case Driven
Approach. Addison-Wesley, 1992.

D. Rosenberg and K. Scott. Use Case Driven Object Mod-
eling with UML: A Practical Approach. Object Technology.
Addison-Wesley, 1999.

J. M. Fernandes and R. J. Machado. From Use Cases to Ob-
jects: An Industrial Information Systems Case Study Analy-
sis. In 7th International Conference on Object-Oriented In-

Sformation Systems (OOIS ’01), pp. 319-28. Springer- Verlag,

Aug. 2001.

F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal. Pattern-Oriented Software Architecture: A System
of Patterns. John Wiley & Sons, 1996.

R. Pawson. Naked Objects. IEEE Software, 19(4):81-3,
2002.

I. Millet. Technical Note — A Proposal to Simplify Data
Flow Diagrams. IBM Systems Journal, 38(1):118-21, 1999.

OMG Unified Modeling Language Specification. Technical
report, OMG, Sep. 2002.

YF]',F.

COMPUTER

SOCIETY

