
1

Can UML be a System-Level Language for
Embedded Software? *

João M. Fernandes, Ricardo J. Machado
Dep. Informática & Dep. Sistemas de Informação
Universidade do Minho, Braga, Portugal

Abstract: The main purpose of this paper is to discuss if the Unified Modeling Language
(UML) can be used as a system-level language (SLL) for specifying embedded
systems, in co-design environments. The requirements that a language has to
fulfil to be considered as an SLL are presented and the advantages and
disadvantages of using UML as an SLL are also indicated. The contribution of
this paper consists on the explicit discussion of the key issues that must be
taken into account when deciding if UML is to be used in a project as an SLL
for embedded software.

1. INTRODUCTION

The discussion on the “best” system-level language is a key topic on the
area of embedded software development. Among the alternatives, the
following are generally identified: C++, Java, domain-specific languages and
pure semantics. This last choice is not a language, in the proper sense, but is
typically introduced taking into consideration that the language (i.e. its
syntax) is not an issue, and what really matters is its semantics.

Although the designers have several alternatives to choose from, a vast
majority of people still use C/C++ as the languages for solving their co-
design problems and find them good SLLs. C/C++ are indeed suitable
solutions for implementing embedded systems, but those languages are not
adequate for system-level modelling. Although C++ is an object-oriented
extension of C, both present the same basic characteristics. This implies that

* Research funded by FCT and FEDER under project METHODES (POSI/37334/CHS/2001).

2 João M. Fernandes, Ricardo J. Machado

C/C++ are languages near the hardware, which is a good characteristic for
achieving strong predictability on execution time (a fundamental issue for
real-time systems), but also that they lack some of the characteristics that an
SLL should present, which, are hierarchy, concurrency, programming
constructs, abstract communication, synchronization mechanisms, exception
handling, structural representation and state-based constructs [13].

The analysis presented in this paper is especially oriented for
heterogeneous environments, where the hardware and the software
components are equally treated, during the analysis phase, namely in what
concerns the modelling and specification of behavioural and non-functional
requirements. This does not mean, however, that the ideas presented here are
limited to that specific field. Several concepts and arguments presented here
can also be applied to systems that can be classified as being complex and
with strong non-functional constraints. Typical hardware-based solutions,
where systems-on-a-chip are the most constringent instances, are not being
considered. Instead, software-based systems with strong constrictions, such
as real-time, fault-tolerance and explicit concurrency, are the main kind of
systems to consider. The paper does not address how to technically use UML
for the specification of embedded systems, since that topic is well covered in
the literature. For example, in [12] a UML profile called “Embedded UML”
is presented and several other groups have made proposals for developing
embedded systems with UML [3, 7, 16]. The opinions expressed in this
paper about the system-level capabilities of UML are based on the
experience gained with its application in real industrial projects [5, 6].

2. EMBEDDED SYSTEMS DESIGN

Until recently, researchers have largely ignored embedded systems
development since, as a scientific problem, it was small and not interesting.
This reality has changed for many different factors, and now computer
scientists are beginning to pay more attention to the embedded arena [9].

Typically, embedded systems have specialized functionality, incorporate
microprocessors and have a limited capacity of memory. To meet size and
performance requirements, designers usually use a real-time operating
system (RTOS) and proprietary development tools, well-tuned for meeting
the devices' memory limitations.

In the past, embedded systems were developed in assembly languages.
Later, due to more complex functionality, some companies turned to higher-
level languages (HLLs) like C and C++. HLLs make it easier to develop the
systems, but they still present problems, due to their inherent complexity,
which implies long schedules and high non-recurring engineering costs.

Can UML be a System-Level Language for Embedded Software? 3

To exacerbate these problems, there were a greater number of target
operating systems and processors, sometimes even within the same product
families. Manufacturers faced enormous competitive pressures, and were
asked to develop their products in a shorter time.

Nowadays, embedded systems are networked and distributed and, more
importantly, consumers demand more complex functionality, which greatly
increases software complexity. As a consequence, these systems can no
longer be designed as was done traditionally, and new approaches and new
languages are required. This implies that describing and modelling a modern
embedded system requires an SLL.

UML is one possible solution to this problem, since it promotes a more
open, standard-based pre-implementation development environment, which
would lower costs and speed development.

3. SYSTEM-LEVEL IN EMBEDDED DESIGN

The system-level is generally described as the abstraction level where the
differences between hardware and software are minimal. At this level, the
entire system is looked at as a set of cooperating subsystems [15]. This
represents a big advantage for real-time embedded systems development,
because it allows the system to be specified with a unified (homogeneous)
representation, and makes co-design an effective approach for developing
heterogeneous implementations.

Since it is quite obvious that traditional languages, especially procedural
HLLs and HDLs (Hardware Description Languages), are not able to cope
with the ever increasing complexity of embedded systems, a race for
defining “the” SLL for co-design of embedded systems is emerging. Among
the several alternatives for winning that race, the following ones seem strong
and firm candidates: ANSI C/C++, SystemC, Java, Superlog, and Rosetta.

It is not uncommon to mix concepts of using a language for specification
(what to design) and using it for implementation (how to design). When
referring to SLLs, it should be highlighted that its main usage, within the
design flow, is based on a specification-oriented approach, however, it must
also allow the introduction of design decisions, by syntactic inscription of
refinement tags, to semantically support the (semi-)automatic
implementation of the system.

Although there are a variety of different opinions, visions and
(commercial and scientific) motivations, with respect to SLLs, as the
previous enumeration suggests, it is possible to describe a generic set of
requirements that the co-design community accepts more or less
consensually for an SLL [1]:

4 João M. Fernandes, Ricardo J. Machado

– Modelling: An SLL must allow the software and the hardware

components of a system to be collectively developed (i.e. co-specified and
functionally co-refined), in such a way that the system as a whole can be
easily perceived by the project members. Ideally, an SLL should be able to
treat all the design space, supporting the semantical specification of the
non-functional requirements, which may be provided by different
technological areas.

– Implementation: An SLL must give an effective support to the system's
implementation, based on automatic (or at least, semi-automatic)
refinements, to feed synthesizable HDLs and HLLs, in order to justify a
co-design approach at the system-level. As a consequence, the complexity
can be coped, but, more importantly, the development time is reduced and
a guarantee can be given with respect to the implementation of the user's
requirements (models' continuity).

– Simulation: An SLL must be able to support (and be supported by)
powerful simulation environments, where the designed system may be
analysed and experimented in relation not only to its functional behaviour
but also to its expected performance. The executability of an SLL is a vital
characteristic to facilitate the requirements' capture and validation.
In addition to the 3 previous points, there are many others that may be

considered. Thus, an SLL should: (i) allow the explicit (or implicit)
description of concurrency; (ii) possess a well-defined semantic; (iii) be
sufficiently appealing and advantageous to be naturally adopted by
designers; (iv) be supported by user-friendly tools; and (v) ensure a reduced
learning curve. Nevertheless, they still need a mature decision, since some
are pure intentions and others are not at all possible to be satisfied at the
moment.

It is not expected that the migration to the system-level with relation to
language issues will be fulfilled by SLLs. It is admissible, at least during a
transitory phase, to use other languages that may be helpful to describe
functionalities not within the scope of the SLLs available at a precise
moment. Apart from defining efficient SLLs, it is important to conceive
development methodologies to support the design at the system-level. This
implies the selection of the various languages to be used, the definition of
the development phases, and the relation amongst languages and phases.

Thus, the main question is how to obtain a system-level co-design
environment to support the modelling of embedded systems and to assist
their semi-automatic implementation. This must be made in such a way that:
– the models may be iteratively reified until the final implementation is

obtained, without the need to manually perform macro-refinements, with
the transparent reuse of pre-designed hardware target architectures and
software modules;

Can UML be a System-Level Language for Embedded Software? 5

– the activities of the different project members that are involved in

complex projects are properly integrated.

4. UML FOR SYSTEM-LEVEL

UML is a general-purpose modelling language for specifying and
visualizing the artefacts of computer-based systems, as well as for business
modelling and other non-software systems [2]. UML is a standard language
for defining and designing software systems, and is being progressively
accepted as a language in industrial environments. UML is meant to be used
universally for the modelling of systems, including automatic control
applications with both hardware and software components, so it seems an
adequate choice for embedded systems.

Although UML does not guarantee project success, it may improve many
related topics. For example, it substantially decreases the cost of training,
when there is the need to make changes in projects or organizations. It also
provides the opportunity for new integration among tools, processes and
domains. Finally, UML enables designers to focus on delivering business
value and provides them the tools and techniques to accomplish this.

4.1 Advantages of using UML

4.1.1 Standard

UML is a multiple-view and graphical notation that presents a variety of
diagrams for different modelling purposes. Although the novice UML user
can get confused with all these possibilities, it is possible and desirable to
choose the important diagrams for a specific application field. One of the
main advantages of using UML is that it is a standard. UML is an OMG
standard and is expected to become an ISO standard very soon [8]. Being a
standard implies that in the near future it is likely that every TI professional
will understand it, so it will be widely accepted. This also implies that
several computer tools will be produced for simplifying the tasks of drawing
the diagrams and for automatically obtaining implementation code.

4.1.2 Communication with the customer

UML is inherently a graphical language. Graphical languages are quite
important for promoting the communication between the system's designers
and customers. If the communication is not established in a proper way, the

6 João M. Fernandes, Ricardo J. Machado

designers are not sure that they are building the right system, even if they
know how to build the systems right.

Usually, customers have some special interest in the application, but they
are not supposed to, although they can, be aware of the technical problems
associated with the system. Additionally, designers are expected to be
competent in technical matters, but usually it is unlikely that they are experts
in every field of application. Thus, to be effective communication between
designers and customers must use a notation that is useful for both of them.

If specifications are intended to serve as a communication medium
among customers and designers, using graphical notations is essential, as
long as they are clear and intuitive (to be created, modified, and inspected by
both customers and designers), and also precise and rigorous (to be
validated, simulated or analysed by computers).

UML is a valid alternative for this purpose, since it is graphical and not
too complicated, but, at the same time, precise. Dialoguing with the
customers in C is not possible, at least generally speaking, and
communicating in a natural language, although extremely easy, is also not a
proper solution, since it introduces too many ambiguities.

4.1.3 Object-oriented modelling

UML is perfectly suited for specifying object-oriented (OO) systems,
since it includes several diagrams for that modelling paradigm. Although
many embedded systems are still implemented with non-OO languages, the
great majority is already developed with OO techniques and in the future it is
expected that an even greater majority will use OO principles and languages.

A methodology to system development based on the operational
approach is essential to guarantee that complex systems can be addressed.
The main idea of this approach is based on an executable specification that
evolves through transformational refinements to obtain the final
implementation. Object-oriented models are expected to fully address the
above requirement, since they allow the easy refinement of application-
domain objects during the whole process.

4.1.4 Platform independence

Specifying a system in UML can be absolutely platform-independent,
since the specification can be reused for different target architectures,
different technologies, different environments, and other non-functional
requirements. This is possible because, during the analysis and design
phases, UML supports views that can be reified without early introducing

Can UML be a System-Level Language for Embedded Software? 7

undesired implementation decisions, allowing the specification to preserve
its system-level nature, until the final implementation synthesis steps.

4.1.5 Automatic code generation

Being an OO notation, the structural and behavioural views of UML can
be “easily” transformed into code. UML has the potential to be automatically
transformed into any language, being it OO or not. There are some tools that
give support to this automatic code generation task, which imply that we are
near to reach the point where the specification is the implementation.

In contrast to the situation where the designers specify the system in the
final implementation language, using UML and automatic code generation
tools allows the system to be converted into different languages. This may be
a strong advantage, allowing the same specification to give origin to
different implementations for different purposes or for different
architectures. The existence of code generators is a key issue to allow
different hardware-software partitions to be obtained from the same unbiased
specification. In the authors' co-design approach [10], the code generation
allows the usage of the software parts with different pre-designed hardware
target architectures. The main point is to generate implementation code only
for the software parts and not for the hardware target architectures being
used. Thus, for this possibility to be real, it is absolutely necessary to model
both parts at the system-level.

Generating code from UML may result in problems, if some points are
forgotten. Generally, UML is missing implementation details, so it is not
easy to perform implementation specific optimisations (for size or speed)
from a given UML specification. If the generated code is not good for the
purpose in hand, the designer has to write code for implementation. To do
this, generated code must be easy to read in order to improve it manually.

4.1.6 Extensions

UML can be extended, since it was elaborated with that particular
purpose. This means that UML is not restricted to its original aims
(specification and visualization), but that it can be used to other purposes, if
the extension mechanism is properly used. Extensions in UML are achieved
through stereotypes, that augment the semantics of the meta-model.

There are several proposals to extend UML to support the modelling of
embedded systems. Real-Time UML [3] is one of the most popular, since it
treats all the development phases (analysis, design and implementation) in a
simple way. It is worth mentioning that Real-Time UML presents code in
C++ that was obtained after modelling the systems in UML.

8 João M. Fernandes, Ricardo J. Machado

4.2 Disadvantages of using UML

4.2.1 Number of diagrams

UML is a multiple-view syntactic meta-model, which means that it
defines many different diagrams, each one covering a particular modelling
perspective of the system. By one hand, this is an advantage, since it allows
the designers to specify the aspects they find important for a specific
purpose, without imposing a particular development process model. By
another hand, this may be a disadvantage, since the diagrams are
interrelated, although not formally, which means that inconsistencies can be
introduced in the system specification.

Another related problem lies on the fact that there are different diagrams
for similar purposes. For example, use case, collaboration, sequence,
statecharts and activity diagrams are all used for describing behavioural
perspectives of a given system. Although these five diagrams handle
different behavioural aspects, this may be confusing for some designers.

4.2.2 Not precise semantics

UML is not a formal notation, i.e., it has not a well-defined semantics.
UML is a semi-formal language, because it has a formal syntax, but its
semantics is not formal. This fact may impose different interpretations on the
semantics, which implies that a diagram may not be equally interpreted by
two different designers. Some authors have proposed formal (or at least,
precise or rigorous) semantics for the UML diagrams, but these proposals
have not been yet incorporated in the UML standard meta-model [4].

The OMG's UML 2.0 OCL RfP process is not finished, which implies
that the OCL definition has not come yet with a final proposal for a precise
object-oriented meta-modelling approach within the UML views [14].
Nevertheless, in their industrial projects, the authors are using UML with
OCL 1.0 for dealing with non-functional requirements. Sequence diagrams
with time inscriptions have been used for the specification of the canonical
latency and duration constraints, which are viewed as composites for more
accurate categories of timed requirements (for performance and safety
constraints specification).

4.2.3 New layer in the project

Modelling the different system's views in UML and later transforming
the multiple-view model into an implementation language imposes a new

Can UML be a System-Level Language for Embedded Software? 9

layer in the development process if compared with a situation where the
systems are directly coded in the implementation language. This may be
understood as a disadvantage because it implies that the designers must
know one more language. A more optimistic perspective is however
possible. If automatic code generation tools are available the final
implementation language may be transparent to the designer, which means
that he/she specifies the systems in UML, simulate their behaviour with the
specifications, and pushes a button to obtain the system's implementation.

4.2.4 State Orientation

State models can be specified for the system's components that possess a
complex or interesting dynamic behaviour. UML has two different meta-
models for this purpose: statecharts and activity diagrams. Although these
two meta-models present many important characteristics for reactive
systems, namely concurrency and hierarchy, they do not allow an elegant
treatment of the data path/plant resources management and the specification
of dynamic parallelism. These are two crucial topics for complex, distributed
and parallel embedded systems, since different parts of the system may
require the simultaneous access to the same resource.

For embedded systems, the application of Petri nets (PNs) to the
specification of the behavioural view is a proper alternative. PNs constitute a
formal meta-model that can be simulated, formally analysed, and for which
several implementation techniques are possible. In this context, for replacing
UML's statecharts and activity diagrams, it is suggested the adoption of the
shobi-PN, an extended object-oriented PN meta-model, to specify the
reactive and dynamic behaviour of the system's software components, with
the OCL 1.0 syntax to specify the non-functional requirements [11].

5. CONCLUSIONS

Based on the identified set of requirements for SLLs, this paper has
discussed if UML can be used as an SLL for modelling the different views
of embedded software systems. The answer to the question posed in the title
is definitively positive. Some arguments were presented in what concerns the
usage of UML as a solution to the problems faced by engineers when dealing
with complex embedded software, namely in what concerns the user's
requirements capture. For the system's requirements, UML lacks some
adequate solutions, since the “statecharts+activity diagrams” approach is not
satisfactory for describing the detailed behaviour in the presence of
asynchronism, hierarchical level violations and dynamic concurrency.

10 João M. Fernandes, Ricardo J. Machado

A description of UML's main features for modelling embedded software
is presented and its main advantages (standard, communication with the
customer, object-oriented nature, platform independence, automatic code
generation, extensions mechanism) and disadvantages (number of diagrams,
not precise semantics, new project's layer, state orientation) are discussed
within this field of software engineering.

6. REFERENCES

1. C. Ajluni. System-Level Languages Fight to Take Over as the Next Design Solution.
Electronic Design, 48(2):68-78+110, Jan-2000.

2. G. Booch, J. Rumbaugh, I. Jacobson. The Unified Modeling Language User Guide.
Addison-Wesley, 1999.

3. B.P. Douglass. Real-Time UML: Developing Efficient Objects for Embedded Systems.
Addison-Wesley, 1998.

4. A. Evans, J.-M. Bruel, R. France, K. Lano, B. Rumpe. Making UML Precise. 13th Conf.
on Object-Oriented Programming, Languages and Applications (OOPSLA'98), 1998.

5. J.M. Fernandes, R.J. Machado, H.D. Santos. Modeling Industrial Embedded Systems with
UML. 8th Int. Workshop on Hardware/Software Codesign (CODES 2000), pp. 18-22,
2000. ACM Press.

6. J.M. Fernandes, R.J. Machado. System-Level Object-Orientation in the Specification and
Validation of Embedded Systems. 14th Symp. on Integrated Circuits and System Design
(SBCCI'01), 2001. IEEE CS Press.

7. R. Jigorea, S. Manolache, P. Eles, Z. Peng. Modeling of Real-Time Embedded Systems in
an Object-Oriented Design Environment with UML. 3rd Int. Symp. on Object-Oriented
Real-Time, Distributed Computing (ISORC 2000), pp. 210-213, 2000.

8. C. Kobryn. UML 2001: A Standardization Odyssey. Communications of the ACM,
42(10):29-37, Oct-1999.

9. E.A. Lee. What's Ahead for Embedded Software? IEEE Computer, 33(9):18-26, Sep-2000.
10. R.J. Machado, J.M. Fernandes, H.D. Santos. A Methodology for Complex Embedded

Systems Design: Petri Nets within a UML Approach. Architecture and Design of
Distributed Embedded Systems, B. Kleinjohann (ed.), chapter 1, pp. 1-10, 2001. Kluwer.

11. R.J. Machado, J.M. Fernandes. A Petri Net Meta-Model to Develop Software
Components for Embedded Systems. 2nd Int. Conf. on Application of Concurrency to
System Design (ICACSD'01), pp. 113-22, 2001, IEEE CS Press.

12. G. Martin, L. Lavagno, J. Louis-Guerin. Embedded UML: a merger of real-time UML and
co-design. 9th Int. Symp. on Hardware/Software Codesign (CODES'01), pp. 23-28, 2001.
ACM Press.

13. S. Narayan, D.D. Gajski. Features Supporting System-Level Specification in HDLs. 2nd
European Design Automation Conference (EuroDAC - EuroVHDL'92), Sep-1992.

14. OMG. Response to the UML 2.0 OCL RfP (ad/2000-09-03). OMG Document ad/2001-08-
01, v. 1.0, Aug-2001.

15. F.J. Rammig. Approaching System-Level Design. VHDL for Simulation, Synthesis and
Formal Proofs of Hardware, J. Mermet (Ed.), pp. 259-278, Kluwer, 1992.

16. W. Wolf. Computers as Components: Principles of Embedded Computing System Design.
Morgan Kaufmann, 2001.

