
M. Oivo and S. Komi-Sirviö (Eds.): PROFES 2002, LNCS 2559, pp. 629-643, 2002.
 Springer-Verlag Berlin Heidelberg 2002

 Heterogeneous Information Systems Integration:
Organizations and Methodologies

Ricardo J. Machado1 and João M. Fernandes2

1 Dep. Sistemas de Informação, Universidade do Minho, Guimarães, Portugal
2 Dept. Informática, Universidade do Minho, Braga, Portugal

Abstract. In this paper, a methodology for integrating heterogeneous
industrial information systems is presented. The methodology is
strongly based on the extensive reuse of already-made components and
is conceptually divided in three levels, one for each kind of designer
that is typically involved in this type of projects. To accomplish a better
integration of the activities and tools necessary to develop industrial in-
formation systems with the proposed methodology, three appropriate
organizational configurations are adopted.

1 Introduction

The development of industrial information systems is mainly centered in design ac-
tivities where the re-usage and integration of previously implemented technologies
become the main tasks. This reality is imposed by the need to extend the life-cycle of
legacy systems, and also as a means to reach final solutions in fewer time and with
more robust characteristics. It is important to state that the main goal of an industrial
control-based information system (ICIS) is the management of the information that
flows in the factory plants between the lower and the upper CIM (computer integrated
manufacturing) levels [1]. These integration-based design activities are normally exe-
cuted within an ad-hoc approach, without a strong framework to methodologically
support the global process model.

In the context of industrial information systems design, this approach is motivated
by the technological diversity of the components, where embedded systems,
web-services, and control applications must work together to accomplish the easy
interconnection between the lower (0, 1 and 2) and the upper (3 and 4) CIM levels [2].
These solutions are complementary, within the industrial organizations, to the
well-known management information systems (MISs) [3]. Industrial information
systems (IIS), which result from the integration of a MIS with an ICIS, are the answer
to accomplish the definition of an applicational platform, based on ERP (enterprise
resource planning) approaches, in order to integrate and unify the management and
control of all organizational information.

The design and open implementation of this new kind of heterogeneous information
systems demand some methodological and architectural issues to be carefully treated

630 Ricardo J. Machado and João M. Fernandes

[4], which are discussed in this paper. The usage of a UML-based approach to model
the organizational configurations that support the execution of IIS integration projects
are also presented in this paper. The final goal is to derive an architecture of a tool-set
that can aid in the design of the software components that are needed to integrate the
IIS solutions. The proposed approach identifies the team structure of an IIS project
and, in parallel, defines the software engineering activities that are to be executed by
the multiple-organization team members.

This paper does not discuss how helpful is the methodology across organizations,
neither does it explicitly report on the benefits of the method compared to others, by
presenting a practical assessment of the advantages and weaknesses of the approach,
compared with previous ways of working.

This paper intends to justify, in a non-formal way, the methodological steps fol-
lowed during the execution of an industrial project [5] in which the authors have been
involved to apply the approach. In relation to the UML notation, although it is used in
some diagrams of this paper, it is not explained here (for details please refer to [6-8]).
The UML diagrams that were considered vital for heterogeneous software-based sys-
tems design are: use cases, objects, classes, sequence, and statecharts [9].

2 Overview

The presented methodology, designated virtual automation (VA), is a complete design
and run-time environment, based on software tools, on library modules and on
shop-floor software components. In the VA terminology, these components are called
functional modules off-the-shelf (FMOTSs). VA allows the rapid and easy integration
of a distributed network of FMOTSs (that collectively correspond to the ICIS) with
the corporate MIS. VA includes the following (in this paper, only the 2 first topics are
covered):

- A CAE (Computer-Aided Engineering) software tool.
- A CASE (Computer-Aided Software Engineering) software tool.
- A library composed of several middleware implementation components.
- A FMOTS library composed of several software components.
- A RTOS (Real-Time Operating System).
- A family of embeddable target architectures.
- A run-time execution engine for real-time gateway computation.

Integrating a MIS and an ICIS is a hard task due to the semantical, cultural, tempo-
ral, and informational gaps that exist between the development process models that are
typically followed for the two subsystems [10]. The main purpose of the VA method-
ology is to fill the gap between those two subsystems in order to easily and rapidly
develop IIS solutions. Additionally, the VA approach guarantees the technological
transparency in the virtual modeling of the FMOTSs and also copes with the system's
design complexity, by offering a unified development environment that allows the
system-level design of the IIS' integrating parts.

The VA methodology is based on co-design principles [11], by promoting the cross
fertilization between the hardware and the software domains. Additionally, co-design

Heterogeneous Information Systems Integration: Organizations and Methodologies 631

allows the semantical unification of the relevant concepts for system-level modeling,
the application of data abstraction (object-orientation) to design target architectures
and the use of executable specifications to evaluate the system's requirements in its
initial developments steps [12]. The research in cross fertilization between both do-
mains has been given excellent results and the work in this field must continue to
promote the systems' virtual prototyping (totally in software) and to incorporate the
operational approach and the spiral process model into design methodologies.

The hardware/software partitioning and the global scheduling of heterogeneous
systems are co-design problems not consensually solved up to now, since they impose
the complex conciliation of the synchronization of pseudo-concurrent software with
inherently parallel hardware, together with the minimization of communication costs
between several partitions [13]. These tricky problems can be even more difficult to
tackle if hard real-time systems are considered, with their additional non-functional
requirements that enormously constrict the allowable design space exploration.

3 Organizational Configurations

Any engineering project possesses an environment defined by: (1) the project techni-
cal background, which consists on a scientific and technological framework that de-
fines methodologies, techniques and tools used by the engineer within the execution of
the project activities; (2) the nature of the economical activities, which defines the
application scope of the project deliverables.

3.1 Canonical IT Activities

Taking into account the execution context of an IIS integration project, three canoni-
cal classes of organizational IT (information technology) activities can be defined:

1. #A activities (R&D). These activities produce generic goods and services for a set
of economical activities, but without a binding with a concrete instance of those
economical activities. These #A activities are typically R&D activities and are
developed by universities, research centers, hi-tech enterprises, and R&D depart-
ments of important corporations. An organization that executes these activities
possesses ECAD (Electronic Computer-Aided Design) and CASE development
tools and produces embeddable target architectures and software elements for
compositionally implementing IISs.

2. #B activities (integration). These activities use the generic goods and services
(furnished by #A activities) within a concrete instance of economical activities, by
adapting and customizing the reusable technological components. These #B ac-
tivities typically integrate technological solutions, and are developed by engi-
neering companies and engineering departments of important corporations. An
organization that executes these activities detains embeddable target architectures
and software elements (produced by type #A activities) and produces IIS final
solutions for supporting the supervision and monitoring of production, mainte-
nance and quality indexes of industrial processes.

632 Ricardo J. Machado and João M. Fernandes

3. #C activities (production). These activities correspond to the economical activi-
ties that constitute the target problem domain.

For implementing ICISs with the VA approach, there are several professional pro-
files that do contribute for the accomplishment of the 3 types of activities, previously
indicated:

- the hardware engineer, which conceives embeddable target architectures at level 1
of the VA methodology (see sec. 4), directly contributing to execute type #A ac-
tivities;

- the software engineer, which conceives FMOTSs at level 2 of the VA methodol-
ogy (see sec. 4), directly contributing to execute type #A activities;

- the systems engineer, which constructs final solutions at level 3 of the VA meth-
odology (see sec. 4), directly contributing to execute type #B activities;

- the maintenance technician, which technically supports the systems engineer with
respect to the processes and equipments used for type #C activities and assures that
all the procedures for installing and maintaining the final solution are done;

- the manager that is responsible for type #C activities.

3.2 Configurations

Based on the 3 types of activities and the 5 profiles involved with them, the authors
obtained 5 organizational configurations that serve as a reference for the same number
of environments where ICISs can be developed.

In configuration I (fig. 1a), there is a different organization for each type of activ-
ity: (i) an organization (of type #A) that just executes type #A activities, by recurring
to hardware and software engineers; (ii) an organization (of type #B) that just executes
type #B activities, by recurring to systems engineers; (iii) an organization (of type #C)
that just executes type #C activities, by recurring to maintenance technicians and man-
agers. This configuration requires the organizations to have a high degree of speciali-
zation, since each one only supports one type of activity.

Configuration II (fig. 1b) differs from configuration I by the fact that the mainte-
nance technician is included in the organization of type #B instead of type #C. This
configuration requires the maintenance technicians (and also the systems engineers) to
be sufficiently able to adapt themselves to the specific details of all the type #C or-
ganizations where they develop ICIS projects.

In configuration III (fig. 1c), there are only 2 different organizations involved in the
project: (i) an organization (of type #A) that just executes type #A activities, by recur-
ring to hardware and software engineers; (ii) an organization (of type #B + #C) that
executes types #B and #C activities, by recurring to systems engineers, maintenance
technicians and managers. This configuration covers the situation where a big corpo-
ration (organization of type #B + #C) is capable of promoting the conception of final
solutions.

Heterogeneous Information Systems Integration: Organizations and Methodologies 633

hardware eng.

software eng.

systems eng.

technician
manager

#A #B #C

systems eng.

technician

manager

#A #B + #C

hardware eng.

software eng.
systems eng.

technician

manager

#A #B #C

hardware eng.

software eng.

technician

manager

#C

hardware eng.

software eng.

systems eng.

#A + #B

manager

#C

hardware eng.
software eng.
systems eng.

technician

#A + #B

a)

b)

c)

d)

e)

Fig. 1. Organizational configurations

In configuration IV (fig. 1d), there are only 2 different organizations involved in
the project: (i) an organization (of type #A + #B) that executes types #A and #B ac-
tivities, by recurring to hardware, software, and systems engineers; (ii) an organization
(of type #C) that just executes types #C activities, by recurring to maintenance techni-
cians and managers. This configuration concentrates, on a single corporation (organi-
zation of type #A + #B), all the R&D effort and the way technology is transferred to
the industrial parties capable of promoting the final solutions conception.

Configuration V (fig. 1e) differs from configuration IV by the fact that the mainte-
nance technician is included in the organization of type #A + #B instead of type #C.

It is possible to obtain more organizational configurations than those discussed
above. However, there is no real interest, for example, to concentrate the 3 types of
activities on a single organization or to separate in distinct organizations the hardware
and the software engineers, since the VA methodology has two main goals:

- The first one is to free the organizations that execute type #A activities from:
(i) having a deep knowledge of all the application areas where the technologies
developed by them can be used; (ii) developing final solutions; and (iii) installing
and maintaining final solutions. Thus, organizations that only execute type #A ac-
tivities can have less dispersion on their work, which implies more time and atten-
tion to research and to develop industrial prototypes and integratable components.
The desire of only assigning type #A activities to these organizations is related to
the need of having final products with higher quality standards, i.e., more versatile,
robust and effective FMOTSs.

634 Ricardo J. Machado and João M. Fernandes

- The second aim is to promote the appearance of organizations only responsible for
type #B activities by: (i) supplying a CAE tool that transparently supports the con-
struction of the final solutions; and (ii) making available a store of FMOTSs ready
to be parameterized and installed. Thus, these organizations will not have to pur-
sue R&D activities, which implies that they can concentrate on the integration of
final solutions.

There is a third class of organizations, named #C, that corresponds to the industrial
organization that receives the designed ICIS to install in its shop-floor.

With these two aims, the VA methodology addresses the first 3 configurations (I, II
and III) instead of the last 2 ones (IV and V). The preferred configurations assure that
the organizations have a specific interface with their counterparts: organizations of
type #A only develop FMOTSs, and organizations of type #B construct final solutions
that satisfy the needs of type #C activities, by using FMOTSs (they may also be re-
sponsible for installing and maintaining the final solutions).

Contrarily, configurations IV and V were considered undesirable, since they re-
quire organizations of type #A activities to additionally develop final solutions and,
even, to install and maintain them.

From a methodological point of view, this analysis to the organizational configura-
tions justifies the need to formalize the profiles of the 2 professionals (software and
systems engineers) that are always present on different organizations. By working on
different organizations, it is mandatory to address the issues associated to the design,
the reuse and the composition of components (FMOTSs). It is also obligatory to take
into account that the components must be fully documented in what concerns their
functionalities and the way they can be interconnected.

Within the VA approach, the systems engineer should: (1) know the FMOTSs be-
havioral interface; (2) know the final solution's requirements; and (3) be able to
parametrize and interconnect the selected FMOTSs to fully accomplish the require-
ments of the final solution. The software engineer should: (1) know the target archi-
tecture designed by the hardware engineer; (2) know the algorithmic requirements to
implement over the target architecture; and (3) be able to develop generic components
(FMOTSs).

4 The VA Approach

This section discusses how to obtain a design environment for system-level integration
of real-time embedded FMOTSs capable of implementing ICISs. Within that envi-
ronment, models should be iteratively reified until the system is implemented, without
the need for manual macro-refinements, with the transparent reuse of embeddable
target architectures and software modules, and supporting, throughout the design pro-
cess, the activities of the three professionals typically involved (hardware, software
and systems engineers).

To accomplish this objective, it is necessary to decouple the traditional top-down
one-all-going project approach into three feed-forward quasi-independent project
levels, each one with a different design flow, but organized by a common middle-out
macro-process design flow (fig. 2):

Heterogeneous Information Systems Integration: Organizations and Methodologies 635

- Hardware level (level 1 of the VA methodology), where the embeddable target
architectures are provided to computationally support the parameterisable
FMOTSs [14]. It is possible to make use of reconfigurable technologies to imple-
ment, directly in the hardware, algorithmic primitives that should be transparently
used in level 2. The introduction of these reconfigurable technologies promotes the
execution of typical co-design tasks, like the pre-partitioning tasks.

- Software level (level 2 of the VA methodology), where the parameterisable
programs to run on the FMOTSs are constructed with a CASE tool [15]. At this
level, the software engineer must decide which functionalities will run directly on
the processor and which ones will be synthesized for the reconfigurable devices.

- Information system level (level 3 of the VA methodology), where the final het-
erogeneous IIS solution is designed with a CAE tool, by integrating the previously
designed FMOTSs and the existing MIS [7]. The systems engineer can decide
whether to use the algorithms embedded in the FMOTSs or to conceive new ones
(or complement the existing ones) to run on the real-time gateway (the component
responsible for stubbing the interconnection of the ICIS with the MIS).

This decoupling must assure that it can be possible to establish, with the three kind
of engineering professionals, a co-design community within the same project, each
one with the responsibility of implementing the control primitives corresponding to his
capabilities and duties. This approach can be better explained by reinterpreting the 5
T's analysis [16].

Design
(des1)

Viability
Studies

Implementation
(imp1)

Analysis
(ana1)

level 1 of co-design

Design
(des2)

Viability
Studies

Implementation
(imp2)

Analysis
(ana2)

level 2 of co-design

Design
(des3)

Viability
Studies

Implementation
(imp3)

Analysis
(ana3)

level 3 of co-design

Project
Organization #A

Project
Organization #B

ab
st

ra
ct

io
n

le
ve

l

Fig. 2. Macro-process of the 3-level methodology

636 Ricardo J. Machado and João M. Fernandes

{10.}
execute

maintenance

{9.}
send

command

{8.}
receive

information{3.}
define
scope

{4.}
define

information

{1.}
design
boards

{2.}
program
boards

{7.}
configure
boards

{6.}
install
boards

{5.}
design
solution

UseImplementation

Maintenance

DesignAnalysis

Project
Organization #A

Project

Organization #B
Organization #C

«module
reutilization»

«virtual
modelling»

«technology
constriction»

Fig. 3. Final solutions life-cycle diagram

Timelines. The time to market pressure, together with the usual requirements modifi-
cations, suggests that methodologies try to address the reduction of development times
and promote the use of rapid implementation technologies, such as COTS (compo-
nents off-the-shelf) [17, 18]. To make this feasible in the use of reconfigurable proc-
essing target architectures, functional modules (built with target architectures loaded
with parameterisable software) that transparently implement low-level control primi-
tives must be defined. These modules offer, to the level 3, the possibility to reuse
reconfigurable technology. These modules correspond to the previously called
FMOTSs.

Tasks. The methodologies in use today suffer from poor systematisation in what con-
cerns the several design tasks that must be executed. This inconsistent design process
approach does not promote a correct integrated design of the system's parts and does
not support the effective reuse of components, available from previous projects. This
reality justifies the need to carefully integrate co-design within its three levels, by
defining differential tasks for target architectures design (hardware engineers), for
FMOTSs design (software engineers) and for final solutions design (systems engi-
neers).

Tools. There is an extreme necessity of promoting the integration of tools to permit
systems engineers to achieve an effective (semi-)automatic design at system-level.
This demand is only feasible if the two other kinds of engineering professionals have
access to design tools capable of supporting the intra-communication design flow
levels, in what concerns the semantical manipulation of unified representations and the
automatic code generation.

Technology. Taking into account the Moore's Law, custom solutions are only inter-
esting in a narrower time-window. In this context, it is advantageous to adopt method-
ologies capable of supporting technologies that allow the periodic update of compo-

Heterogeneous Information Systems Integration: Organizations and Methodologies 637

nents (model year upgrade) for performance increase, but assuring, at least, the same
functionality. This model year upgrade of components benefits from the co-design
level decoupling, since each engineering professional is only concerned with the up-
date within its design level, but contributing for the global updating of the final solu-
tion.

Fig. 4. Process-level object diagram of the 3-level approach

638 Ricardo J. Machado and João M. Fernandes

Talent. Besides all the R&D work that this co-design approach demands, the training
of the three engineering professionals in this new way of executing and designing with
heterogeneous implementations must not be ignored.

Fig. 2 illustrates two kinds of projects, each one executed within a different organi-
zation. At organization #A, ready-to-use FMOTSs are delivered, which support lev-
els 1 (hardware engineers) and 2 (software engineers) of the VA methodology; and at
organization #B, FMOTSs to deliver an ICIS final solution are parameterized, which
support level 3 (systems engineers) of the VA methodology.

5 The 3-Level Process Model

The execution of a process-level (not product-level) requirements capturing task of the
3-level approach results in a UML use case diagram (not shown in this paper) that
represents the duties and responsibilities of each engineering professional. From this
diagram one can obtain the final solutions life-cycle diagram, shown in fig. 3.

In this diagram, there are three new categories for the UML «relationship» stereo-
type:

1. «technology constriction». This stereotype restricts the domain of use cases
3. define scope and 4. define information within organization #B to the economi-
cal scope of its supplier (organization #A). This restriction is justified by the fact
that each organization #A possesses a limited set of target architectures and sup-
plies only a restricted set of FMOTSs with well-defined functionalities.

2. «virtual modeling». This stereotype imposes that in the execution of use case
5. design solution, it is necessary to manipulate virtual models of the selected
FMOTSs (supplied by one organization #A and chosen to be components of the
final solution). This virtual modeling is only concerned with the required charac-
teristics to allow the interconnection and parameterization, in the scope of the fi-
nal solution, of the chosen FMOTSs. This technological transparency should
guarantee a good complexity control level in the design of final solutions.

3. «module reutilization». This stereotype indicates that use cases 6. install boards
and 7. configure boards reuse previously designed FMOTSs (by the organization
#A). This reutilization avoids the design of specific and narrow application solu-
tions, although it guarantees a satisfactory customization level of the functional
and non-functional demands of the final solution.

These three stereotypes were defined to formally separate the level 2 from the
level 3 of the VA methodology and, thus, to correctly characterize the design activities
of the software engineers and the systems engineers.

Following the 4-set rule set presented in [7], a process-level object diagram (fig. 4)
is obtained from the process-level use case diagram. This object diagram represents
the requirements of the design tools that should support the 3-level approach. In this
diagram, there are two application packages (A and B).

Application A package supports the level 2 of the VA methodology by making
available:

Heterogeneous Information Systems Integration: Organizations and Methodologies 639

4. one environment with an user interface (2.3.i FMOTS design) capable of assisting
the design tasks of software engineers, who possess the structural knowledge of
the target architectures (1.2.d computing model and 1.3.d interconnecting rules)
and who take some previous decisions (2.1.d configurable algorithm and
2.2.d chosen boards);

5. one engine capable of (semi-)automate both the design of FMOTSs
(2.3.c FMOTS design) and the generation of final code (2.3.d FMOTS) for the
system synthesis and implementation in the chosen target architecture;

6. one engine capable of (semi-)automate the generation of virtual models
(2.4.c generate virtual model) to allow, in the application B package, the configu-
ration, in a technological transparent way, of the previously designed FMOTSs (in
application A package).

Application B package supports the level 3 of the VA methodology by making
available:

1. one environment with an user interface (5.4.i design final software) capable of
assisting the design tasks of information systems engineers, who possess the
knowledge of the final solutions requirements (3.d defined scope and
4.d defined information) and who take some previous decisions
(5.1.d final algorithms, 5.2.d chosen FMOTSs and 5.3.d defined topology);

2. one engine capable of (semi-)automate the generation of final solutions
(5.4.c design final software).

For implementing the application A package, a Java-based tool is being used and
for the application B package, the LabVIEW CAE tool is being adopted (fig. 5) [5]. In
LabVIEW, the technological transparency in the remote invocation of the shop-floor
embedded components is accomplished by the use of VIs (virtual instruments) that
represent their behavioral interface for pre-run-time parameterization and for estab-
lishing the run-time interconnection with their distributed implementations.

Note that the final solution package corresponds to the ICIS final solution to be in-
stalled in the organization #C shop-floor. This final solution executes the FMOTSs
configuration (7.c configure board) and then executes the supervision and monitoring
algorithms included in the FMOTSs (8.c receive information and 9.c send command).
LabVIEW is also the central element of the final solution that gathers and distributes
the information from all the processing elements; i.e., LabVIEW performs at run-time
the role of a semantical gateway between the shop-floor elements and the corporate
MIS.

Fig. 6 depicts the global 3-level environment with the cascaded ECAD, CASE and
CAE tools supporting the three engineering designers in the implementation of het-
erogeneous IIS final solutions.

6 Conclusions

This paper has presented a 3-level methodology, especially tuned to apply the basic
co-design principles to the open component-based design of parameterisable modules,

640 Ricardo J. Machado and João M. Fernandes

capable of supporting the integration of heterogeneous industrial information systems.
The methodology is intended to help various IT practitioners to design systems that
can be reused and adapted by others. The paper starts by identifying three classes of
activities for building an IIS:

- The R&D activities that produce generic and embeddable hardware/software ele-
ments.

- The integration activities that adapt the previous software to a specific applica-
tion/system.

- The production activity that makes sure that the application/system runs in the
target environment.

To achieve a comfortable integration of the activities and tools necessary to de-
velop industrial information systems with the proposed methodology, the authors have
selected three organizational configurations that are considered appropriate to support
the global methodology. The activities can be split over three different organizations
or be tackled within the same organization. The paper describes a methodology to
support the design and development to be integrated softly among these three groups
of practitioners. The systematic analysis and metric assessment of other comparable
methodological approaches were not considered to be presented in this paper.

Within this context, from the process-level use case diagram (final solution
life-cycle diagram), a process-level object diagram was obtained, which specifies the
requirements of the design tools supporting the 3-level approach.

Based on these requirements, a set of design tools has been assembled to support
the VA methodology. Both, the methodology and tools, have been already used in real
projects for developing industrial information systems.

Fig. 5. The LabVIEW CAE tool

FMOTS
parameters

parameters
setup

process
number

Heterogeneous Information Systems Integration: Organizations and Methodologies 641

HW Eng.

shop-floor

ECAD
tools
(...)

CASE
tool

(Oblog)

CAE
tool

(LabVIEW)
Ethernet - Dep. Produção

Ethernet - Dep. Informática

CAN - ShopFloor #3

CAN - ShopFloor #2

CAN - ShopFloor #1

CANIO

CANIT v4

Servidor de BD

Servidor de Ficheiros

CANIO

CANIT-FPGA v1

CANIO

CANIT v3 CANIT-FPGA v1 RF-CANIT v1

CAN-Server v1
Gateway

Router

POS

ERP

final solution

SW Eng.

IS Eng.

boards library

FMOTSs library

stub library

boards
store

FMOTSs
store

Fig. 6. Global 3-level environment

The LabVIEW environment proved to be a powerful and mature CASE tool, by
providing the essential mechanisms to benefit from the component-based design ap-
proach in the reuse of components, the rapid-prototyping in the user’s requirements
validation, and high-quality user interfaces easily programmed for the final solutions.
Additionally, the environment supports the system life-cycle evolution, requirements
modification and software maintenance, which greatly contributes to deal with the
development of heterogeneous information systems.

Acknowledgments

We gratefully acknowledge financial support from Fundação para a Ciência e a Tec-
nologia (FCT) and Fundo Europeu de Desenvolvimento Regional (FEDER) under
project „METHODES: Methodologies and Tools for Developing Complex Real-Time
Embedded Systems“ (POSI/37334/CHS/2001).

References

1. Waldner, J.-B. CIM: Principles of Computer-Integrated Manufacturing. John
Wiley & Sons, 1992.

2. Ranky, P. G. Computer Networks for World Class CIM Systems. CIMware Lim-
ited, 1990.

642 Ricardo J. Machado and João M. Fernandes

3. Scholz-Reiter, B. CIM Interfaces: Concepts, Standards and Problems of Inter-
faces in Computer Integrated Manufacturing. Chapman & Hall, 1992.

4. Eckstein, S., P. Ahlbrecht, K. Neumann. Increasing Reusability in Information
Systems Development by Applying Generic Methods. In 13th Conference on Ad-
vanced Information Systems Engineering (CAISE'01), pages 251-266, Interlaken,
Switzerland, LNCS 2068.

5. Machado, R. J., J. M. Fernandes, A. F. Silva. LabVIEW as a CASE Environment
for the Integration of Distributed Shop-Floor Embedded Components with Corpo-
rate Information Systems. In National Instruments Conference on Measurement
and Automation (NIWeek'01), Academic Session, Austin, TX, USA, August
2001.

6. Fernandes, J. M., R. J. Machado, H. D. Santos. Modeling Industrial Embedded
Systems with UML. In 8th ACM/IEEE/IFIP Int. Workshop on Hard-
ware/Software Codesign (CODES 2000), pages 18-22, San Diego, CA, USA,
ACM Press, May 2000.

7. Fernandes, J. M., R. J. Machado. From Use Cases to Objects: An Industrial In-
formation Systems Case Study Analysis. In 7th International Conference on Ob-
ject-Oriented Information Systems (OOIS'01), pages 319-328, Calgary, Canada,
Springer-Verlag, August 2001.

8. Fernandes, J. M., R. J. Machado. System-Level Object-Orientation in the Specifi-
cation and Validation of Embedded Systems. In 14th Symposium on Integrated
Circuits and System Design (SBCCI'01), pages 8-13, Pirenópolis, Brazil, IEEE
Computer Society Press, September 2001.

9. Köhler, H. J., U. Nickel, J. Niere, A. Zündorf. Integrating UML Diagrams for
Production Control Systems. In 22nd International Conference on Software En-
gineering (ICSE 2000), pages 241-251, Limerick, Ireland, ACM Press, June
2000.

10. Derynck, R. R., T. Hutchinson. Integrating Real-Time Systems with Corporate
Information Systems, The Hewlett-Packard Journal, 50(1):26--28, 1998.

11. Rozenblit, J., K. Buchenrieder. Codesign: Computer-Aided Software/Hardware
Engineering, IEEE Press, 1995.

12. Machado, R. J., J. M. Fernandes, H. D. Santos. A Methodology for Complex
Embedded Systems Design: Petri Nets within a UML Approach. In B. Kleinjo-
hann, editor, Architecture and Design of Distributed Embedded Systems,
pages 1-10, Kluwer Academic Publishers, 2001.

13. Yen, T.-Y., W. Wolf. Hardware-Software Co-Synthesis of Distributed Embedded
Systems. Kluwer Academic Publishers, 1996.

14. Machado, R. J., J. M. Fernandes, A. J. Esteves, H. D. Santos. An Evolutionary
Approach to the Use of Petri Net Based Models: From Parallel Controllers to
HW/SW Co-Design. In A. Yakovlev, L. Gomes, and L. Lavagno, editors, Hard-
ware Design and Petri Nets, pages 205-222, Kluwer Academic Publishers, 2000.

15. Machado, R. J., J. M. Fernandes. A Petri Net Meta-Model to Develop Software
Components for Embedded Systems. In 2nd IEEE International Conference on
Application of Concurrency to System Design (ACSD'01), pages 113-122, New-
castle Upon Tyne, U.K., IEEE Computer Society Press, June 2001.

Heterogeneous Information Systems Integration: Organizations and Methodologies 643

16. Madisetti, V. K., M. A. Richards. Advances in Rapid Prototyping of Digital Sys-
tems. IEEE Design & Test of Computers, 13(3):9-11, 1996.

17. Voas, J. The Challenges of Using COTS Software in Component-Based Devel-
opment. IEEE Computer, 31(6):44-45, 1998.

18. Wang, Y., S. Patel, D. Patel. On Built-in Test Classes for Object-Oriented and
Component-Based Information Systems In 7th International Conference on Ob-
ject-Oriented Information Systems (OOIS'01), pages 307-316, Calgary, Canada,
Springer-Verlag, August 2001.

	Introduction
	Overview
	Organizational Configurations
	Canonical IT Activities
	Configurations

	The VA Approach
	The 3-Level Process Model
	Conclusions
	Acknowledgments
	References

