
Pitfalls of AspectJ Implementations of Some of the
Gang-of-Four Design Patterns

Miguel Pessoa Monteiro1 and
João Miguel Fernandes2

1 Escola Superior de Tecnologia de Castelo Branco,
Instituto Politécnico de Castelo Branco,

Av. do Empresário 6000-767 Castelo Branco, Portugal

2 Departamento de Informática, Universidade do Minho

Campus de Gualtar, 4710-057 Braga, Portugal

1. Introduction
For the previous edition of this workshop [8], the authors wrote a paper presenting

the aims of the first author’s Ph.D. project [13], which includes the development of a
catalogue of refactorings [3] for the AspectJ programming language [1]. Case studies are
be used for refactoring experiments, to gain the necessary insights. In this paper, we
present several considerations on some code examples in AspectJ [10] from our second
case study. They look like a critique, which may lead readers to assume we have a low
opinion of them. That is not the case: we largely consider them a success, and proved to
be a rich source of insights. Our intent is to simply point out some problems in using the
code examples, thus contributing to their analysis. This is done in section 2.

We take the opportunity provided by this paper to present, in section 3, an update on
a style rule proposed in the previous paper [13]. In section 4 we conclude the paper.

2. Analysis of the AspectJ Implementation of Design Patterns
AspectJ is a backwards-compatible aspect-oriented (AO) extension of Java and it

seems natural to refactor existing Java code bases into AspectJ. Java legacy systems can
thus benefit from the advantages brought by aspect-oriented programming (AOP). In
the paper written for the previous edition of the workshop [13], we stated our intention
of using a Java framework for workflow applications as the subject of our first refactor-
ing experiment. Though that experiment yielded some results [12], they were not as rich
and varied as we initially hoped. In addition, use of this framework as a case study was
compromised by the decision, taken by its developers, to adopt a tool based on genera-
tion of source code. It is nonsensical to apply refactorings to generated code, and there-
fore our motivation to use that framework as a case study disappeared.

We used the dual implementations (version 1.1) [10] of the Gang-of-Four (GoF) pat-
terns [9] in both Java and AspectJ as our second case study. These code examples be-
came a de facto benchmark of good AO design and good code style. Study of these
examples yielded many insights and provided a significant contribution to our work. Our
approach was to explore the kind of refactorings that would enable the transformation
of the Java implementations into AspectJ. Next, we tested and refined the resulting

M. P. Monteiro and J. M. Fernandes

refactorings using other Java implementations of the same patterns, by different authors
(e.g. [6] and [5]). We currently have several articles in preparation presenting the results
of this work (e.g. [14]).

We detected problems and limitations in some of the AspectJ implementations during
our study. Some of them were awkward to use, with limitations that may not be noticed
until one attempts to use them in concrete cases. We are aware the implementations are,
to a certain extent, speculative, but since these problems are not mentioned in [10], we
believe our findings can usefully complement it. For instance, 12 of the aspects are called
“reusable”, without mentions to constraints or to some price that must be paid for such
reusability – readers of that paper can be led to believe no such problems exist. Many of
the problems relate to the complexity and inflexibility of interfaces. There is indeed a
price to pay for making an aspect reusable: in some cases, we were left wondering
whether the benefits were worth paying (e.g. in Composite). The intent of this paper is to
call these problems to attention. Another issue is applicability. In some cases, the As-
pectJ implementation is not applicable to all possible instances of the pattern. We sus-
pect that the applicability of some of the implementations is restricted (e.g. Command,
Memento and Template Method). From our analysis, we conclude that attaining reusability is
hard, even with AOP. Some of the causes for the difficulties stemmed from aspect-
specific issues, including: (1) difficulties in obtaining the adequate joinpoints to weave
the desired extra behaviour in the intended point of the program; (2) difficulties in ob-
taining joinpoints exposing the context required by the aspect at the appropriate mo-
ments; (3) difficulties for aspects to quantify over objects without violating encapsula-
tion. We also detected difficulties in base code using proprietary components, which
made it illegal to weave additional state and behaviour. Hannemann et al [10] also men-
tion the lack of genericity, which leads to the widespread use of type casts, including
type-unsafe downcasts – another obstacle to reusability.

Space constraints prevent us from providing a proper introduction to the patterns
covered – interested readers can refer to [9]. We limit ourselves to an (necessarily brief)
analysis of the corresponding AspectJ implementation from [10].

All implementations (Java and AspectJ) presented in [10] include a Main class enclos-
ing a static main method providing an illustrating use case, which acts as the driver to its
corresponding example. We refer to some of these Main classes in our discussion.

2.1. Command
Command ([9], p.233) prescribes that some the objects represent commands, usually

modelled by an abstract class (C++) or an interface (Java). Concrete commands are
instances of concrete classes extending a Command type. The pattern also defines the
invoker role for objects that place requests to the command objects. The AspectJ im-
plementation is based on the reusable aspect CommandProtocol, which encapsulates the
logic associated with the command role. CommandProtocol allows only one command
to be associated to each invoker at a time, though it allows for alternative implementa-
tions resorting to composites to hold multiple commands (leaving open whether their
traversals have a defined order or not). The authors remark (in a code comment within
CommandProtocol) that a single command is usually sufficient, though we easily found
an example [6] using several invokers. The advantage of the AspectJ implementation is to
separate the pattern role from their primary logic. This assumes many commands include
some other case-specific logic, in addition to the pattern-related logic. However, in many
uses of Command the classes exist for the sole purpose of implementing command

M. P. Monteiro and J. M. Fernandes

objects (usually through anonymous inner classes, which are by definition non reusable)
and thus cannot benefit from this implementation.

CommandProtocol provides several variants for associating commands to invokers.
The association can be implicit, through pointcuts, or explicit, through calls to the aspect
method setCommand. The Main class uses the explicit mode (not necessarily a bad
thing). We wondered how the implicit mode could be used and noticed that it presents a
technical hurdle related to context capture. CommandProtocol models this functionality
through the protected pointcut setCommandTrigger, which receives both the invoker
and the command objects as parameters. We think that in practice, very few code bases
can expose the context enabling the capture of both the invoker and the command in a
single pointcut – for instance, this would be hard to do in the illustrating use case. In
consequence, we suspect the implicit mode will not be feasible in many cases. This hur-
dle can be circumvented by refactoring the base code, but this is likely to be very inva-
sive, and the resulting changes risk defeating the whole purpose of the refactoring – to
make the base code oblivious [7] of the association between invokers and commands.

2.2. Composite
The AspectJ Composite (see also [9], p.163) achieves complete obliviousness from the

pattern roles, but the authors aimed to make the aspect reusable as well. The Compo-
siteProtocol aspect implements the composite functionality and defines a framework
comprising (1) three marker interfaces representing a component, a composite compo-
nent and a leaf component. The latter two extend the former. The remaining managing
logic is done in terms of these interfaces; (2) a hash table, private to the aspect, responsi-
ble for mapping components to their children; (3) a protocol based on visitors, through
which operations on the elements of the composite structure can be performed. The
visitors are objects implementing one of two alternative (inner) interfaces, each defining
an operation receiving a component as argument and differing in the return type – void
for operations and Object for functions.

The requirement that all operations on elements go through the visitor interfaces –
with all values passed as a single object – places a constraint on the client programmer.
For instance, it is hard to implement operations in which an operation on one of the
composite’s elements use the results from the operation performed on the parent node
or on previous children. The complexity is a result of the efforts to yield a reusable as-
pect. We managed to write an alternative aspect without visitors that preserves oblivi-
ousness and is simpler, though case-specific. We were left wondering whether the as-
pect’s reusability sufficiently compensates for the awkwardness in using it. Similar prob-
lems plague in various degrees some of the other reusable aspects.

2.3. Decorator
Decorator ([9], p.175) is a way to emulate mixins [3] in languages not supporting the

concept. The AspectJ implementation is based on advice – Hannemann et al [10] remark
on the inherent limitations of this approach, namely the dynamic reordering of decora-
tors. Advices are less flexible due to their static (i.e. compile time) nature. We believe this
can be a serious drawback, due to various reasons. Besides the issue of different order-
ings in the composition of decorators – which in some cases can result in different be-
haviour – there are also the issues of enabling different combinations of decorators, and
how to decorate just a subset of the instances of a class, or doing so only during specific
phases. Plain advice cannot deal with these situations. Fortunately, it is possible to im-

M. P. Monteiro and J. M. Fernandes

plement dynamic and flexible decorators using other techniques, such as context-aware
pointcut designators (e.g. cflow, cflowbelow, within and withincode). This can lead to
overly complex pointcuts, but we can complement the pointcuts with further techniques,
such as registering the decorated objects and making the advice check the target object
(see an example in Listing 1).

public class Component {
 public void sendMessage() {
 System.out.println("\tMESSAGE");
 }
}
public class Forwarder1 {
 public void forward(Component component) {
 System.out.println("Executing from Forwarder1: ");
 component.sendMessage();
 }
}
public class Forwarder2 {
 public void forward(Component component) {
 System.out.println("Executing from Forwarder2: ");
 component.sendMessage();
 }
}
public aspect Decorator {
 private Component _component;
 public void register(Component component) {
 _component = component;
 }
 public void unRegister() {
 _component = null;
 }
 pointcut client1calls(Component component):
 call(public void sendMessage(..))
 && cflow(execution(* Forwarder1.*(..)))
 && target(component);

 void around(Component component): client1calls(component) {
 if(component == _component) {
 System.out.println("BEFORE-----");
 proceed(component);
 System.out.println("------AFTER");
 }
 else proceed(component);
 }
}
public class Client {
 public static void main(String[] args) {
 Component component1 = new Component();
 Component component2 = new Component();
 Forwarder1 for1 = new Forwarder1();
 Forwarder2 for2 = new Forwarder2();

 Decorator.aspectOf().register(component1);
 for1.forward(component1);
 for2.forward(component1);
 for1.forward(component2);
 for2.forward(component2);

 for1.forward(component1);
 Decorator.aspectOf().unRegister();
 for1.forward(component1);
 }
}

Listing 1. Example of alternative decorator techniques.

2.4. Mediator

M. P. Monteiro and J. M. Fernandes

The Mediator ([9], p.273) is typically an object acting as the hub of communication for
various other objects, named colleagues. The AspectJ implementation seems to regard
Mediator as comprising a mediator role that can be attached to and detached from exist-
ing objects. The technique used, as in many other patterns, is based on a marker inter-
face that a specific target class is made to implement through a declare parents clause.
This approach brings the same benefits of obliviousness from pattern roles as with sev-
eral other patterns. We nevertheless think this approach is not adequate for Mediator,
because in our view the mediator role is defining, i.e. it only exists to perform this role.
The AspectJ implementation marks one participant object with the marker interface, but
this is misleading: the aspect holds the state needed to manage the various relationships
and includes all the associated logic. In practice, it is the aspect, not one of the partici-
pant objects, which performs the role of mediator.

2.5. Memento
Memento ([9], p.283) defines the originator as the object whose state must be stored in

a snapshot, the memento as the object storing a snapshot of the originator’s internal
state, and the caretaker as the object responsible for the memento’s safekeeping. The
memento needs privileged access to the originator’s internals, something that is tricky to
achieve in many languages (Cooper remarks in [5] that this is not directly possible in
Smalltalk. The GoF book [9] suggests in that C++ implementations use the ‘friend’
construct). A common solution in Java [5] is to give the default (i.e. package protected)
access to the originator’s state, so that only classes within the same package have access
to it, and place the memento class in the same package as the originator’s.

The AspectJ implementation is based on an abstract aspect declaring a protected
Originator marker interface, an abstract method (createMementoFor) receiving the
originator as parameter and responsible for creating the memento, and another abstract
method (setMemento) receiving both the originator and the memento and responsible
for setting the memento with the originator’s state. The caretaker is the Main class. Each
specific case requires a concrete subaspect implementing the two methods and including
a declare parents associating the class to the Originator interface. The memento role is
represented by a standalone Memento interface declaring a setState method to set the
memento’s state and a getState method to return the memento’s saved state.

The concrete aspect included in the example creates the memento through an
anonymous class implementing the Memento type and providing a case-specific imple-
mentation of its setState and getState methods. The Memento interface is generally ap-
plicable and thus cannot refer to case-specific types – setState accepts an argument of
type Object and getState returns a value of type Object. Clients of Memento must resort
to downcasts. This interface strikes us as too constraining, because originators need to
encapsulate their internals within a single object to be passed to setState. This entails
creating an additional type just for the originator to pass its state to and from mementos.
The use case in Main dodges this problem because the originator’s state is a simple pro-
tected int field, wrapped within an Integer object and upcasted to Object when passed
to the memento. Opposite downcasts occur when the memento returns its snapshot.

The AspectJ design is awkward due to the attempt make it reusable. We believe that
in this case the authors tried to do too much. A case-specific aspect would not be reus-
able, but it would be considerably more flexible and easy to use. One possible solution to
the problem of providing the memento with privileged access to the originator’s state
would be to use a privileged aspect, but this is generally regarded as risky and bad style.

M. P. Monteiro and J. M. Fernandes

The Java design presented by Cooper ([5], p.169) implements the memento as a peer
class placed within the originator’s source file. The fields of the originator have package-
protected access. The memento gets the snapshot by receiving the originator as an ar-
gument to his constructor. The memento holds a reference to its associated originator
and is able to restore the originator’s saved state through a restore method. The origina-
tor class itself does not contain any code associated with the pattern.

The Java implementation presented by Hannemann et al places the responsibility of
generating the memento to the originator, in addition to its primary responsibilities. In
our view, this Java design does not compare favourably with Cooper’s, which achieves
the same main advantage as the AspectJ design – the originator is oblivious of its role in
the pattern (at the price of having the memento class in its source file). We think Coo-
per’s design provides a more suitable Java example to be compared with the AspectJ
design – comparisons should use good designs in both languages.

2.6. The “Multiple Inheritance” Patterns
Hanneman and Kiczales classify 5 patterns (Abstract Factory, Bridge, Builder, Factory

Method and Template Method) in a group having in common (1) structural similarities,
(2) use of inheritance to distinguish different but related implementations, (3) inability of
AspectJ to provide more reusable implementations. Related code can still benefit from
case-specific aspects, enabling abstract classes to be replaced with interfaces without
loosing the ability to attach default state and behaviour.

This places an interesting question: should abstract classes be considered bad style in
the context of AspectJ?

The aspects resort to inter-type declarations of concrete members targeting interfaces
to achieve this. Classes implementing these interfaces inherit the introduced state and
behaviour, in addition to the one acquired through single inheritance. In summary, this
capability comprises mixin inheritance [3] (Filman et al [7] remark that mixin inheritance
is the earliest form of oblivious quantification and that mixins with multiple inheritance
comprise a full AOP technology). AspectJ can emulate mixins through various ways. For
instance, we can place an inner static aspect within an interface, defining concrete state
and behaviour to its enclosing interface, which is inherited by any implementing class.

The use of mixin-aspects instead of abstract classes has the disadvantage that inter-
faces cannot have constructors, even when augmented by aspects. Initialisation code
cannot be placed in constructors and initialisation values must be placed in setter meth-
ods. This has impact on client code, which must remember to call the setters after (and
in addition to) instantiating the implementing object.

Traditional implementations of Template Method ([9], p.325) comprise a method – not
usually accessible in subclasses – calling various (occasionally abstract) methods that are
left to be defined by client programmers, in subclasses. This pattern is one of the key
concepts in the design of frameworks, in which subclasses are called by the framework
and not the other way round. The AspectJ Template Method resorts to the above mixin
technique, separating definitions from declarations by placing concrete members in the
aspect and replacing the abstract class with an interface and a mixin-aspect.

Implementing Template Method this way strikes us a bit contrived, and seems to corre-
spond to a narrow view of this pattern. Template Method was developed with inheritance
and abstract classes in mind, and does not seem to lend itself so well to this kind of
separation. Often the variation points, or “hooks”, defined by the template method
directly depend on the implementation used in the abstract class, but the AspectJ im-

M. P. Monteiro and J. M. Fernandes

plementation assumes that several alternative implementations can be used inter-
changeably. The AspectJ implementation does not consider that the class with the tem-
plate method may be concrete (e.g. java.lang.Thread). We therefore suspect this imple-
mentation is of limited applicability.

3. Aspects Can Be Everywhere
In [13] we proposed the idea of segregating aspects from classes and interfaces, by

taking advantage of the Java rules governing packages and the package-protected (a.k.a.
default) access. It is possible to associate different directories to the same logical Java
package, for instance by registering various directories as entry points in the CLASS-
PATH environment variable. Java source files placed in equivalent points of the hierar-
chy belong to the same package. This becomes especially relevant in cases involving
members with package-protected access. In [13] we proposed that aspects be segregated
from the remaining code by placing them in separate directories associated with the
same logical package. When proposing this guideline, we were drawing a parallel between
aspects and elements such as unit tests and generated files.

Though this guideline may be useful in some specific cases, it is based on the hy-
pothesis that the segregation of aspects from classes brings benefits in the general case –
one we feel is still shared by many people. From the experience gained since we wrote
the previous paper, we now think this is not the right approach. There are several rea-
sons for this. One is that some aspects – particularly abstract ones – tend to be small
frameworks with auxiliary classes (e.g. exceptions) and interfaces [10]. It would not make
sense to segregate these. In addition, the scope of applicability of aspects can vary
widely. Aspects can affect an entire system comprising multiple packages, in which case
it makes sense to place them in their own packages. The scope of aspects can also be
made to restrict to a single package, in which case we should place them within that
package. This leads to the problem of setting aspects apart from other kinds of elements,
for instance when a programmer looks at dozens of source files placed in the same pack-
age. We wanted to distinguish aspects from classes (and from interfaces) but this was not
possible, as all the files used the same extension – * .java. The more recent versions of
AJDT [2] use the *.aj extension as the default, which seems to suggest a solution. Unfor-
tunately, we think this will not prove to be so, because aspects can also span a single
class. Such aspects should be placed within the class’s source file, either as inner aspects
or peer aspects. Interfaces can likewise enclose inner aspects (cf. cap.8 of [11]), and
classes can enclose AspectJ-specific constructs (e.g. the Participant pattern [11]). Such
code is not legal Java code and their source files should bear the *.aj extension as well.
We conclude that aspects and aspect constructs can be placed in many places and it is
pointless to segregate them – developers must resort to the views provided by IDEs and
on their personal knowledge of the systems in order to distinguish one kind of source
file from the others.

4. Conclusion
We present some considerations on the AspectJ implementations [10] of the GoF

patterns [9]. Though aspects bring improvements in most cases, even with AOP it is
hard to achieve reusability. In some cases, a reusable aspect comes at the price of awk-
ward and inflexible interfaces that risk defeating one of the purposes of reusability – to

M. P. Monteiro and J. M. Fernandes

lighten the burden of client programmers. In other cases, the applicability of a reusable
aspect is restricted to an arguably small set of cases. In the case of the Memento, we be-
lieve the AspectJ design does not greatly improve on some of the best Java designs pos-
sible (e.g. [5], p.169). More flexible AspectJ designs for Decorator can be found than that
presented in [10].

We backtrack on a style rule we proposed in the previous edition of this work-
shop [13]: we no longer propose that aspects be segregated from the base code. Aspects
and aspect constructs should sometimes be placed with interface and class source files.
For this reason we think it is pointless to try to segregate them.

Acknowledgements
Miguel Pessoa Monteiro is partially supported by PRODEP III (Medida 5 – Acção 5.3 –

Eixo 3 – Formação Avançada de Docentes do Ensino Superior) and by PPC-VM (PO-
SI/CHS/47158/2002).

References
[1] AspectJ home page http://www.eclipse.org/aspectj/
[2] AJDT home page. http://www.eclipse.org/ajdt
[3] Refactoring Home Page, http://www.refactoring.com/
[4] G. Bracha and W. Cook Mixin-Based Inheritance, ECOOP/OOPSLA 1990.
[5] J. Cooper. Java Design Patterns: A Tutorial. Addison-Wesley 2000. Availabe at

http://www.patterndepot.com/put/8/DesignJava.PDF.
[6] B. Eckel. Thinking in Patterns, revision 0.9. Book on progress, May 20, 2003.

Available at http://64.78.49.204/ IPatterns-0.9.zip.
[7] R. E. Filman and D. P. Friedman. Aspect-Oriented Programming is Quantifica-

tion and Obliviousness, workshop on Advanced Separation of Concerns, OOP-
SLA 2000, Minneapolis, October 2000.

[8] L. Fuentes, J. Hernández and A. Moreira (eds.), proceedings of the Desarrollo de
Software Orientado a Aspectos workshop at JISBD, Alicante, November 2003.

[9] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design Patterns – Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1994.

[10] J. Hannemann and G. Kiczales, Design Pattern Implementation in Java and As-
pectJ, OOPSLA 2002, November 2002.

[11] R. Laddad, AspectJ in Action – Practical Aspect-Oriented Programming, Man-
ning 2003.

[12] M. P. Monteiro, J. M. Fernandes, Object-to-Aspect Refactorings for Feature
Extraction (industry paper), AOSD'2004, UK, Lancaster, March 2004. Available
at http://aosd.net/ 2004/archive/Monteiro.pdf.

[13] M. P. Monteiro, J. M. Fernandes, Some Thoughts On Refactoring Objects to
Aspects, in [8].

[14] M. Monteiro, J. Fernandes, Towards a Catalog of Aspect-Oriented Refactorings,
technical paper, to be published.

