
System-Level Object-Orientation in the
Specification and Validation of Embedded Systems

João M. Fernandes
Dep. Informática

Universidade do Minho
4710-057 Braga, Portugal

miguel@di.uminho.pt

Ricardo J. Machado
Dep. Sistemas de Informação

Universidade do Minho
4800-058 Guimarães, Portugal

rmac@dsi.uminho.pt

Abstract

The main aim of this paper is to present how the Unified
Modeling Language (UML) can be used as the notation to
specify the requirements of an embedded system. By using a
relatively small, but real, system (a supervision application)
as a running example, the paper illustrates the design flow
that can be followed during the analysis phase of complex
control applications. To assure the continuous mapping of
the models, the authors propose some guidelines to trans-
form the use case diagrams into a single object diagram,
which is the main diagram for the next development phases
(design and implementation). The Java programming lan-
guage is used for developing a system’s prototype, to allow
the system’s validation by the customers.

1. Introduction

Embedded systems are predominantly control-
dominated systems and usually designers specify them
using state-oriented models, such as FSMs or Petri Nets
[13]. However, for modeling more aspects of the systems
(namely, data and function), it is critical to consider the
use of multiple-view models. For this purpose UML was
adopted, since it is a notation that covers the most relevant
aspects of systems and is an industrial standard.

UML is a general purpose modeling language for spec-
ifying, visualizing, constructing and documenting the ar-
tifacts of computer-based systems, as well as for business
modeling and other non-software systems [3].

UML presents many advantages for modeling embedded
systems at the system-level. It is a standard, can be used
to communicate with the customer, is suitable to object-
oriented design, is totally platform independent, and pos-
sesses an extension mechanism to deal with non-standard
modeling issues that is being used to define various UML

application-domain profiles.
Among its disadvantages, UML can be criticized for hav-

ing too many diagrams, to not have a precise semantics, and
for introducing a new layer in the project.

2. The modeling process

The design flow in fig. 1 is proposed by the authors for
modeling an embedded system. Although the process is
presented in a sequential way (waterfall model), in practice,
it must follow a more iterative and incremental flow. Dur-
ing a project, discussions amongst the team members must
occur and information must be fedback to previous phases,
to maintain the documentation updated.

The main views for specifying the system, suggested
by the design flow of fig. 1, are captured by the following
UML diagrams: (1) Use case diagrams are used to capture
the functional aspects of the system as viewed by its users;
(2) Object diagrams show the static configuration of the sys-
tem, and the relations among the objects that constitute the
system; (3) Sequence diagrams present scenarios of typical
interactions among the objects that constitute the system or
that interact with it, and allow system-level test-bench oper-
ationalisation; (4) Class diagrams store the information of
ready-made components that can be used to build systems
and specify the inheritance and hierarchical relationships
among them; (5) State-chart diagrams are used to specify
the dynamic behavior of some classes.

The information that is represented in state-charts, ob-
ject diagram, and class diagram must be transformed into
an unified representation. Two alternatives can be consid-
ered:

� Oblog. Oblog is a UML-based (extended subset)
system-level object-oriented modeling language that
allows the system to be simulated and whose CASE
tool has automatic code generation capabilities [1].
The Oblog environment generates sequence diagrams,

Proceedings of the 14th Symposium on Integrated Circuits and Systems Design (SBCCI’01)
0-7695-1333-6/01 $10.00 © 2001 IEEE

as a simulation output, that can be compared with those
previously created to specify the system behavior in or-
der to validate the system’s requirements [14].

� Java. Java is an object-oriented programming lan-
guage and is used to generate software prototypes of
the system being specified. In this paper, we show only
the use of Java for system prototyping in order to val-
idate the user’s requirements. Java can be used as an
SLDL (system-level design language).

Textual Description

Plant/Data Path

Specification

Use Cases

4. transformation

3. description

1. environment capture

7. selection

6. behavioural
modelling

10. formalization

Analysis

Viability studies

Use Cases

Object

State-Chart

2. functional modelling

5. plant

modelling
9. protocol

OblogJava
12. simulation

Unified representation

Design & Implementation

13. matching

11. specification

8. classification

no
t v

al
id

va
li

d

modelling

Class

Diagram

Context

Diagram

Diagram

Diagram

Diagram

Sequence

Diagram

Sequence

DiagramPlant/Data Path

Uitlization of the

Figure 1. The design flow for developing em-
bedded systems.

3. Context and use case diagrams

In this paper, a Lighting Supervision System (LSS) is
used as a running example for showing the requirements en-
gineering steps performed in the pre-synthesis operational
phases. Although LSS is a relatively-small, but real, system
that is used for explanation purposes, the approach has al-
ready been applied to develop complex embedded systems

[7, 14, 6], where it is illustrated that a complete methodol-
ogy can be based on the analysis approach presented here to
support all the issues related to the design and implementa-
tion phases. These two phases are important to ensure that
the user’s requirements captured as this paper suggests can
be really synthesized in a continuous model transformation
approach.

The LSS is responsible for controlling the state of all the
lamps that are used to decorate a building. The first diagram
to be built is the context diagram of the system, that shows
which actors interact with the system (not shown here).

The next task consists on the definition of the use cases
of the system. A use case diagram is a powerful and use-
ful technique for capturing the user’s requirements. It is
an easy-to-read diagram that divides the system in its func-
tional points. A use case can be seen as a functionality or
service that is offered by the system to its users.

Fig. 2 shows the system-level (or top-level) use case dia-
gram, where it is possible to visualize which actors perform
which functionalities. Since use cases have different impact
on the final system, they must be ranked taken in consid-
eration its importance to the main functionality of the sys-
tem. This allows the project to follow a risk-driven process,
where the most important or complex functionalities of the
system are first tackled, leaving the less important ones to
be treated later.

main electrician

electrician lamps

LSS
alarms
Show

Register Program
lamps

lamps
Supervise

log
GenerateGenerate

measurement equipment

{ref=1}

changes

{ref=6}

{ref=5}

{ref=4}{ref=3}

{ref=2}

log

report

photo-cell

power relay

Figure 2. The use case diagram.

After identifying all the use cases of the system, the
next step is to describe their behavior. As the next exam-
ple shows for use case 5, the descriptions for the use cases
were made with informal text, which is one of the possible
alternatives [17].

“5. Supervise lamps. This function runs contin-

Proceedings of the 14th Symposium on Integrated Circuits and Systems Design (SBCCI’01)
0-7695-1333-6/01 $10.00 © 2001 IEEE

uously to turn on/off the lamps, according to the
program in use. It is also responsible for detecting
damaged lamps and registering this occurrences
as an alarm for further processing.”

4. Object diagrams

Object diagrams are also an important technique to show
the components that constitute the system. Transforming
the use cases that divide the system in a functional way into
objects is a critical task, since there is no direct mapping
from use cases to objects. Several use cases can give origin
to one single object, a single use case can give rise to a cou-
ple of objects, and sometimes there are intersections among
the use cases and objects.

The big question is how to identify the objects to be in-
cluded in the object diagram? The first solution would be
to consider each use case as an object [11]. This solution
does not ease the localization of the modifications that must
inevitably be executed during the system’s life cycle (either
during the development, or during its usage).

Another alternative, not considered in this work, is to use
data objects to just store information and to totally put the
dynamic behavior in control objects. It is better to avoid this
solution, since it would be built a structure similar to those
that result from applying any structured method, where the
separation between data and functions is quite evident. In
order to avoid the well-known problems associated with
the structured approach, it is recommended, among other
guidelines, to associate behavior to data objects.

The authors have developed a new method (known as
the 4-step rule set) [6] to obtain the objects from the use
cases, assuring the models continuity in the mapping from
the user’s to the system’s requirements. The object diagram
presented in fig. 3 was obtained after applying the 4-step
rule set to the use case diagram depicted in fig. 2. The ob-
ject diagram illustrates the usage of active and passive ob-
jects [15]. An active object is continuously executing (has
its own thread) and is autonomous, which means that it ex-
hibits some behavior without the command of another sys-
tem. In the example, objects 5.c supervise and clock are
active (notice that they are represented by a rectangle with
wider borders). The clock object was introduced since the
system deals with time information. On the other hand, pas-
sive objects do not initiate computation by their own and so
they just perform some action after the command of other
objects. Typically, the active objects are the basis for the
control of the system under consideration, while the passive
objects offer services to the active objects when asked for.

It is important to stress that the object diagram of fig. 3
is semantically compatible with the previously captured use
cases, because the former has been rigorously “calculated”
by using the 4-step rule set. This approach is a partial so-

lution to the problem of obtaining the objects from the use
cases, because there still exist some subjective interpreta-
tion in the execution of the steps. This is natural, since, al-
though analysis and design can be systematically supported,
it is important to leave some freedom for design space ex-
ploration. Typically, the object diagram is not directly re-
lated with the user’s requirements.

Notice that use cases specify the functionality of the sys-
tem (i.e. they divide it functionally), whilst the object dia-
gram is related to the structure of the system, which is used
as the foundation for the design and implementation phases.
The object diagram represents an ideal architecture for the
system, because its construction was completely indepen-
dent of any implementation issue (platform, programming
language, operating system, processor, etc.).

5. Class Diagrams

The majority of the OO methodologies do not pay too
much attention to the object diagram. Usually, the class
diagram is built firstly, but in this project the order was
reversed. To develop the system under consideration and,
more generally, embedded control systems, the authors be-
lieve that it is more important to have a good object model
than a good class diagram, because the elements that do
constitute the system are the objects and not their classes.
This was the main reason to first identify the objects and
to later classify them, that is, to select the classes to which
those objects belong. We are not advocating to not work out
the class diagram or even to ignore it. Obviously, the best
situation is having good object diagrams and good class di-
agrams. What the authors promote is that the focus should
be directed towards the construction of the object diagram.

It is possible that this object-driven perspective that puts
classes in an apparently secondary role might be classi-
fied by some specialists as object-based rather than object-
oriented. Notwithstanding, the approach that firstly defines
the objects and later the classes is somehow consistent with
the bottom-up discovery of inheritance, as defined in [16],
to organize the classes in a hierarchical structure.

Additionally, and without sub-estimating the benefits
and the utility that classes give to any object-oriented
project, some self-designated OO methodologies start to
relegate inheritance to a less important position [4].

Thus, it seems completely valid the approach that is pro-
posed here: identify first the objects and then classify them.
During the classification of objects the class structure is
built, modified, or ideally just used. Reuse, a buzzword in
all OO projects, can be achieved in three different ways,
during the classes discovery. First, if there are more than
one object of the same class, their definition is specified in
just one place. Second, if classes with similar properties are
found, hierarchical relations among those classes can be de-

Proceedings of the 14th Symposium on Integrated Circuits and Systems Design (SBCCI’01)
0-7695-1333-6/01 $10.00 © 2001 IEEE

<<control>>

{ref=6.i}

<<interface>> <<interface>>

<<interface>><<timer>><<interface>>

<<control>>

superviseprogram photoCell

registerChanges clock

{ref=6.d} {ref=5.i}{ref=5.c}

{ref=5.i}

{ref=4.c}

<<interface>>

contactoDisjuntor

{ref=4.i}

<<interface>>

showAlarms

{ref=2.i}

<<interface>>

{ref=3.i}

<<control>>

generateReport

{ref=3.c}

{ref=4.d}

<<interface>>

log

{ref=4.i}

{ref=1.i}

<<interface>>

measureAppareil

{ref=4.i}

generateReport

{ref=5.d}

lampsProgram

______________________________ _____________ ____________

___________________generateLoginfoLog__________________

________________ ________________ _________ __________________

infoLamps_________________

<<data>>

<<data>>

<<data>>

lamps

Figure 3. The Object diagram.

fined. Finally, when the class of an object is described, it is
possible that the developer recognizes the existence of that
class in a library, which allows it to be immediately reused.

Usually, the class diagram is understood as a template for
a set of applications that can be obtained from it. In other
words, the class diagram is a high-level generalization of
the system. Whenever the developers define the way classes
are interrelated, they are indicating all the systems (or, in
a different perspective, all the configurations of a system)
that can be obtained from those classes. So, it can be said
that the class diagram is like a cookie-cutter for the object
diagram.

With this perspective, it is common, in several method-
ologies, to not build the object diagram, since it automat-
ically results from the class diagram. Whenever an object
diagram is constructed, it is necessary to guarantee that the
relations expressed in the class diagram between two classes
also exist between instances of those classes. This is the
main reason that methodologies usually impose (or suggest)
class diagrams to be elaborated first than object diagrams.

There is an additional task in which it must be assured
that there is consistency between the information that is de-
scribed by both diagrams [5]. This fact can be interpreted
as a symptom that some information is being unnecessarily
replicated. For instance, the existence of the�singleton�
stereotype in UML, which indicates that a given class can
only have one single instance corroborates the perspective

that sees the class diagram as a pattern for the systems,
within a given application domain. This stereotype clearly
indicates that if the object diagram is to be made consistent
with the class diagram, it must satisfy the restriction of just
presenting one single instance of that�singleton� class.

This kind of approach seems quite adequate and popular
to develop, for example, business information systems or,
more generally, any data-dominated system, where the ob-
jects are created and destroyed during the system life cycle.
For example, in a system for bank accounts management,
it is common that each account is always associated with,
at least, one customer (this fact is indicated in the class di-
agram by associating the account class with the customer
class). Thus, whenever an account object is created, it is
mandatory to link it to, at least, one customer object. This
approach is quite useful for business information systems,
but does not offer many benefits for developing embed-
ded systems (industrial control-based information systems),
since normally the objects that constitute the system are not
created and destroyed on the fly. An embedded system, as
the one considered in this project, is generally, composed
of a set of fixed objects that usually must be linked in an
irregular way. Thus, it does not seem truly important to in-
dicate, for example, that objects of the controller class need
to be linked with objects of the sensor class. If in some ap-
plications this information can be quite pertinent, in others
it may be completely inadequate or even wrong.

Proceedings of the 14th Symposium on Integrated Circuits and Systems Design (SBCCI’01)
0-7695-1333-6/01 $10.00 © 2001 IEEE

Thus, the approach presented in this communication sees
the class diagram as a repository of previously defined ob-
jects’ specifications (“a raw material store”), that can be
used to develop any application.

6. State Diagrams

For those objects that have a complex or interesting dy-
namic behavior, a state diagram should be specified. Since
UML was chosen as the notation for all the documentation
of the project, UML’s state-charts were used to describe
state machines [10].

The crucial component of the control application is ob-
ject 5.c supervise and for this object a state-chart was pro-
duced in order to specify its dynamic behavior (fig. 4).

WaitForEvent
^evContactevHour [mode==CLK]

evMode / mode := ...

evProg [mode==HAND]

evPhotoC [mode==CELL]

SetUp

ProgramLamps

do / SwitchLamps(mode)

RegisterAlarm

do / WriteLog(...)

do / SwitchLamps(mode)

mode := CLK

Figure 4. The state-chart for object 5.c.

In object-oriented modeling, the characteristics of a class
are influenced by all its superclasses. Thus, when an ob-
ject behaviour is defined by a statechart, inheritance is-
sues among the classes must be considered. A solution to
this problem is to completely ignore the superclasses’ stat-
echarts and draw a completely new statechart for the class.
This solution is not considered, since it is contrary to the
object-oriented modeling principles.

The statechart of a class must be inherited by its sub-
classes. For this purpose, some rules, similar to those that
are used for code inheritance, must be fulfilled.

Due to the nature of the graphical modifications that can
be done to a class’ statechart, it is not possible to indi-
cate those modifications in a simple and incremental way.
Our proposal is to consider the statechart of a class to be
graphically a complete diagram. There are some propos-
als to highlight the modifications made to a class state-
chart in relation to the superclass’ statechart: one suggests

dashed symbols for inherited elements and normal symbols
for the new elements [18], while another uses gray symbols
for inherited elements and black symbols for the new ele-
ments [19]. Whatever notation selected, the user has always
to draw a completely new statechart from scratch, which
means that if some modifications are made to a class’ stat-
echart diagram, they must also be made (by hand and not
automatically) to all its subclasses.

7. Java Prototype

The authors developed a prototype in Java (fig. 5), based
mainly on the object and state-chart diagrams created pre-
viously. Some rules were used for obtaining the code from
the diagrams, which implies that there is a semantical con-
tinuity on the specification, allowing the designer to know
which requirement gave rise to a given line of code. Fig. 6
shows the Java code for the Clock class.

Figure 5. The system prototype developed in
Java.

class Clock implements Runnable {
private Thread t;
public void run() {

while (true) {
if (new Date().getSeconds()==0) {

showClock();
if (new Date().getMinutes()==0)
supervise.switchOn()

try {
t.sleep(2000); // waits 2 sec.

} catch(InterruptedException ex) {;}
}

}
}

}

Figure 6. The Java code for the class Clock.

The prototype execution allowed the users to experience
the system behavior and to validate their requirements. This
facility is extremely important, because it guarantees that
the final system to be developed fulfills the users needs. If
the user finds that something is not adequate, the team can
still introduce the proper changes with minor costs. If the

Proceedings of the 14th Symposium on Integrated Circuits and Systems Design (SBCCI’01)
0-7695-1333-6/01 $10.00 © 2001 IEEE

mismatches are found during the system’s usage, the price
to correct them is considerably high.

If the Java code is to be used for the final implemen-
tation, some modifications must be introduced to the pro-
totype code, since Java is not yet a suitable language for
developing embedded real-time systems, mainly due to the
code size, the non-deterministic nature of the behavior and
the low performance [9]. In 1999, the RTJEG (Real-Time
for Java Experts Group) started the RTSJ (Real-Time Spec-
ification for Java) [2], which defines a platform that al-
lows the designers to predict the temporal behavior of the
software during run-time. Taking into account the Java
language specification [8] and the JAVA Virtual Machine
(JVM) specification [12], the RTSJ specification has re-
vised the topics related to scheduling, memory manage-
ment, and synchronization and has added four items re-
lated to asynchronous events reaction, asynchronous trans-
fer control, asynchronous thread termination and physical
access to memory. These topics were introduced with some
judicious care in order to maintain the WORA (write once,
run anywhere) principle, that gave Java a great popularity.

8. Conclusions

This paper has presented how UML can be utilized in
real projects to analyze, model and specify industrial con-
trol systems. Since UML is intuitive for non-technical peo-
ple, it covers the main views of a system, it is independent
of the platform and it is an OMG standard, the authors are
using UML as an adequate modeling language in industrial
projects.

The transformation from use cases into objects is a crit-
ical task within the development process. For this reason,
this paper proposes an rigorous holistic approach during
this transformation, to obtain, in a semi-automatic migra-
tion step, the object diagram that best maps the user’s re-
quirements into the system’s requirements.

The approach presented in the paper puts more emphasis
on objects rather than on classes (true object-driven), which
is one of its main divergences in relation to the traditional
object-oriented approaches (true class-driven).

Since some objects of the system present dynamic be-
havior, state-charts were used because they are adequate for
modeling that view of the systems. Finally, taken into con-
sideration the various UML diagrams, a prototype in Java
was built in order to validate the user’s requirements. Build-
ing a prototype is an important issue, since it allows users
to experiment the system’s services before the final system
is constructed.

References

[1] L. F. Andrade, J. C. Gouveia, and P. J. Xardoné. Architec-
tural Concerns in Automated Code Generation. In OOPSLA
Midyear Conference, 1998.

[2] G. Bollella and J. Gosling. The real-time specification of
java. IEEE Computer, 33(6):47–54, June 2000.

[3] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Mod-
eling Language User Guide. Addison-Wesley, 1999.

[4] D. Budgen. Software Design. Addison-Wesley, 1994.
[5] B. Douglass. Real-Time UML: Developing Efficient Objects

for Embedded Systems. Addison-Wesley, 1998.
[6] J. M. Fernandes and R. J. Machado. From Use Cases to Ob-

jects: An Industrial Information Systems Case Study Anal-
ysis. In 7th Int. Conf. on Object-Oriented Information Sys-
tems (OOIS ’01), Calgary, Canada, Aug. 2001. Springer-
Verlag.

[7] J. M. Fernandes, R. J. Machado, and H. D. Santos.
Modeling Industrial Embedded Systems with UML. In
8th ACM/IEEE/IFIP Int. Workshop on Hardware/Software
Codesign (CODES’2000), pages 18–22, San Diego, CA,
USA, May 2000. ACM Press.

[8] J. Gosling and G. Steele. The Java Language Specification.
Addison-Wesley, 1996.

[9] D. Hardin. The Real-Time Specification for Java. Dr.
Dobb´s Journal, pages 78–84, Feb. 2000.

[10] D. Harel. Statecharts: A Visual Formalism for Complex
Systems. Science of Computer Programming, 8:231–74,
1987.

[11] I. Jacobson, M. Christerson, P. Jonsson, and G. Övergaard.
Object-Oriented Software Engineering: A Use Case Driven
Approach. Addison-Wesley, 1992.

[12] T. Lindholm and F. Yellin. The Java Virtual Machine Speci-
fication. Addison-Wesley, 1999.

[13] R. J. Machado, J. M. Fernandes, A. J. Esteves, and H. D.
Santos. Hardware Design and Petri Nets, A. Yakovlev,
L. Gomes and L. Lavagno (eds.), chapter “An Evolution-
ary Approach to the Use of Petri Net Based Models: From
Parallel Controllers to HW/SW Co-Design”, pages 205–22.
Kluwer Academic Publishers, Feb. 2000.

[14] R. J. Machado, J. M. Fernandes, and H. D. Santos. Architec-
ture and Design of Distributed Embedded Systems, B. Klein-
johann (ed.), chapter “A Methodology for Complex Embed-
ded Systems Design: Petri Nets within a UML Approach”,
pages 1–10. Kluwer Academic Publishers, Apr. 2001.

[15] P. J. Robinson. Hierarchical Object-Oriented Design.
Prentice-Hall, 1992.

[16] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and
W. Lorensen. Object-Oriented Modeling and Design.
Prentice-Hall International, 1991.

[17] G. Schneider and J. Winters. Applying Use Cases: A Prati-
cal Guide. Addison-Wesley, 1998.

[18] B. Selic, G. Gullekson, and P. T. Ward. Real-Time Object-
Oriented Modeling. John Wiley & Sons, 1994.

[19] W. Weber and P. Metz. Reuse of Models and Diagrams
of the UML and Implementation Concepts Regarding Dy-
namic Modeling. In The Unified Modeling Language: Tech-
nical Aspects and Applications, M. Schader and A. Ko-
rthaus (eds.), pages 190–203, Heidelberg, Germany, 1998.
Physica-Verlag.

Proceedings of the 14th Symposium on Integrated Circuits and Systems Design (SBCCI’01)
0-7695-1333-6/01 $10.00 © 2001 IEEE

