
Non-Invasive Gridi�cation through an

Aspect-Oriented Approach

Edgar Sousa, Rui Carlos Gonçalves, Diogo Neves, João Luís Sobral

Centro de Ciências e Tecnologias da Computação
Departamento de Informática

Universidade do Minho, Braga, Portugal
{edgar, rgoncalves, dneves, jls}@di.uminho.pt

Abstract. This paper presents a framework that allows plugging or
unplugging Grid-related features to legacy code. Those features can, for
example, transform sequential-like code to a parallel version or even a
distributed version. With this approach scientists could develop their
code as they are used to, that is, they could spent their time programming
as they are used to instead of learning new programming paradigms. The
framework relies on aspect-oriented programming (AOP) techniques to
perform non-invasive enhancements to scienti�c applications to cope with
grid speci�c issues, such as remote execution, load distribution, fault
tolerance and monitoring. In addition, framework components are glued
together with AOP, thus it is possible to plug (only) features required
for each speci�c application / target platform.

Keywords: grid-enabled applications, grid frameworks, aspect-oriented pro-
gramming

1 Introduction

Computational grids allow scientists to access to an almost unlimited comput-
ing power, making it possible to perform new range of experiments not possible
before. Early grid systems targeted parameter sweep applications, where some
scienti�c code is executed many times, providing a di�erent parameter for each
execution. For this purpose, most grid middleware rely on a command line in-
terface where the user can specify parameters for each run. For this purpose,
most grid middleware relies on a command line interface or on a JDL - Job
Description Language [1] - where the user can specify parameters for each run.

Grid-enabling scienti�c codes that do not rely on parameter sweep require an
additional burden to decompose the application into a set of independent tasks
that can be executed on a set of remote computing nodes. Moreover, parameter
sweep may not be a�ordable for some kind of applications as some run(s) may
dependent on another(s).

Current tools for gridi�cation [2] require invasive and non-reversible modi-
�cations to scienti�c codes (e.g., to specify parallel tasks and to execute these



tasks on a grid environment) making grid-enabled codes dependent of a grid
infra-structure. In addition, decomposing an application into a large set of in-
dependent tasks and submitting these tasks to a grid scheduler avoids applica-
tion speci�c optimisations, such as performing application-level self-scheduling
on available computing resources or fault tolerant execution of speci�c applica-
tion tasks. Moreover, current tools focus only on executing applications solely
on grids, missing to take advantage of the growing number of cores on every
computing element.

The AspectGrid framework [3] aims at gridifying scienti�c applications in
a non-invasive manner, through a set of pluggable components [4] that can be
composed to meet the requirements of each application/target platform. Current
pluggable services include parallelisation, scheduling, fault-tolerance, remote ex-
ecution and monitoring.

The rest of the paper is organised as follows. Section 2 overviews the As-
pectGrid framework, describes its main components and their inter-connection.
Section 3 presents performance results and section 4 compares this works against
other approaches. Section 5 concludes the paper and points directions for future
research.

2 AspectGrid Framework

The AspectGrid framework aims to be a lightweight framework for non-invasive
gridi�cation of scienti�c applications. It relies on a minimalist interface among
components that can be extended to match application speci�c needs, through a
set of pluggable components. To achieve this goal the framework strongly relies
on AOP techniques. Figure 1 presents an overview the framework architecture.

Fig. 1. Ideal framework layout.



Task provider services are domain speci�c code that generates tasks to be ex-
ecuted on computational resources. Examples of these are scienti�c applications
gridifyed by our approach, but it is also possible to use other task providers, for
instance by directly (i.e., invasively) creating tasks within the code, or by using
a skeleton framework [5].

These tasks can be executed on a set of resources provided by execution ser-
vices. The core of the framework dispatches tasks to available execution services.
This dispatching service can be extended with pluggable features to meet speci�c
application need.

The AspectGrid framework, which currently instantiates this architecture,
provides pluggable services for parallelisation, remote execution, scheduling,
load-distribution, fault-tolerance and monitoring (Fig. 2).

Fig. 2. Main components of the AspectGrid framework.

The parallelisation service is responsible for the generation of a set of inde-
pendent tasks that can be scheduled into a set of local or remote resources, by
the dispatching service.

The load-distribution service performs a more �ne-tuned resource selection,
based on the speci�cities of each resource. The fault-tolerance addresses faulty
resources by resubmitting a task for execution when its execution fails. Both
the load-distribution and fault-tolerance services can be seen as improvements
to the basic dispatcher service.

Remote execution service manages task execution on remotes nodes, includ-
ing code deployment. Finally, the monitoring service can manage the progress
of task execution.

The key issue in the AspectGrid framework is the ability to bind these services
into scienti�c codes in a non-invasive manner, making it possible to (un)plug
these services into/from scienti�c codes any time during and after the gridi�-
cation process. In addition, connections among services are also performed in a
non-invasive manner, minimising coupling among services. This approach makes
it feasible to develop grid-enabled applications that do not depend on a partic-
ular set of services, as services can be plugged only at request to meet speci�c
execution requirements. For instance, to run a scienti�c application on a multi-



core machine, remote execution and fault-tolerance services are not required.
This also presents a performance advantage, since services can be removed from
the build.

Non-invasive composition of services relies on aspect-oriented programming
techniques [6]. Two fundamental concepts of AOP are quanti�cation and oblivi-
ousness [7]. Quanti�cation is the ability of an aspect (or service in our framework)
to specify a set of execution points where aspect speci�c behaviour can be at-
tached. For instance, a service for remote execution can attach that behaviour
to certain procedure calls in scienti�c code. Obliviousness is the ability to apply
a mechanism to code that was not speci�cally prepared for that purpose. To
illustrate these two concepts, consider a service that would print the name of
every method called. The following pseudo code specify that we want to apply
this aspect to all method calls (pointcut events2print()) and that we want to
print the method name before the method call (before() : events2print(),
the joinPoint construct was used in this case to get the name of each intercepted
execution point).

Algorithm 1 Example of an aspect.

pointcut events2print() : call(* *.*(..));

before() : events2print(){

System.out.println(joinPoint.methodName());

}

Both quanti�cation and obliviousness are present in this example. First, the
set of method calls to intercept are speci�ed in the pointcut construct (quanti�-
cation). Second, no special adaptations are required to the basic code to attach
this functionally (obliviousness).

Fig. 3 presents a more detailed version of the building blocks of the As-
pectGrid framework. Three additional components have the purpose to pro-
vide interfaces among components that are inter-connected by AOP: the Frame-

workAdapter, the ITask interface and the IServer interface.
The FrameworkAdapter is an application-speci�c component, automatically

generated by the framework that speci�es a task to parallelise and/or to exe-
cute remotely. Its purpose is to transform a procedure/method call in the sci-
enti�c code into an ITask that can be processed by other framework services.
The adapter non-invasively decouples the remainder framework services from
the speci�cities of the domain speci�c code, by encapsulating tasks into a well
de�ned interface (a strategy similar to the command pattern [8]). User speci�ed
method calls are encapsulated into a class implementing the ITask interface,
where calls to the original method are made inside the method execute. Other
framework components (e.g., parallelisation and scheduler) may intercept exe-
cutions of method execute to plug their services. The parallelisation service can



Fig. 3. Glue and components of the AspectGrid framework.

decompose an ITask into multiple ITask 's using a default or a user provided
partition strategy. When no other services are plugged, the default ITask imple-
mentation (execute method) performs the execution sequential and locally.

The dispatcher assigns ITask 's to available resources through the IServer

interface. For this purpose it uses a list of available IServer 's and dispatches
an ITask by calling the IServer.run(ITask) method. The default scheduling
policy performs a round-robin assignment of tasks. The default implementation
of the IServer (e.g., when no remote execution is plugged) directly executes the
method by means of a local thread pool (which may take advantage of multi-core
machines).

The next subsections describe in more detail the services currently provided
by the framework framework (i.e., parallelisation, scheduling, remote execution)
and overviews their current implementation using AspectJ [7], an AOP extension
to Java.

2.1 Parallelisation

The parallelisation service acts upon a class implementindg the ITask interface
and generates a new set of tasks that are executed in parallel. For this purpose
two application speci�c methods should be provided: scatter and reduce. The
scatter method speci�es how the parameters of the original task are scattered
among a set of new tasks. For instance, when processing an array of data, this
method can create several smaller arrays of data. In a simulation, it can generate
di�erent parameters for each task. The reduce method combines the results of
each computed task into a single one. In the case of an array of data it can merge
all parts of the processed data.

2.2 Dispatcher

The dispatcher is responsible to start the process of task execution. Since most
of its responsibilities are delegated to additional pluggable services (i.e., remote



execution, load distribution and fault-tolerance) this service is devoid of most
complexities of the scheduling process.

The current implementation of this service intercepts the execute method
from ITask and submits the task to an available IServer. By default tasks are
executed on available resources, in a round-robin strategy. The following pseudo-
code illustrates how this functionality can be plugged with AOP into generated
ITask either by the FrameworkAdapter or by the Parallelisation service.

Algorithm 2 Dispatcher pseudo-code.

around(ITask task) : call( * ITask.execute())

&& target(task) { //target for method execute

IServer server = ... //get server from the resource list

return server.run(task);

}

2.3 Load Distribution

The load distribution service performs a �ne tuned mapping among available
resources and ITask 's. This service is required to manage applications that gen-
erate irregular tasks or/and when tasks will run on heterogeneous resources,
with, for example, varying processing speeds.

This service changes the default round-robin scheduling strategy to a demand-
driven, dispatching more tasks to resources that process tasks faster (either be-
cause they receive more lightweight tasks or because they have higher processing
capabilities).

The current implementation creates thread pool to dispatch work for each
resource. It ensures that each thread dispatches tasks always to the same re-
source. Threads are continuously picking work from the work pool, sending the
work to the processing resource and waiting for the task to complete.

2.4 Fault-tolerance

This service manages faulty resources by resubmitting tasks for execution when
the previously assigned resource fails. This service only addresses resources that
fail after a task is assigned. In other cases the resource is simply discarded from
the list of available resources (i.e., IServer list).

The fault tolerance capability is non-invasively plugged into the dispatcher
through a time-out mechanism. When a task is dispatched to a resource (
IServer.run(ITask) ) this service starts a timing mechanism to trigger a time-
out event after a pre-de�ned time. On a time-out event the target resource may
be discarded from the resource list and the task is again resubmitted for exe-
cution (by calling ITask.execute()). Note that when both load balancer and



fault tolerance services are plugged the fault tolerance service intercepts the task
dispatching process after the load balancing service (i.e., after the task have been
assigned to a free resource), and tasks resubmitted by the fault tolerance service
are again assigned to speci�c resources by the load balancer.

2.5 Resource List

This module maintains a list of remote resources (i.e., a list of IServer). Other
modules, such as Load Distribution or Fault-Tolerance or Monitoring, access
the list accordingly to their speci�c needs, those can be getting or updating the
list. Each remote resource must send a message, from time to time announcing
that is alive. The content of the message must have all information that makes
possible this module to contact the remote server, thus allowing, for example,
the submission of tasks. When a message announcing that a remote resource is
available arrives, a new server is added to the list, in the other hand, when the
submission of a task fails that server can be removed from the list.

2.6 Remote Execution

The remote execution module allows tasks to be executed in distributed pro-
cessing elements, that is, in di�erent computing nodes, taking advantage of the
computing power of a cluster, or even a grid, to execute a set of tasks.

The following class diagram is a simpli�ed version of the remote execution
module.

Previously to task execution it is necessary to deploy the (speci�c) code that
allows a task to be executed, that is accomplished by transferring the needed
bytecode. By means of a code contract, the bytecode to be transferred has to
implement the Work and the Deploy interfaces. Thus, it is possible to execute
the deployed code since the implementation of execute method instantiates a
Work reference with an instance obtained from the deployed code.

2.7 Monitoring

The monitoring component allows to see the percentage of concluded tasks rel-
ative to tasks generated so far, as well as to count the number of task whose
execution has failed.

For this purpose, a monitor module intercepts task submission (ITask.execute(..))
to gather the number of tasks to execute and monitors calls to the IServer.run(ITask)
method to �nd when tasks are dispatched to resources. This second call also
allows to detect faulty resources since, in this case task execution does not com-
plete.



Fig. 4. Class diagram of remote execution module.

3 Evaluation

In this section we illustrate and evaluate the use of the framework to grid-
ify a simple application, the computation of the Mandelbrot set from the Java
Grande Forum [9]. The application non-invasively parallelised with the Aspect-
Grid framework. The Mandelbrot set was divided into disjoint sets, each com-
puted by a di�erent ITask (this code was already presented in section 2.1).

The non-invasive nature of the AspectGrid framework implies that no over-
head is introduced into the original sequential code, as gridi�cation modules can
be plugged any time during and after the gridi�cation process. As such, when
executing the code on a sequential machine no overhead is observable.

Figure 5 presents execution times of the computation when running on a
multi-core machine with 4 cores (dual Xeon 2.8GHz) for a varying number of
generated parallel tasks. These results where collected by plugging the paralleli-
sation and the scheduler services.

The application bene�ts from a moderate number of parallel tasks (e.g., few
tens) since they generate tasks with varying workloads. Increasing the number
of tasks makes it possible to perform a better load distribution up to a point
where this is an excess of parallel tasks.



Fig. 5. Execution times on a multi-core platform.

Fig. 6. Execution times for distributed version.

Figure 6 presents execution times (in milliseconds) of the applications when
running on a cluster with 16 machines with and without the load distribution
service.

Figure 7 presents a screenshot of the current implementation of the monitor-
ing service. It shows the overall progress of the computation as well as the ratio
of faulty tasks. In this case, faulty tasks where arti�cially injected to test the
fault tolerance service.



Fig. 7. Monitor window.

4 Related work

The Java GAT [10] is a grid API that aims to provide a simple interface to
multiple grid middleware. Ibis [11], ProActive [12] and HOCs [13] provide mid-
dleware to develop parallel applications that can take advantage of grid systems.
Gridgain [14] is an open source framework designed speci�cally to support the de-
velopment of grid applications. Grid-enabling applications in these approaches
require invasive and non-reversible source code changes. In these approaches
grid-enabled scienti�c applications become dependent of the Grid middleware.

GEMLCA [15] and GRASG [16] are two frameworks supporting non-invasive
gridi�cation of scienti�c codes. These approaches perform a coarse grain gridi-
�cation, by deploying scienti�c codes as grid services. These approaches lack of
support for �ned-grained decomposition of the application functionality to take
advantage of the power of computational grids.

Non-invasive �ne-grained gridi�cation has been previously applied to appli-
cations that adhere to speci�c coding conventions. This Pagis system [17] ex-
plores the use re�ection techniques to gridify applications structured across the
paradigm of process networks. AOP techniques have been previously applied to
abstract the process of remote execution of Java Thread-based applications [18]
and to implement the adaptation of a skeleton framework [19] to cluster and grid
environments [5]. The AspectGrid framework di�ers from these previous e�orts
by supporting non-invasive, �ne-grained, gridi�cation of scienti�c codes, without
requiring the source code to adhere to speci�c coding conventions. In addition,
gridi�cation issues are pluggable, supporting the adaptation of the application
to speci�c running conditions, including the execution on a sequential machine,
on multi-core systems and on computational Grids.



5 Conclusion

The AspectGrid framework is a pioneer framework supporting a set of gridi�ca-
tion services provided by the use of AOP techniques. It uses a unique non-invasive
approach to bind grid services into scienti�c codes and to couple together sev-
eral services provided by the framework, resulting in a non-invasive, �ne-grained
gridi�cation.

Current work includes the integration of the AspectGrid services with a grid
middleware (e.g., Glite) and the extension of the current set of services to ad-
dress security issues. More long-term work includes addressing portability issues
namely by supporting the gridi�cation of non-Java applications.

Acknowledgments

This work was supported by AspectGrid project (Pluggable Grid Aspects for Sci-
enti�c Applications, GRID/GRI/81880/2006) and by SeARCH (Services & Ad-
vanced Computing with HTC/HPC, CONC-REEQ/443/EEI/2005), all funded
by Portuguese FCT and European funds (FEDER).

References

1. : JDL - Job Description Language. http://glite.web.cern.ch/glite/documentation
2. Mateos, C., Zunino, A., Campo, M.: A survey on approaches to gridi�cation
3. : AspectGrid homepage. http://gec.di.uminho.pt/aspectgrid
4. Sobral, J.: Pluggable grid services. Grid Computing, 2007 8th IEEE/ACM Inter-

national Conference on (2007) 113�120
5. Sobral, J., Proença, A.: Enabling JaSkel Skeletons for Clusters and Computational

Grids
6. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.,

Irwin, J.: Aspect-Oriented Programming. ECOOP'97�object-oriented Program-
ming: 11th European Conference, Jyväskylä, Finland, June 9-13, 1997: Proceedings
(1997)

7. Filman, R., Friedman, D.: Aspect-Oriented Programming is Quanti�cation and
Obliviousness. Workshop on Advanced Separation of Concerns 2000 (2000)

8. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: elements of
reusable object-oriented software. Addison-Wesley Longman Publishing Co., Inc.
Boston, MA, USA (1995)

9. Smith, L., Bull, J., Obdrzalek, J.: A Parallel Java Grande Benchmark Suite.
Proceedings of the 2001 ACM/IEEE conference on Supercomputing (CDROM)
(2001) 8�8

10. Allen, G., Davis, K., Goodale, T., Hutanu, A., Kaiser, H., Kielmann, T., Merzky,
A., van Nieuwpoort, R., Reinefeld, A., Schintke, F., et al.: The grid application
toolkit: toward generic and easy application programming interfaces for the grid.
Proceedings of the IEEE 93(3) (2005) 534�550

11. van Nieuwpoort, R., Maassen, J., Wrzesinska, G., Hofman, R., Jacobs, C., Kiel-
mann, T., Bal, H.: Ibis: a �exible and e�cient Java-based Grid programming
environment. Concurrency and Computation: Practice & Experience 17(7) (2005)
1079�1107



12. Baduel, L., Baude, F., Caromel, D., Contes, A., Huet, F., Morel, M., Quilici, R.:
Programming, Composing, Deploying, for the Grid. In: Grid Computing: Software
Environments and Tools. Springer-Verlag (2005)

13. Gorlatch, S., Diinnweber, J.: From Grid Middleware to Grid Applications: Bridging
the gap with HOCs. Future Generation Grids: Proceedings of the Workshop on
Future Generation Grids, November 1-5, 2004, Dagstuhl, Germany (2005)

14. : Gridgain homepage. http://www.gridgain.com
15. Delaitre, T., Kiss, T., Goyeneche, A., Terstyanszky, G., Winter, S., Kacsuk, P.:

GEMLCA: Running Legacy Code Applications as Grid Services. Journal of Grid
Computing 3(1) (2005) 75�90

16. Ho, Q., Hung, T., Jie, W., Chan, H., Sindhu, E., Subramaniam, G., Zang, T.,
Li, X.: GRASG-a framework for "gridifying" and running applications on service-
oriented grids. Proceedings of the Sixth IEEE International Symposium on Cluster
Computing and the Grid (CCGRID'06)-Volume 00 (2006) 305�312

17. Webb, D., Wendelborn, A.: The PAGIS Grid Application Environment. Interna-
tional Conference on Computational Science (Lecture Notes in Computer Science
2659

18. Maia, P., Mendonça, N., Furtado, V., Cirne, W., Saikoski, K.: A process for sepa-
ration of crosscutting grid concerns. Proceedings of the 2006 ACM symposium on
Applied computing (2006) 1569�1574

19. Ferreira, J., Sobral, J., Proenca, A.: JaSkel: a java skeleton-based framework for
structured cluster and grid computing. Proceedings of the Sixth IEEE International
Symposium on Cluster Computing and the Grid (CCGRID'06)-Volume 00 (2006)
301�304


