
Pergamon
Computing Systems in Engineering, Vol. 6, Nos 4/5, pp. 4014-08. 1995

Copyright KT' 1995 Elsevier Science Ltd
0956-0521(95)00029-1 Printed in Great Britain. All rights reserved

0956-0521/95 $9.50 + 0.00

A H E T E R O G E N E O U S C O M P U T E R VISION
ARCHITECTURE: I M P L E M E N T A T I O N ISSUES

HENR1QUE DIN1S SANTOS, Josl~ CARLOS RAMALHO, JOAO MIGUEL FERNANDES and
ALBERTO JOSI~ PROEN~A

Department lnform~.tica, Universidade do Minho, 4719 Braga Codex, Portugal

Abstract--The prototype of a heterogeneous architecture is currently being built. The architecture is aimed
at video-rate computing and is based on a message passing MIMD topology at the top level--transputer
based--and on VLSI associative processor arrays (APA, SIMD structure) for low level image processing
tasks. The APA structure is implemented through a set of 4 VLSI chips (GLITCH) containing 64 1-bit
processing elements each. This communication addresses some issues concerning the implementation of
the first prototype, namely those related to:

--the design and integration of the APA controller unit, which provides the required interface between
the APA, the MIMD topology and the video image interface:

the evaluation of the GLITCH chip through an emulator based on transputers and fast programmable
devices; the emulator was designed to be flexible enough to evaluate later modifications to the GLITCH
design;

--the design of an integrated set of software development tools containing a structured editor--syntax
oriented, with a visual interface/programming interface--and a cross compiler and debugger.

I. INTRODUCTION

Video-rate computer vision is a highly demanding
computing field, requiring high performance hetero-
geneous architectures and new software and pro-
gramming paradigms, The prototype of a research
architecture based on a message passing M I M D
topology at the top level-- t ransputer based and a
S I M D structure for low level image processing
tasks--based on an associative processor array
(APA) implemented with a set of 4 VLSI chips-- is
currently being built.

The overall project started in 1987 with the design
of the APA chip - G L i T C H - - a n d its functional
evaluation through a simulator developed in C. t'2
Each G L I T C H chip contains 64 1-bit processing
elements (PE) with a I -D direct connectivity between
PEs, a search data aligner and a video shift register
64 x 8 bits to input /output the data (video images).
Each PE has 68 ternary digits of associative memory
on-chip plus some R A M off-chip and a l-bit A L U
with l-bit registers. A comparison of image process-
ing architectures based on massively parallel struc-
tures using the S I M D paradigm shows the relative
merits of the GLITCH architecture in an image
processing envi ronment) Performance estimates
based on the first set of D A R P A Image Understand-
ing Benchmarks also show that a GLITCH based
architecture performs well on most of the benchmark
tasks. 4

To integrate the APA based on G L I T C H and the

email: aproenca(ag ci.uminho.pt

M I M D topologies, a controller unit was designed
and implemented at Universidade do Minho (UM), s
to provide that interface and to issue the required
control signals. The APA structure requiring control
signals includes not only the GLITCH chips and the
associated external R A M , but also a data routing
network to provide fast inter-PE communicat ion
links, a data store to hold the patterns and to
communicate between the APA and the M I M D
topology, a data shifting unit and the video bus
interface. This team project across national bound-
aries raised implementation issues presented later in
this communication.

The VLSI GLITCH chips are being manufactured
and tested under Eurochip. To avoid timing depen-
dencies on this product, it was also decided at UM to
build a GLITCH emula tor - -based on transputers
and fast programmable devices, PALs and F P G A s - -
flexible enough to evaluate later modifications to the
GLITCH design. The overall structure of this re-
configurable emulator and some of the trade-offs of
a custom design vs a general purpose one are
analysed.

When the controller unit was built it was necessary
to test it together with the APA structure. Testing of
most of this complex hardware structure was per-
formed by the available transputer in the board,
through microcode downloading and single step
microinstruction execution. To test the overall
prototype it was decided to create a software develop-
ment environment that would allow execution of
most of the programs and routines that have been
previously developed for the simulator (the most
relevant ones are described in Refs 6 and 7). The

401

402 Henrique D. Santos et al.

GLITCH instruction set and the programming en-
vironment provided by the latest version of the
GLITCH simulator 8 was the starting point to design
a new integrated set of development tools, containing
a structured editor syntax oriented, with a visual
interface/programming interface--and a cross com-
piler and debugger. The compiler also generates
microcode for the controller unit, coping with the
superscalar and superpipelining features of the
underlying architecture. 9 Its current state closes this
communication.

2. OVERVIEW OF AN INTEGRATED GLITCH BASED
SYSTEM

The dual bus Heterogeneous computer Vision
Architecture (HVA) that has been proposed ~° in-
cludes dedicated chips for digital signal processing,
APA chips (GLITCH) for low-level image process-
ing, and a transputer network for higher level tasks;
a parallel bus is used for video images' communi-
cation, while a serial bus transmits control and
synchronization signals in the transputer network. A
proper interface between the SIMD and MIMD
topologies was designed and
troller of the APA module, 1~ to
vision environment supporting
approaches.

included in the con-
provide an integrated
diverse programming

The HVA based on the APA chips heavily depends
on pipeline processing, from image loading to high-
level vision processing. Images are input to the APA
through an 8-bit wide video shift register (VSR),
where the shifting in is done concurrently with the
shifting out and with computation on the Processing
Elements (PE), enabling an image to be processed,
while the next image is loaded into the APA and the
previous image is being unloaded from the APA.

The APA unit contains an array of 1-bit PEs--as
many as possible to fit in a single chip~each one with
its local CAM. The CAM size--64 digits for the data
CAM and 4 digits for the subset CAM--was chosen
to allow word-parallel matching of an external pat-
tern to the PEs local memory. Since the supplied
patterns use ternary logic--"0", "1" and "x" (don't
care)--the data CAM requires write/match patterns
of 64 ternary digits (128 bits), and the subset CAM
a further 4 ternary digits (8 bits). To reduce the data
bandwidth, CAM array patterns longer than 16
ternary digits (32 bits) are not allowed, and a search
data aligner--the pattern broadcast logic unit,
PBL--was added, whose main function is to route the
32 pattern signals at the chip pins among the 128
CAM data bits. To hold partial results, the inclusion
of some RAM per PE is also included off-chip, while
still retaining the advantages of CAM for the data
being processed.

Processor arrays for image processing are often
mesh connected due to the two-dimensional nature of
images. However complex interconnection schemes
become difficult to implement in a VLSI chip due to

the limited number of available pins, and they are not
always the optimum connectivity. A 1D connectivity
scheme may be more suitable to implement in a VLSI
APA, and its disadvantage can be offset if fast barrel
shift mechanisms are provided, either built into the
CAM array of the APA chip, or through an external
data routing network. A programmable data routing
network can provide a fast 32 bit interchip data path
between the PBL of each APA and its neighbour, and
also to a 32-bit data routing bus.

A data store unit connected to the data routing bus
holds the 16 ternary digits required by the APA, and
interfaces the APA module with the MIMD struc-
ture. Some additional logic is also included to hold
address values and to perform address incre-
ment/decrement operations, to implement parameter
passing to subroutines at the S1MD programming
level.

Scalar processing is provided by a host transputer
with floating point capabilities, which can directly
transfer data to and from the data store. For simpler
operations a scalar unit to shift and test scalar values
is also included in the APA module.

A controller unit is used to generate all the required
control signals to select the operations of the func-
tional units described above and to supply the ad-
dresses and values of operands, in an appropriate
sequence. This unit also provides the interface be-
tween the APA module and the transputer network.

Figure 1 gives an overview of the main functional
units in the APA module. The video frame buffers
with ROI (Region-Of-lnterest) capability -im-
plemented separately and controlled by another
transputer--provide the video image interface
through a dedicated video bus. 12

3. THE APA CONTROLLER UNIT

A complex controller unit was designed and im-
plemented to control the functional units described
above, generating the necessary control signals in an
appropriate sequence, and with a performance aimed
at a 50 ns cycle time. The initial APA controller
specifications were taken from the simulator available
at the time, 13 and some features were added: hard-
ware support to implement nested subroutines with
parameter passing at the SIMD programming level,
additional high level control operations such as
CASE and DO WHILE, and provision for an
external scalar processor.

In a conventional microprogrammable controller
approach, a simple sequencer~a microprogram
counter, an incrementer and a multiplexer--generates
the addresses to a micromemory, where a program
with the required microinstructions is stored. This
microprogram is responsible for fetching the "pro-
cessor instructions", decoding and executing them, in
a continuous loop. However, the time penalty for
fetching and decoding each instruction is too high,
since the GLITCH array expects a set of control

Heterogeneous computer vision architecture

Data Routing Data Bus
< , >

I Data Routing Network [

~ _ ~ _ i]~ i+ 1 .. .

.

[IPB.. L. [I r_]__VSRI
GLITCH ', ,.2_..,,
chip i CAM [--I PE ~ - J l

,, ... , " , , , l rn- !
I I

i

. i .

e o o u t

Controller

403

Fig. 1. Overview of the APA module.

signals every 50 ns; to add instruction caching and
extra circuitry to deal with faults would mean a more
complex overall circuit with longer processing
latency. The instruction fetching and decoding were
removed from the microprogram in the GLITCH
controller, requiring the compiler to directly generate
a separate microprogram for each application. How-
ever, the real-time vision computing environment is a
very special case, quite suitable for microcode compi-
lation: in most situations the program needs to
process each image in a very short time (ms) and then
simply repeat the whole process. At 25 Hz frame rate,
the same algorithm is applied for every image at every
40 ms; at 50 ns cycle time, this corresponds to the
execution of up to 800,000 microinstructions per
frame. Current experience running the GLITCH
simulator shows that a 32 kword micromemory is
enough for all the applications that were developed so
far. Whenever longer algorithms are required, a fast
link with the host transputer may be required to allow
the host to load new programs in the micromemory.
To further reduce the micromemory requirements a
complex micromemory sequencer is used to directly
implement HLL control structures, including loop
and nested subroutine support. This device can re-
duce quite considerably most of the unnecessary
microinstruction duplications.

From the informal and bottom-up specification of
the controller, a Harvard VLIW (Very Long Instruc-
tion Word) architecture was implemented, with the
block diagram shown in Fig. 2. Note the decentral-
ized nature of the controller unit, since the
micromcmory issues instructions to be further de-
coded, rather than issuing direct control signals. This
decentralization of the control signal generation re-

duces by almost 50% the overall micromemory, also
reducing the pin count on the custom and semi-
custom chips. The micromemory width was also
reduced from 128 bits to 96 bits by sharing some
microinstructions fields between different units, based
on the respective usage frequency and exclusion
properties. The validation of those assumptions re-
quires the feedback of using the system in real
applications.

Flags

Instruction Bus

Instruction Bu

Micromemory Ir~truction Bus

c T - - ,I:g

Instruction Bus ~l nV~r

Instruction Bus) ~

ImaKe .in II ~naKe ot~t

Fig. 2. The controller block diagram.

404 Henrique D. Santos et al.

The APA functional units interact with each other
to execute most instructions. A MATCH instruction,
for instance, requires access to the data store to get
the required pattern to load into a certain CAM
position in the GLITCH chips, through the data
routing network. This simple operation may require
some clock cycles to be accomplished, but it can be
all specified in a single microinstruction. To keep the
microinstruction stream at a rate of 1/50 ns, the APA
architecture requires several pipeline stages; each
functional unit needs its own control information
to be set at different clock cycles, with extra pipe-
line registers being introduced to achieve the "one
operation one microinstruction" paradigm.

Adding pipeline levels increases the throughput
quite considerable, but it also has some disadvan-
tages, mainly the branch dependencies on conditional
operations. To reduce this penalty, some conditional
operations are performed directly at the GLITCH
chip level without the controller intervention, by
internally feeding the tag results. To implement other
high level control structures the hardware on the first
prototype gives no support to check the pipeline
consistency, leaving to the compiler that task when
implementing delayed branches.

Communication between the low level processing
structure (SIMD) and the higher level (transputer
based) is achieved in two ways:

• control and synchronization signals flow between
the transputer and the APA controller, either to
request the attention of the transputer, or for the
transputer to request access to the APA data
routing data bus (these signals are shared with
the transputer activities in the role of initializ-
ing, testing and monitoring the APA module
working);

• program and data interchange; whenever some
high level vision task requires a low level activity,
the transputer downloads the associated mi-
croprogram (or sets the sequencer microprogram
pointer if the microcode is already loaded), and
transfers the data patterns into the APA data
store; the results back from the APA processing
can be read by the transputer by accessing the
same data store.

One of the main implementation issues with the
APA module refers to its testing during the assem-
bling phase, since it uses several complex VLSI
devices from different manufacturers, including those
custom designed for this project (the GLITCH chips).
This task is simplified when the same specification
environment is used and when the design team works
very closely. Neither of these characteristics apply to
the APA module design, and no hardware simulation
was performed for the whole APA module (only for
those parts implemented in programmable logic
devices). The GLITCH chip design started back in
1987 at University of Bristol (UB), UK, and the latest

version was produced at UMIST, UK, using different
specification tools; half the APA module-- the
GLITCH chips and the associated RAM, the data
routing network, the clock generator and the video
interface--was designed at UB, UK, from 1990 (the
data routing network) until 1992, with no formal
specification (only textual descriptions, logic dia-
grams and programming tables for the pro-
grammable logic devices); the same applies to the
other half of the APA module, designed at University
of Minho (UM) in 1991/92. Assembling and testing
the first prototype suffered delays due to some less
clear design details, as a result of this lack of a
consistent specification notation across the design
teams. During the implementation of the APA mod-
ule, a formal description of the module started to
be produced, in Verilog at UB, and in VHDL at
UM.

Formal hardware description languages offer much
more consistency during the design cycle, allowing
the use of the same description language for the
simulation, emulation and synthesis. They also have
a shorter design time, better documentation and tools
for partial automatic synthesis. The development of
a behavioural model for the whole APA module is
almost finished at UM, in VHDL. This model puts
together different modules, with different character-
istics; some modules are more adequately synthesized
by software, as a scalar computer program, others fit
better on ASICs components, while the rest can be
implemented using off-the-shelf components. This
system approach will be relevant to identify the weak
points of the first prototype and to follow a top-down
approach in the design and evaluation of the next
GLITCH system generation. This methodology also
promotes investigation into different synthesis strat-
egies, as well as the impact some specification changes
have on the hardware.

From the begin of the design cycle the system
testability after assembling was considered an import-
ant goal. As a standard design style, the use of
Boundary Scan Test (BST) techniques was first con-
sidered. However, most of the APA module com-
ponents (the transputer, the VLSI sequencer, the
GLITCH chips and the standard logic devices) do not
support such test methodology, making it useless for
this prototype design. The current prototype supports
a test mode, in which the transputer can access all the
system units. A set of programs was developed to test
and to diagnose the micromemory and each func-
tional unit, by making them execute individually a
piece of microcode under the transputer supervision.
This procedure uses the same facilities that are used
to load an APA program, plus the insertion of
microprogram breakpoints.

4. THE GLITCH CHIP EMULATOR

The first prototype of this heterogeneous architec-
ture uses 256 PEs, implemented in 4 VLSI GLITCH

Heterogeneous computer vision architecture 405

chips. While the chips are being manufactured (under
Eurochip) and tested (at UMIST and UB) it was
decided to build a GLITCH chip emulator to test
the overall APA module, including the controller
functionality and the MIMD interface.

The specification of the emulator included some
specific guidelines; namely it should:

• have a general purpose structure to be re-used
later to emulate other digital systems;

• be reprogrammable to evaluate later modifi-
cations and improvements of the GLITCH chip;

• be cost effective to afford a separate emulator
per GLITCH chip.

While the first two guidelines suggested the use of
complex programmable logic devices (CPLDs), the
last constraint suggested the use of a mixed-mode
approach: to implement the time critical parts using
the CPLDs, while the less critical would be im-
plemented by software running on a microprocessor.
An emulator built only with CPLDs would require a
large number of these devices to emulate a complex
digital system; complex PAL devices are very power-
ful with combinatorial logic, but they have very few
registers (usually under 100); on the other hand
FPGAs have a large number of simple cells with
registers (over 1000), but strong limitations in in-
ternal connectivity. Adding a microprocessor to the
emulator architecture increases flexibility and allows
the emulation of any medium to highly complex
digital system, provided the overall system to be
emulated can run on slower clock speeds. To mini-
mize this potential drawback, an appropriate choice
of the microprocessor might allow a speed-up
improvement through parallel processing in a
multiprocessor environment.

Following these guidelines, the design of the emu-
lator architecture was based on one transputer and
links to connect to external transputer systems, and
on programmable devices--a variable number of
complex PAL devices (such as the MACH from
AMD) and FPGAs (such as the LCAs from Xilinx).
Two main issues have not been addressed yet:

• how to cope with a slower clock speed;
• how to program the emulator.

The maximum clock speed of a standard emulator
can be predicted if it relies only on hardware devices;
however, when the emulation is performed with
software parts, the clock speed is related to the time
required to execute the slowest function, which can be
undesirable, particularly if that function occurs very
seldom. Alternatively, and if the device being emu-
lated allows a clock with a variable period length, the
emulator could generate this irregular clock, by using
the transputer to set/reset a bit on a particular output
port.

In the GLITCH emulation project the time critical

parts were identified as being the video interface: the
internal video shift register in GLITCH is shifted at
the video clock rate specified by the external video
source, which makes it impractical to slow down this
clock frequency. This block of the chip is im-
plemented using a FPGA device. Most of the remain-
ing functional blocks were emulated through
software executing in the transputer, '4 and through
irregular block pulse generation, as described before.
Since the vision prototype uses 4 GLITCH chips, that
are supposed to run synchronously, the pulse clock
generation is also synchronized among the 4 emula-
tors according to the slowest one.

The hardware structure of the emulator is now
defined and clear. It supports emulation of a large
number of medium to high complex digital systems,
being the GLITCH chip one of those examples. To
program this system for a specific emulation task
there are two main approaches:

• structured top-down, using the same language
environment to program all devices (including
the microprocessor);

• bottom-up, partitioning a priori the emulation
tasks for the separate devices, and programming
each of them using their specific programming
environment.

The structured top-down is the more flexible one,
but it adds some extra complexities. The choice of the
programming environment also plays an important
role: either a programming environment typical for a
microprocessor (Pascal, C, or even Occam'5), or an
environment more suitable to interface with PLDs
programmers. The first alternative requires conver-
sion tools from a computer programming language to
a hardware device programming language, and the
optimization of the gate usage in PLDs is quite
complex, due to the abstraction level of a computer
programming language. A much more attractive ap-
proach is to use a standard hardware description
language, such as a subset of VHDL with automatic
tools to generate the programs for the CPLDs, to
program and evaluate the most suitable mapping of
the emulation tasks into the several devices, including
the microprocessor. This approach requires compil-
ing the VttDL language into the target microproces-
sor, or pre-compiling VHDL into a HLL program (a
pre-compiler into C is being built at UM). An
additional feature of this approach is that a single
specification program is made in VHDL and then the
simulation, emulation and implementation--using
one out of several circuit integration alternatives
can be performed without having to re-write any line
of code.

The first prototype of the GLITCH emulator fol-
lowed the bottom-up approach, since the required
tools for the VHDL conversion were not available
yet. Once these tools are built the emulator will be
programmed using this novel approach.

406 Henrique D. Santos et al.

5. THE GLITCH DEVELOPMENT ENVIRONMENT

The first implementation of the GLITCH develop-
ment environment (GDE) is basically a user friendly
programming environment. It provides the user a set
of tools to help to develop APA progrms in the
assembly level language defined by the simulator,
producing machine code that should load and run on
the available hardware. The use of the language
defined by the simulator was controversial (the simu-
lator does not map the real hardware), creating
difficulties when translating simulator instructions
into the available hardware without performance
degradation. However, the decision was made to
allow reuse of most of the programs and libraries
produced in the past to run on the GLITCH simu-
lator. A comparative study between the simulator
and the actual implementation identified two types of
problems:

• conceptual problems: each APA unit is treated
separately in the simulator, and the superscalar
and pipeline features are not included; instruc-
tions dealing with the memory require their
syntax to be altered;

• usage problems: since all simulator programs are
compiled with a C compiler, GLITCH pro-
grammers prefer to use the C syntax to specify
the control flow rather than the available and
similar control instructions of the assembly level;
all these programs will not run on the first
prototype.

A new release of the simulator if required which
includes the main modifications and yet would keep
compatibility with most existing programs. This pro-
posal came from the development of GDE, where
the syntax of some instructions is modified, some
instructions are merged (making some hardware
features transparent to the user), and some other are
eliminated.

This integrated environment in GDE contains two
main modules:

• the environment's front end, which includes a
structured syntax directed editor; the editor's
embedded syntax was extracted from the context
free grammar of the GLiTCH-based APA assem-
bly language (GAL); this editor provides immedi-
ate syntax checking and automatic semantic error
checking and warning;

• the environment's back end, which includes a
cross compiler for the GAL, specified through a
set of attributes' equations; while the actual
version only generates microassembly code for
the debugger, ~6 next version will also include the
generation of executable binary microcode and
will cope with the transputer interface.

The tool used to implement GDE was the Synthe-
sizer Generator (SGEN). 17:8 SGEN is specially ori-
ented towards the development of structured editors,
through a syntax directed approach (the syntax of a
particular language, in this case GAL). To create an
editor with SGEN its different parts must be specified
using the specification language supplied with the
tool, which is a very high level and functional
language (the higher the language level, the easier the
project management).

GDE is a structured editor generated by SGEN to
perform the lexical, the syntactic and the semantic
analysis at run-time and, simultaneously, to generate
code as a side effect, following the paradigm of
incremental compilation. This paradigm allows im-
mediate feedback to the user when introducing the
source code, by presenting the object code in a
different window and issuing warnings whenever a
mistake is made.

When writing a program for the APA module in
the GDE environment, the user has two alternatives
to introduce it through the editor:

• introduce the text (from a file or from the key-
board) that will be parsed according to the
specification of the language context free
grammar;

• write the program through the use of the sup-
plied templates and mouse clicks, using a visual
programming paradigm.

From this concrete syntax, GDE produces an
internal representation, the abstract syntax. Acting
on it, GDE can generate views to present to the user
through windows. Current version shows the user
two windows: the first on the left is the source
window, where the user can edit a program in source
language (the typing can be limited to the supply of
arguments, since the programmer can use templates);
the second window, on the right, is the object code
window, showing the generated microcode in
mnemonics (a microassembly language) while the
user types a program in the first window; in this
window only selections are allowed (code generation
is entirely controlled by GDE). Although no inter-
action is allowed in the object code window, every
item (item stands for any structural element of the
language) in this window is related to another and
correspondent item in the other window. Thus, the
selection of an item in the object code window
provokes the corresponding selection of an item in
the other window (Fig. 3),

With this limited interaction syntax errors are
discarded, and only some semantic errors (related to
the supplied arguments) can occur. When they occur
GDE types warning messages into the source code
window, positioned at the statement where the error
occurred. These messages will stay displayed until the
errors are corrected.

Heterogeneous computer vision architecture 407

~ l l T c h PROGI:

posl : 4~
pos2 = 10101100~
pos3 = 11110000

.

Program Header

NAME PROG1 ~
CORG 2O @
DORG 10
START 0 <}

Data DeFinitions

~osl ds 4
~os2 dw 10101100
~os3 ok~ 11110000

GliTch Instruction~

_ABEL SE~ addr (CC> DS addr SU/TR GLITCH

Positioned at contst~mt

Fig. 3. The GDE user interface.

6. CONCLUDING REMARKS

The first prototype of the APA module to interface
to a transputer network in a video-rate computer
vision system is in its final phase of assembling and
testing. With 256 PEs in 4 VLSI chips and additional
blocks, the more relevant implementation issues were
presented in this communication. As any other 1st
generation machine, this will provide enough data to
prepare a much better 2rid generation, in terms of
functionality, speed, simplicity and easy of use.

The re-writing of the whole APA module specifica-
tion using a single language environment, VHDL, is
an essential step towards a faster and more reliable
implementation of the 2nd generation. Together with
an invaluable evalation tool (the emulator), which
will be automatically programmed from the specifi-
cation tool, the assessment of alternative configur-
ations will be performed with more precise results
(than using a simulator), and closer to the real
implementation.

The existing software development environment
(GDE) has proved to help programming a S I M D
structure through increased productivity. One of the
more relevant features of the G D E is its powerful
interface, providing visual programming facilities to-
gether with an incremental compiler that allows
on-line error checking and warning. The G D E is not
complete yet (it does not address all the APA modules
on the board designed in Bristol), and it requires
further refinement in terms of pipeline optimisation.
The following steps will include the porting of an

architecture independent vision language, such as
Apply, ~9 and the definition of a higher level user
interface for parallel computer vision programming.

Acknowledgements The authors wish to acknowledge the
financial support of the Junta Nacional de Investiga~;~o
Cientifica Nacional (JNICT), Portugal, for this work.

REFERENCES

1. A. Duller, A. Morgan and R. Storer. -Associative
processor arrays: simulation and performance estimates
for image processing", Proceedings of Alvey Vision
Conf. 87, September, pp. 139 145.

2. A. Duller, R. Storer, A. Thomson, E. Dagless, M. Pout,
A. Marriott and J. Goldfinch, "'Design of an associative
processor array", Proc. lEE, E, 136 (5) (1989).

3. A. Duller, R. Storer, A. Thomson and E. Dagless, "An
associative processor array for image processing", lm-
age and Vision Computing, 7 (2), 151 158 (1989).

4. M. Pout and A. Duller, "Benchmarking an associative
processor array for vision", Applied Mathematics and
Computer Science, 3 (1), 141- 154 (1993).

5. A. Proen~a, H. Santos and E. Dagless, "'Microcon-
troller strategies in an associative array processor for
computer vision", Proceedings of Barnaimage '91, ES-
PRIT-BRA Workshop on Specialized Processors for
Real-time Image Analysis, Barcelona, Espafia, Septem-
ber 1991.

6. R. Storer, A content addressable parallel processor and
its application to synthetic image generation, Ph.D.
Thesis, University of Bristol, 1991.

7. M. Pout, Performance evaluation of an associative
processor array for computer vision tasks, Ph.D. Thesis.
University of Bristol. 1992.

408 Henrique D. Santos et al.

8. A. Duller, R. Storer and M. C. Ribeiro, "'The improved
GLITCH simulator. V.2.2", University of Bristol,
August 1992.

9. J. Ramalho, A compiler for GLITCH, (in Portuguese),
M.Sc. Thesis, Universidade do Minho, 1993.

10. R. Storer, M. Pout, A. Thomson, E. Dagless, A. Duller,
A. Marriot and P. Hicks, "An associative processing
module for a Heterogeneous Vision Architecture",
IEEE Micro, 12 (3) 31 41 (1992).

11. H. Santos and A. Proenga, "GLITCH System Con-
troller: General Description--Version 1.00.00", In-
ternal Report DI-EC02/91, Dep. Inform~itica,
Universidade do Minho, April 1991.

12. Datacube Inc, "MAXbus specification", Tech. Report
SP00-4, December 1987.

13. A. Duller, "GLITCH Simulation--Version 2.1", Uni-
versity of Bristol, January 1989.

14. M. Alves, Emulaq~.o de um processador associativo

vectorial--GLiTCH, Rel. Est~igio de Lic., Universidade
do Minho, Portugal, 1992.

15. I. Page and W. Luk, "Compiling occam into FPGAs",
in FPGAs, Abingdon EE&CS Books, 1991.

16. P. Hanacek and H. Santos, "GLITCH system con-
troller: GLITCH debugger and loader", Internal Report
RI-EC01/93, Universidade do Minho, 1993.

17. T. Reps and T. Teitelbaum, "The Synthesizer Genera-
tor: A system for constructing language-based editors",
Texts and Monographs in Computer Science, Springer-
Verlag, 1989.

18. T. Reps and T. Teitelbaum, "The synthesizer generator
reference manual", Texts and Monographs in Computer
Science, Springer-Verlag, 1989.

19. L. Hamey, J. Webb, I.-C. Wu, "An architecture inde-
pendent programming language for low-level vision",
Computer Vision, Graphics, and Image Processing, 48,
246 264 (1989).

