
Pluggable Parallelisation

Rui C. Gonçalves, João L. Sobral
Departamento de Informática
Universidade do Minho
4710-057 Braga,
PORTUGAL

[rgoncalves, jls]@di.uminho.pt

ABSTRACT

This paper presents the concept of pluggable parallelisation that

allows scientists to develop “sequential like” codes that can take
advantage of multi-core, cluster and grid systems. In this approach

parallel applications are developed by plugging parallelisation

patterns/idioms into scientific codes (e.g., “sequential like”
codes), softening the move from sequential to parallel

programming and promoting the separation between domain

specific code and parallelisation issues. Pluggable parallelisation
combines three characteristics: 1) parallelisation is performed

from “outside to inside”, localising parallelisation concerns into

well defined modules, reducing changes required to the domain
specific code and avoiding invasive parallelisation of base code;

2) control view is separated from data view promoting a stronger
separation of concerns which improves reuse of parallelisation

concerns across platforms and enables fine-grained refinements;

and 3) abstractions can be composed, supporting the development
of more complex patterns based on fine-grained features. This

paper presents the concept of pluggable parallelisation and shows

how some well-known parallelisation strategies can be
implemented in this approach. Results show that this is a feasible

approach and performance is competitive with traditional parallel

programming.

Categories and Subject Descriptors

D.1.3 [Programming Techniques]: Concurrent Programming -

Parallel programming; D.3.3 [Programming Languages]:

Language Constructs and Features – Concurrent programming
structures.

General Terms

Performance, Design and Languages.

Keywords
Parallel programming, non-invasive parallelisation, separation of

concerns.

1. INTRODUCTION
Parallel computing is being pushed to the mainstream by the
advent of multi-core machines and grid systems. The number of

cores on every desktop machine (currently 2 or 4 cores per

machine) will keep increasing. This requires a massive migration
of current sequential applications to this new reality, introducing a

strong pressure for new parallel programming paradigms that can

help on this move.

public class JGFLUFactBench
 extends Linpack implements JGFSection2{

 public static int nprocess;
 public static int rank;

 public void JGFinitialise() throws MPIException{
 int r_count,z_count;
 int p_ldaa;
 n = datasizes[size];
 ipvt = new int [ldaa];
 p_ldaa = (ldaa + nprocess - 1) / nprocess;
 rem_p_ldaa = (p_ldaa*nprocess) - ldaa;
 /* ... */

 if(rank==0) {
 long nl = (long) n;
 ops = (2.0*(nl*nl*nl))/3.0 + 2.0*(nl*nl);
 norma = matgen(a,lda,n,b);
 }

 if(rank==0) {
 for(int i=0;i<a.length;i++){
 if(r_count==0) {
 for(int l=0;l<a[0].length;l++){
 buf_a[z_count][l] = a[i][l];
 }
 z_count++;
 } else {
 MPI.Send(a,i,1,MPI.OBJECT,r_count,10);
 }
 buf_list[i] = z_count - 1;
 }
 } else { // rank!=0
 for(int i=0;i<real_p_ldaa;i++){
 MPI.Recv(buf_a,i,1,MPI.OBJECT,0,10);
 }
 }
 }

Figure 1. LuFact MPI-Based parallelisation

The paradigm with the highest probability of success would
resemble traditional sequential programming and should

maximise reuse of existing sequential codes. Unfortunately,

currently most parallel programming languages require extensive
and invasive source code changes to enable codes to take

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

HPDC’09, June 11–13, 2009, Munich, Germany.

Copyright 2009 ACM 978-1-60558-587-1/09/06...$5.00.

advantage of parallel systems. For instance, in MPI the

programmer must insert code to perform data partitioning among
MPI processes and to coordinate the execution and data moves

among processes. As a consequence, parallelisation issues become

tangled with domain specific code [8] and changes are non-
reversible. In large scale applications this can limit application

modularity and maintainability, and consequently, the ability to

evolve application code in an independent manner.

We illustrate these issues by presenting code a snippet of the JGF

MPI implementation of the LuFact [15] (Figure 1), a Java version
of the popular Linpack benchmark.

The code is shown in three colours (fonts): i) the basic
functionality (LuFact) in black; ii) MPI control related issues in

red (grey) and iii) data partition issues in blue (italic). These three

concerns are tangled, harming modularity, understandability, etc.

This paper proposes an approach that addresses these issues by

supporting a traditional “sequential like” style of programming.
Parallelisation is performed by “plugging” a set of parallelisation

patterns/idioms that transform “sequential like” codes to take

advantage of parallel systems (e.g., parallel codes). This approach
modularises parallelisation issues into a set of transformations,

enabling independent development of domain-specific and

parallelisation issues, and reducing changes required to the basic
code. These are key features to promote a broader usage of

parallel processing, as most software companies will only have a
few experts in parallel computing, although most programmers

would be more familiar with a “sequential like” style of

programming. Moreover, it promotes reuse of legacy code.

This article is organised as follows. Section 2 presents the

pluggable parallelisation approach. Section 3 performs an
evaluation of this approach with two case studies, including

performance results. Section 4 discusses the limitations of the

approach and section 5 presents related work. Section 6 concludes
the paper presenting directions for further research.

2. PLUGGABLE PARALLELISATION
Pluggable parallelisation addresses the development of parallel
applications by providing abstractions to transform

domain-specific code into parallel code. The process starts with a

“sequential like” code that is transformed into a parallel code by
using a set of parallel programming abstractions. In this process

the programmer can also provide additional parallelisation

specific code.

This “transformation oriented” view presents several advantages

over more traditional approaches. Parallelisation is performed

“from outside to inside” minimising changes required to the base
code and can be applied to legacy code that cannot be made

parallel with parallelising compilers. Moreover, keeping these

transformations in separate modules enables independent
development: it is easier to maintain/change parallel code and

programmers that write domain-specific code can be oblivious of

parallelisation issues.

This approach introduces several questions:

1) What kind of transformations to support?

2) How to specify transformations?

3) How to combine transformations to achieve more complex

ones?

4) How to express common parallel patterns in this approach?

5) What are the main limitations of this type of approach?

The next sub-section contributes to answer to the first and second

questions. The following sub-sections focus on the third and
fourth questions. The discussion and related work sections discuss

the main limitations of this approach.

2.1 Parallel Programming by Transformation
For several years we have been converting sequential Java codes
to their equivalent parallel counterparts. One interesting source of

case studies was the Java Grande Forum (JGF) benchmark [15].

This benchmark includes well known computational kernels that
exist in many scientific codes (some kernels were simply taken

from the SciMark benchmark). This benchmark includes parallel

versions (e.g., MPI based) of most of these well known sequential
codes. The main question was: how could a programmer

transform sequential versions into parallel equivalents without

directly inserting parallelisation code into the source, avoiding

tangling presented in Figure 1?

Parallelisation of the JGF benchmarks follows a SPMD model: all

nodes execute the same sequential code, but each node works on a
different part of the data and certain operations are performed by a

subset of nodes. Additional data moves among nodes may be

required, if each part of data can not be processed independently
from others. This “natural style” of moving from sequential to

parallel codes was confirmed by requesting undergraduate

students, in parallel computing courses, to develop parallel
versions of sequential Java codes. They tended to follow an

approach similar to the one used in the JGF benchmarks.

Based on this set of experiences, we devised a set of programming
abstractions that could help to perform code transformations for

parallelisation. Identified transformations specify actions like:

1. Block B of sequential code executes on all nodes;

2. Block B of code executes on nodes N where condition C holds;

3. Data structure D is partitioned among nodes using strategy S;

4. Update remote data at execution point E.

Non-invasively applying these transformations to scientific codes

requires a way to identify, from outside (i.e., through a unique
global name), blocks of code B, data structures D and execution

points E. For this purpose we resorted to an object-oriented
language as the basic language. Object-oriented languages offer a

richer set of abstractions (e.g., classes, methods, fields), besides

traditional structured programming abstractions. As a
consequence, they provide a richer set of alternatives to identify

program elements.

We implement transformations upon the concept of object

aggregate [1][17]. Object aggregates are objects that are replicated
on all nodes (i.e., each node has a local instance of the object).

The idea is to transform object creations in the sequential code
into creations of object aggregates in the parallel code (i.e.,

transformed code). Subsequent method calls (originally in the

sequential code) can be performed by the local aggregate
representative (by default) or by all elements of the aggregate. It is

possible to restrict method executions to specific aggregate

elements. For that purpose a condition can be provided that can

depend on the node identifier, method parameters and object data.

Operations of type 1) and 2) can be mapped into method
executions that are (conditionally) executed by aggregate

elements. Operations of type 3) and 4) are expressed by

operations controlling how data stored in objects is distributed /
updated among aggregate elements at specific execution points.

Operations of type 1) and 2) manage task coordination (i.e.,

control view) and operations of type 3) and 4) manage data
distribution and dependence issues (i.e., data distribution view).

The proposed approach promotes the management of these issues

as separate concerns, by managing these two views as separate as
possible. The control flow view specifies how a sequential control

flow is transformed into multiple control flows and how to

coordinate parallel control flows. Data distributions specify how
data is partitioned among parallel tasks and what data moves are

required to keep data consistent. This separation introduces

several benefits: 1) it allows a more incremental development and
understanding (e.g. first understanding the control flow and then

the data distribution strategy); 2) it is conceptually possible to
change one independently of the other, although we foresee that

the common case will be changing data distributions (e.g., some

parallelisation patterns differ only in data dependencies, requiring
specific data distributions and moves).

Figure 2 illustrates this model. The sequential code creates a

single object instance obj1. Method call a is performed on this

instance, which issues a method call b to the same instance. After
applying transformations of type 1), the resulting parallel code

creates an aggregate of obj1 (one object instance per node) and
call a executes on all nodes. Method call b is also issued on all

nodes, since it is nested inside call a. But, in this specific

example, we explicitly restricted the execution of call b to the
object on node 0, by composing a transformation of type 2).

Figure 2. Parallelisation process based on object aggregates

By default each object aggregate manages its data in an

independent manner (i.e., each aggregate has a local copy of the
data). The same holds for static data allocated in static classes. We

support several transformations that can change the default

behaviour. The idea is to specify how data is distributed among
aggregate elements. We support BLOCK and CYCLIC data

partitions and global and local view of data. In the former, data
indexes refer to the local partition, in the latter data indexes are

relative to the global data structure. Figure 3 illustrates this

transformation. There are transformations to inject code to change
from one view to the other, during execution, and to update

remote data. Moreover, since we start with a sequential code we

allocate a shadow of the data in node 0. This is usually required
since data initialisation performed in the sequential code usually

needs to be performed in node with identification 0.

Figure 3. Global and local view of data

We also support non-SPMD code through remote objects and
asynchronous method calls. In the former, an object in the

sequential code can be placed on a remote node (chosen by the

run-time system or specified by the programmer). In the latter, the
method call is performed in a new thread of control.

The remainder of this section gives an overview of the

template-based syntax used to express these transformations and
presents common transformations. The two next sub-sections

overview currently supported control and data transformations.

The last sub-section discusses cases where these two views are
more tightly coupled and presents sample code.

2.1.1 Template-Based Syntax
Code transformations are expressed in a template-based syntax
(similar to C++ templates). Transformations can be applied to

classes, methods (including parameters and return values) and

data fields: these are the types of parameters in templates. A
template-based syntax also supports the specification of

composition of abstractions through template nesting (described

in subsection 2.2). Table 1 presents relevant transformations
currently supported.

Table 1. Transformations currently supported

Transformation Description

Separate<T> Instances of class T can be created
on any cluster node

GridSeparate<T> Instances of class T can be created
on any grid node

Replicate<T> Create an instance to class T on

each available resource (e.g. node)

Broadcast<T,M> Execute method call M on all

aggregate elements (e.g., nodes)

CondExe<T,M,C> Restrict execution of method M to
places where condition C holds

Async<T,M,E> Spawn a new thread to execute M,

wait for the spawned thread at E

Partitioned<T,D,

[BLOCK,CYCLE]>

Distribute the data field D, of class

T, using a partition strategy

ChangeView<T,E,D,
[Local|Global]>

Change field D from/to local/global
view at execution point E

Scatter*/Gather*

<T,E,D>or<T,E,M>

Update copy of field D or method

parameter M at execution point E

Node 0 Node 2 Node 1

Global view

Seq. code Parallel code

Node 0 Node 2 Node 1

Local view

obj1 obj1

call a

Node 0

call b call b call b

call a call a

call a

obj1

Seq. code

call b

Parallel code

obj1

Node 1 Node 2

Transformations have the following generic syntax:

 TemplateName<

 Class T

 [,Method M]*

 [,ExecutionPoint E]*

 [,Condition C]

 [,DataField D]

 >

Class T specifies the class where the transformation applies,
replacing instances of class T by a new type compatible version of

the class. One example is Replicate<T> that specifies that one

instance of class T should be created on each available computing
resource (e.g., class T becomes an object aggregate). For

compactness, in this article, we generally omit template parameter

class T, although it is important to understand that transformations
generally change the implementation of class T, so this parameter

must be explicitly provided.

Method M and ExecutionPoint E are syntactically similar (both
specify method executions) but they are used for different

purposes. The former is used to specify blocks of code (e.g., a

method) and the latter is used to specify execution points to plug
code generated by the transformation. One example is the

Async<T,M,E> template, that spawns a new thread to execute

method M and waits for thread completion on execution point E
(generally another method execution).

Parallelisation patterns may require case specific code. Method M

can also be used for this purpose. In this case, the definition of M
is given along with the template, instead of being defined in the

sequential code.

Condition C specifies that a transformation takes place only on
certain conditions. This is particularly important in SPMD code

since some operations are frequently performed by a subset of

tasks. One example is CondExe<class, “someMethod”,

“iAmRoot?”>, which just executes someMethod if calls to

iAmRoot return true.

2.1.2 Control Flow Transformations
These intend to transform a single control flow in the “sequential
like” code into multiple control flows running in parallel. The

most basic transformation is to replicate the same task on multiple
nodes, which is achieved using Broadcast<T, M>. This executes

the method M in all resources (e.g., nodes). It can only be applied

to static methods. For non-static methods an additional
Replicate<T> is required to create an instance of class T on every

node before performing the broadcast. A more loosely coupled

task creation can be specified by Async<T, M>, which spawns a
new task to execute the method M. Some transformations require

more than one method parameter. For instance, a refined Async

can specify a second method (i.e., execution point) to wait for the
spawned threads on a different execution point (e.g., Async<T, M,

E>). Two other currently supported templates have the purpose of

limiting/synchronising the execution of parallel control flows.
Barrier<T, E> inserts a barrier at the specified execution point.

CondExe<T, M, C> limits execution of method M to aggregate

elements (or compute nodes) where condition C holds. Note that
Replicate<T>, Broadcast<T, M> and CondExe<T, M, C>

implement transformations of type 1 and 2 presented in section

2.1.

2.1.3 Data Distribution View
Data transformations support the specification of data partitions

and updates among nodes (or aggregate elements, if the data is not

stored in static fields). For this purpose we provide a set of
pre-defined data partitions, including block and cyclic, that can be

used of-the-shelf or extended to address application specific

needs. Partitioned<T, D, partitionType> specifies that data field
D will be partitioned among aggregate elements according to

partitionType policy. The point where data is actually scattered or

gathered (or reduced) is specified using templates Scatter<T, E,
D> and Gather <T, E, D>. The reduce template requires an

additional parameter specifying the reduce operator (this is
another case where a method can be provided along with the

template specification). These operations implement

transformations of type 3 and 4 introduced in section 2.1.
Conceptually, it is possible to provide a set of collective

operations equivalent to MPI. The difference is that these manage

information stored in class/object fields and the template
parameter specifies the place in the code where the operation is

inserted (by means of execution point E). More fine-grained data

moves are supported by developing case specific templates
(currently we must resort to AspectJ [11] to write these

templates). One of such examples is the use of point-to-point

messages (e.g., the JGF SOR benchmark). In that case a new
template can be developed to perform the required data move. Our

library of data partitions provides functions to access to local data

(see Figure 3) within these templates.

2.1.4 Interplay of Transformations
Control flow transformations keep the data centralised,

performing data initialisation at the root node. This behaviour is
modified in three ways. 1) if data is initialised in an object

constructor (e.g., the Replicate template implicitly calls the object

initialisation method on each aggregate member); 2) when some
data structure is used as a method parameter (e.g., in the

Broadcast template all data is sent by value); 3) when data

initialisation methods are broadcasted (or called from a
broadcasted method).

Figure 4 illustrates how data distribution transformations change

this default behavior in the JGF Series benchmark.
Transformations are specified into a separate module, but for

compactness and understandability purposes these were inserted

as comments in the basic code, showing where the transformation
will inject the parallelisation code.

class SomeClass {
...
 // Partitioned<SomeClass,TestArray,BLOCK>
 double TestArray[] = new ...
...
 void Do() {
 // ScatterBefore<SomeClass,Do(),TestArray>
 // ChangeView<SomeClass,Do(),TestArray,LOCAL>
 ...
 for (int i = 0; i < TestArray.length; i++)
 TestArray[i] = someComputation(/*.. */);
 }
 // GatherAfter<SomeClass,Do(),TestArray>
 // ChangeView<SomeClass,Do(),TestArray,GLOBAL>
 }
}

Figure 4. JGF Series data distribution view

The Partitioned<SomeClass,TestArray,BLOCK> injects code to

support the block-wise distribution of TestArray among aggregate
elements. ScatterBefore<SomeClass,Do(),TestArray> injects

code to update each partition before the execution of method Do

(in this case, the template injects a MPI_Scatter function in the
sequential code). ChangeView<…,Do(),TestArray,LOCAL>

makes each process to switch to the local view of data. By

changing to the local data view, after that execution point, the
variable TestArray refers to the local block of data (e.g., the

TestArray.length is the size of the local block). The reverse

operations are performed at the end of method Do: data is again
collected in the master and the view is changed to global. Note

that there are means to change the data view independently from

the scatter and gather operations. This allows performing
scatter/gather and change view operations in different execution

points, which, in some cases, may lead to more efficient programs,

by scattering/gathering the data before it is actually needed.

Figure 5 presents the complete example, now including the

control view. In this case, SomeClass is transformed into an object

aggregate (by applying the Replicate template) and calls to the Do
method are executed by all members of the aggregate (by applying

the Broadcast template). An additional Separate transformation

can distribute instances of SomeClass across nodes of a cluster.

Core functionality
class SomeClass {
 double[] TestArray = ... // initialise array
 void Do() {
 for (int i = 0; i < TestArray.length; i++)
 TestArray[i] = someComputation(/*.. */);
 }
}

Parallelisation (data view)
Partitioned<SomeClass,TestArray,BLOCK>
ScatterBefore<SomeClass,Do,TestArray>
GatherAfter<SomeClass,Do,TestArray>

Parallelisation (control view)

Replicate<SomeClass>
// all aggregate elements execute method Do
Broadcast<SomeClass,Do>

Figure 5. Example of separation of data and control view.

2.2 Composing Transformations
Composition issues can arise when multiple transformations have

impact in the same place in the sequential code (e.g., a method).
In addition, building complex parallelisation and the ability to

extend existing templates requires the composition of several code

transformations.

The composition model builds upon an incremental development

process: each transformation generates new code that can be

transformed by another template. The key point is that each
template might have impact on additional methods or execution

points introduced by transformations previously applied. This

enables the generation of different parallel code by composing
transformations in different orders. Thus, a small set of templates

can be used to generate a larger range of parallel programs.

Moreover, additional tools can be provided to ensure that only
valid compositions are allowed.

Figure 6 presents the code generated (for a shared memory

machine) by applying a sequence of Replicate, Broadcast and
Async transformations. Each call to someMethod is executed by a

new thread on each aggregate element.

“Sequential like” code

public class SomeClass {
 void someMethod () { … }
}

SomeClass f = new SomeClass();
f.someMethod();

Generated parallel code

...
for (int i=0; i<numOfReplicas; i++) {
 agg.add(new SomeClass()); // Replicate
 new Thread() { // Async
 void run() {
 agg.elementAt(i).someMethod();
 }
 }.start();
}

Figure 6 - Code resulting from the application of the sequence

of transformations: Replicate<SomeClass>,

Broadcast<SomeClass, ”someMethod”> and Async<

SomeClass, ”someMethod”>.

In this case, the Replicate template injects code to create an

aggregate of instances of SomeClass. The default behaviour
would be to issue the call to someMethod only in the aggregate

representative. By applying the Broadcast transformation to

someMethod it will be executed in all aggregate members. The
Async template acts upon the result of the Broadcast template, by

issuing all method calls in a new thread (i.e., it also has impact on

method calls generated by the Broadcast template).

A different parallel program can be generated by changing the

order of Broadcast and Async transformations. In that case, a

single thread will sequentially perform the call to each aggregate
element, since first the asynchronous call is applied and then the

broadcast.

A composition of transformations is specified by nesting
templates. The composition in the example of Figure 6 would be

specified as Async<Broadcast<Replicate<SomeClass>,…>,…>).

This syntax may become cumbersome for complex compositions.
One problem is the lack of line breaks. This issue is solved by

introducing a syntax that allows to store each program

transformation into a variable and introducing one additional
template parameter that specifies the program where the

transformation applies. A special name (e.g., MAIN) represents

the original “sequential like” code. Under this approach, we could
write the transformation of Figure 6 as:

 prog1 = Replicate<MAIN,SomeClass>

 prog2 = Broadcast<prog1,SomeClass,”someMethod”>

 prog3 = Async<prog2,SomeClass,”someMethod”>

This syntax introduces the possibility to specify a transformation

tree (always starting in the “sequential like” program) instead of a

single transformation chain. This allows a partial ordering of
transformations (enough for many applications). Transformations

acting on common methods/execution points should be

completely ordered. Otherwise, the composition may produce an
unpredictable result as it must select an order to apply

transformations (e.g., the final result could be implementation
dependent).

Template extensibility is also based on composition of templates

(although we also provide means to build a new template from

scratch, by using code templates in AspectJ [11]). To extend a

template we compose additional functionality to that template. For
instance, we could define a new template to implement a Farm

based on Replicate, Scatter and Gather:

 Farm<Class T, Method compute, DataField field>{

 prog1= Replicate<T>

 prog2 = Broadcast<prog1, T, compute>

 prog3 = Scatter<prog2, T, compute, field>

 prog4 = Gather<prog3, T, compute, field>

 }

The last composition issue is related to the generation of code for
specific target platforms. The proposed approach targets the

generation of efficient code for a wide range of architectures,
including multi-core, clusters, computational grids and systems

composed of combinations of these. One common way to take

advantage of clusters of multi-core machines is to use a mix of
MPI and OpenMP. For this purpose the approach supports the

Separate template to specify cluster-aware transformations and

GridSeparate to specify transformations for computational grids.
For instance, an aggregate of objects distributed through the

nodes of a cluster, with a second level of inner aggregates can be

specified by Replicate<Separate<Replicate <SomeClass>>>.
This inner aggregate can more efficiently take advantage of

multi-core processors by communicating through shared memory.

2.3 Expressing Common Patterns
This section revises some well known parallelisation patterns and
outlines how they can be supported in the proposed approach.

Patterns are directives, providing guidelines for solving classes of

parallelisation problems. They are collections of solutions and
there is no “one solution fits all”. The proposed approach does not

force a particular solution for each problem. Instead, it provides a

set of parallelisation patterns that can be composed to address
each specific case. The purpose of this section is to illustrate how

to implement one specific variant of each of these patterns,

namely, it shows how Farm, Pipeline, Divide & Conquer and
Heartbeat can be plugged into “sequential-like” codes.

2.3.1 Farm
In the farm parallelisation the data is divided into independent
parts, which are processed in parallel by several workers, and

joined after processing.

The farm pattern can be plugged into “sequential like” code by
transforming a single object instance into an aggregate of objects.

This requires the specification of the class to be replicated, the

method to process each task and split and merge functions (e.g.,
Farm<Class T, Method compute, Method split, Method join>). It

can be implemented by composing Replicate with Broadcast, and

providing methods to split and join the data, in a similar way to
Scatter and Gather functions. However, in this case the Scatter

and Gather act on method parameters and return value, instead of

acting on data stored in object fields (although using an object
field to store the data is also possible, as shown in section 2.2).

Figure 7 shows a farm pattern applied to the JGF RayTracer.

Class T was replaced by the RayTracer class and the compute
method becomes calls to render method.

Figure 7 - JGF RayTracer parallelisation.

This case shows how it is possible to provide case specific code to
inject in the parallel code. Methods split and join, defined in the

parallelisation, specify how to divide the Interval method

parameter and how to merge the resulting integer array.

2.3.2 Pipeline
A pipeline consists of a chain of processes working in parallel on

different parts of data. Each part of data is successively processed
by all processes in the chain.

A pipeline can be plugged into sequential code by replacing an

instance of a class by a pipeline of elements of the same class.

Additional split and join methods can be used to divide the
original data into independent pieces and to merge the processed

pieces (e.g., Pipe<Class T, Method compute[, Method split,

Method join]>. Another way to implement a pipeline, when the
sequential code includes a chain of method calls, is to use the

Async pattern.

2.3.3 Divide & Conquer
 This pattern addresses problems that are recursively divided into

simpler sub-problems that can be solved in parallel. The

“sequential like” code where the pattern applies can be
intrinsically divide & conquer (e.g., problems that are sequentially

solved in a recursive manner). In this case, the parallelisation

pattern spawns a new parallel task on each recursive call, using
the Async template (with future type synchronisation [3], an

approach similar to fork & join frameworks [12][14], but

avoiding invasive changes in sequential code).

We illustrate this pattern (Figure 8) with the classic Fibonacci

function (this is an example of how the proposed approach can

support non-SPMD code).

Figure 8 - Parallel computation of Fibonacci numbers.

Core functionality
RayTracer rt = new RayTracer();
Interval interval = new Interval(0,500);
int Result[] = rt.render(interval);

Farm parallelisation
Vector<Interval> split(Interval in) {
 … // split in into sub-intervals
}
int[] join(Vector<int[] in) {
 … // join rendered sub-images
}
Separate<Farm<RayTracer, render, split, join> >

Core functionality
public class Fib {
 long value;
 public Fib(long val) { value = val; }
 public long compute() {
 if (value <=1) return(value);
 else{
 Fib f1 = new Fib(value-1);
 Fib f2 = new Fib(value-2);
 Long r1 = f1.compute();
 Long r2 = f2.compute();
 return(r1.longValue()+r2.longValue());
 }
 }
}

Parallelisation
Async<Fib,”compute”,”Long.longValue”>
Separate<Fib>

Calls to compute methods are made asynchronously through the

Async template. Calls to Long.longValue (i.e., the unboxing
function that transforms an object Long into a long value) provide

the execution point where a fake return value is replaced by the

result of the computation. We also specify that instances of the
Fib class can be placed on remote resources, by making them

Separate objects, otherwise the application would run on a single

machine.

A variant of Divide & Conquer is the search for the best solution
(e.g., N-Queens). Recursive calls are only issued if they could

lead to a better solution. This data dependence can be addressed
by additionally plugging appropriate template to conditionally

Broadcast data field at certain execution points.

Figure 9 – JGF LuFact parallelisation.

2.3.4 Heartbeat
Heartbeat patterns are generally applied to problems solved

iteratively. This type of pattern is addressed by executing (i.e.

broadcasting) the method that computes iterations on all nodes.
Additional data moves (at each iteration) can be injected into the

sequential code through data distribution transformations.

The JGF LuFact example of a typical heartbeat application
(Figure 9), it is a Java version of the popular Linpack benchmark.

In this example we extracted three blocks of code into methods in

order to support conditional execution by means of CondExe.
Before and after executing the dgefa method we need to scatter

and gather values of matrix a. Note that in this case a method that

returns a value is conditionally executed. That value is
automatically broadcasted to all aggregate elements (e.g., by

CondExe).

The parallelisation of the LUFact is very close to the
parallelisation of the computation of All-Pairs Shortest Paths

(ASP) [2]. This makes it attractive to develop a template that can

be used in both cases. Figure 10 presents that template. It creates
an aggregate of ClassT, broadcast execution of method2BCast to

all aggregate elements, conditionally executes method2CEx when

condEx is true and field2Dist is distributed among aggregate
elements using the partType. This template is enough for the ASP

application, but for LUFact it only implements statements in

italics from Figure 9. As such, in this case, three additional
condExe templates are also applied.

HearbeatBC<ClassT, method2BCast,
 method2CEx, condEx, field2Dist, partType> {

 Separate<Replicate<ClassT>>
 Broadcast<ClassT, method2BCast>
 CondExe<ClassT, method2CEx, condEx>

 Partitioned< field2Dist, partType >
 ScatterBefore<ClassT, method2BCast,field2Dist>
 GatherAfter< ClassT, method2BCast, field2Dist>
}

Figure 10 – Template for JGF LuFact and ASP parallelisation.

Another important point about code in Figure 9 is that a shared

memory version of the LUFact can be efficiently derived by

ignoring transformations that implement the data distribution.

3. PERFORMANCE EVALUATION
This section evaluates the proposed approach with two case

studies from the Java Grande Forum (JGF) [15] and presents
performance results. JGF includes benchmarks in sequential,

concurrent (i.e., Java threads) and parallel (Java MPI) variants.

This section describes developed parallel versions of Crypt and
LU factorisation, which are in the Farm and Heartbeat category.

Parallel versions of the other benchmarks were developed in a
similar way, as they are also in these pattern categories.

The Crypt benchmark encrypts and decrypts a byte array. The

processing is performed in the method Do of IDEATest. This

application is parallelised by processing parts of the byte array in
parallel, which was performed with the Replicate template to

create one instance of IDEATest on each node and executing the

method Do on all nodes. Scatter and Gather templates divide the
byte array among workers (field plain1) and gather the processed

results (field plain2). The CondExe template was used to ensure
that some data initialisations were performed only at node 0.

Core functionality
public class Linpack {
...
 final int dgefa(double a[][],
 int lda, int n, int ipvt[]) {
 double[] col_k, col_j;
 double t;
 int j, k, kp1, l, nm1;
 int info;

 // gaussian elimination with partial pivoting
 info=0;
...
 // find l = pivot index
 l=idamax(n-k, col_k, k, 1)+k;
 ipvt[k]=l;

 col_k=calcMults(col_k, n, k, kp1, l);
 if(col_k[l]!=0) {
 for(j=kp1; j<n; j++)
 reduceColumn(a, n, col_k, j, k, kp1, l);
 }
...
 info=calcInfo(a, n, info);
 return info;
 }
}

Parallelisation code (control view)

Separate<Replicate<Linpack>>
Broadcast<Linpack,
 'int dgefa(double[][], int, int, int[])'>
CondExe<Linpack,
 'double[] calcMults(double[] col_k, int n,
 int k, int kp1, int l)', 'a.getPart(k)'>
CondExe<Linpack,
 'int calcInfo(double[][] a, int n,
 int info)','a.getPart(n-1)'>
CondExe<Linpack,
 'int idamax(int n,double dx[],int dx_off,
 int incx)','a.getPart(dx_off)'>
CondExe<Linpack,
 'void reduceColumn(double[][] a, int n,
 double[] col_k, int j, int k,
 int kp1, int l)','a.getPart(j)'>

Parallelisation code (data view)

Partitioned<'Linpack.a',[CYCLE][*]>
ScatterBefore<Linpack,
 'int dgefa(double[][], int, int, int[])',
 'double[][] Linpack.a'>
GatherAfter<Linpack,
 'int dgefa(double[][], int, int, int[])',
 'double[][] Linpack.a'>

The LUFact performs a LU factorisation through an iterative

algorithm (e.g., Heartbeat), requiring the broadcast of a matrix
column at each iteration (different for each iteration). We

followed a similar approach to the Crypt benchmark, by

replicating instances of class Linpack and executing the dgefa
method on all nodes. This example was presented in Figure 9.

Performance benchmarks were performed by comparing execution

times of parallel versions built with this approach and equivalent

hand written parallel versions (MPI based taken from JGF). Table
2 presents the speed-up, relative to the sequential versions, on a

cluster of 8 bi-Xeon 5130 machines (a total of 32 cores, 4 per
machine) and JDK 1.5_3. The first four benchmarks are from JGF

(SOR is red-black successive-over relation, another typical

heartbeat and the RayTracer is a typical farm).

Table 2. Speed-up of hand written (HW) parallel applications

and built using pluggable parallelisation (PP) on a cluster

4 cores 16 cores 32 cores
Application

HW PP HW PP HW PP

CryptC 3.54 3.53 7.80 7.56 9.56 9.27

SeriesC 3.11 3.13 12.26 12.29 24.42 24.61

SparseMatmultC 2.11 2.12 6.85 8.28 10.53 19.46

LUFactC 2.22 2.29 2.85 3.03 2.07 2.53

SORC 1.53 1.25 2.93 1.86 2.87 2.49

MDB 3.78 3.74 9.94 10.89 - -

RayTracerB 3.82 3.88 14.13 14.38 25.64 26.16

Overheads introduced by our approach are generally very low.
These are due to code re-factorings (e.g, moving blocks of code to

methods) and due to the use of AspectJ. These are generally low

as code transformations are made at compile-time and most
injected code can be inlined. The amount of overhead depends on

method granularity: fewer operations executed at each intercepted

execution point represent higher overheads. The sparse matrix
multiplication performs better with pluggable parallelisation.

Interestingly, in this benchmark, we simply used a standard data

partition strategy that seems to provide some advantage over the
one used in JGF. Both LuFact and SOR scale poorly due to

communication overheads (both require certain amount of
communication per iteration).

Table 3 presents the execution times on machine bi-Xeon E5430

(a total of 8 cores). In this case hand written versions are

implemented with Java Threads (also provided by the JGF). It
should be stressed that shared memory implementations with

pluggable patterns share most of the code with the distributed

memory implementations and the “sequential like” code is the
same for both versions (usually only data distribution issues are

not included).

In this case the performance of both versions is also very close.
The speed-up of sparse matrix multiplication drops with 8 cores.

We are currently investigating this issue but it is probably due to

less data locality. There is also some performance difference in
MolDyn. In this case the difference is due to generation of fine-

grained tasks that impose higher overheads.

Table 3. Speed-up of hand written (HW) parallel applications

and built using pluggable parallelisation (PP) on a SMP

4 cores 8 cores
Application

HW PP HW PP

CryptC 3.7 4.1 7.0 7.5

SeriesC 3.4 3.7 7.9 7.9

SparseMatmultC 4.1 4.3 8.3 3.0

LUFactC 3.6 3.6 5.7 5.5

SORC 3.7 3.9 5.9 6.7

MDB 2.9 2.4 4.2 3.2

RayTracerB 3.3 3.8 7.5 7.2

4. DISCUSSION
We start this section by comparing the proposed approach against

current mainstream programming languages, i.e., MPI and
OpenMP (Table 4).

Table 4. Assessment of OpenMP, MPI and pluggable patterns

 OpenMP MPI PP

localised / modular

parallelisation

no (yes) no yes

incremental
parallelisation

yes (no) no yes

unpluggability yes no yes

code reuse / composition
of abstractions

no no yes

support for new

abstractions

no no yes

support for multi-core/

cluster/grids

yes/

no/ no

no/

yes/no

yes/

yes/yes

Both OpenMP and MPI lead to tangled code (e.g., no modular

parallelisation), however OpenMP seems better in this respect, as

all parallelisation statements can be placed into annotations
(except for more complex issues). The use of annotations makes it

easy to identify parallelisation-related statements. Tangled code

makes it hard to understand MPI programs, as each statement
must be tracked either to domain-specific issues or to

parallelisation issues. The proposed approach modularises

parallelisation issues into transformations.

Incremental parallelisation means that we can start by sequential

code and progressively perform the parallelisation, with minor

impact on the original code. This is supported in OpenMP by
inserting code annotations, although, more complex issues usually

require code re-factorings. In this matter, OpenMP and our

approach seem to have a similar support.

Unpluggability of parallel code is a nice property of OpenMP

since the standard allows a compiler to ignore parallelisation

directives. This can also be true even if the program has calls to
OpenMP run-time. The standard defines stubs for implementing

these run-time libraries on machines that do not support OpenMP.

Unpluggability is also supported in our approach.

A weak point of MPI or OpenMP is the lack of support to include

new abstractions and to compose instances of parallelisation code
into reusable modules. In MPI this is due to the fact that

parallelisation code is mixed with domain specific code. In

OpenMP this limitation is mainly due to its annotation-based
nature that confines the set of abstractions to the set provided by

the language and pre-empts the addition of parallelisation specific

code in a modular way.

OpenMP only supports shared memory systems and MPI only
supports distributed memory systems. Pluggable parallelisation

supports both types of target platforms by “plugging” different
transformations for each type of target platform. Our

GridSeparate template supports grid environments.

We performed additional measurements to assess the usability and

code reuse of each approach. Table 5 presents the number of non
commenting source statements (NCSS) for each benchmark

measured with the JavaNCSS tool [19], version 29.50. The NCSS

of parallelisation statements were manually collected, following a
philosophy similar to the one implemented by the tool. OpenMP

data is based on the JGF JOMP implementation, where OpenMP
directives are specified as Java comments that are not considered

by the NCSS tool. In that case we counted each OpenMP directive

as one statement.

Table 5. NCSS of various parallelisation approaches

Base

code
JOMP MPI Java PP

Application

N
C

S
S

N
C

S
S

G
ro

w

N
C

S
S

G
ro

w

N
C

S
S

G
ro

w

Crypt 190 193 2% 242 27% 217 14%

LUFact 239 240 0% 328 37% 262 10%

Series 70 71 1% 115 64% 79 13%

SOR 56 72 29% 155 176% 110 96%

SparseMatmult 60 100 67% 109 82% 74 23%

MD 261 -1 - 283 8% 271 4%

RayTracer 240 240 0% 273 14% 259 8%

The OpenMP parallelisation (using JOMP) usually results in a

small increase due to OpenMP directives. There are two

exceptions: the SOR and the SparseMatMult. The increase in the
former is due to the use of a different algorithm for all parallel

versions (a version named red-black). The increase in the later is

due to code to schedule loop iterations to threads.

The MPI version leads to the highest number of statements on

every cases. This is due to the statements to specify data

partitioning and coordination among MPI processes. More
problematic is that these statements are tangled with the basic

functionality, making hard to reuse parallelisation code.

The proposed approach always requires fewer statements than its
MPI equivalent implementation. This is due to the reuse of the

data partitioning strategy in the library and to the template based

syntax. The lower count of SparseMatMult is due to the reuse of a

1 The JGF does not include the JOMP implementation of MD

default partitioning strategy, as the data partitioning, in this case,

is simpler than the scheduling of loops to threads (the same can
also be noticed in the MPI-based implementation, where this case

is the one with less increase in statements, when compared with

the JOMP implementation). The proposed approach tends to
generate a higher number of statements than OpenMP, although it

should be stressed that OpenMP does not support distributed

memory systems (i.e., these numbers do not include the code
required to specify data partition).

Applying pluggable patterns to parallelise legacy code requires

that the base code should be amenable for parallelisation. For
instance, the sequential JGF version of the SOR does not use the

red-black variant, so the parallelism that can be introduced is

quite limited (in the case a complete re-write was required).
Experience showed that in general some code re-factorings are

required. The most common is to move a block of code to a

method (M2M) to expose a new execution point and/or to name a
block of code (as it was performed in LuFact) or to change the

place where a certain operation is performed (MMC). These

execution points are required to “plug” the parallelisation code
into the right places. One less frequent re-factoring is the

exposition of context (e.g., the addition of a new parameter to a

method (PDP), or to move a variable to an object field (M2OF).
Since the parallelisation is performed “from outside to inside” the

pluggable parallelisation must have access to context information.

In traditional systems context information is “pushed” by calling a
programming API (e.g., creating a Farm class). In the proposed

approach this information must be “pulled” by the pattern. To

preserve modularity, sometimes the required information must be
explicitly exposed by making a re-factoring (e.g., it does not make

sense to expose a local variable). Table 6 summarises the re-

factorings performed on each benchmark. We classify each re-
factoring as improving the program structure (G), degrading the

structure (B) and neutral (N).

Table 6. Description of re-factorings required to JGF

benchmarks

 Expose exec. point Expose context

Crypt 2xM2M (G) -

Series 2xM2M (B) -

SOR M2M (G), MMC (G) M2OF (G)

LuFact 3xM2M (2G/B) -

RayTracer M2M (G) 2xM2OF (G/B),

PDP (G)

SparceMatmult M2M (G), MMC (N) -

MD M2M (G) -

M2M – Move to Method; MMC - Move Method Call; M2OF – Move

Variable to Object field, PDP – Processing Dependent of new Parameter

The current implementation uses AspectJ code templates that are
pre-processed by a tool. These issues and implementation details

are out of the scope of this paper (some details can be found in

[18]). Since we rely on AspectJ as an implementation tool, the
supported execution points is a subset of the one provided by

AspectJ. The implementation of the Partitioned template requires

direct processing of the source code, since we needed to keep
track of data allocation statements, identifying the size of data

allocated to each object field.

5. RELATED WORK
Recent work focuses on using Aspect Oriented Programming [10]

(AOP), namely AspectJ [11], to separate parallelisation concerns
from domain specific code [8][16][13], on the development of

reusable aspects to implement well known patterns [7][4][17] and

on extending AspectJ with a joinpoint model for loops [9].
AspectJ is an alterative to implement parallelisation concerns but

it has three significant limitations: 1) it unnecessarily exposes

AOP technology to the programmer (e.g., aspects, advices and
pointcuts). 2) it lacks a suitable composition model, since aspects

were designed to compose with some basic functionality and not

to compose one with each other. Composability of abstractions is
essential to develop complex patterns. 3) the most important is the

lack of powerful constructs to implement static code

transformations as it relies too much on a joinpoint model that
captures dynamic events. There are no language constructs to

address accesses to data arrays (e.g., there is no way to intercept
accesses to specific array indexes to implement data

transformations). This is essential to parallelise legacy code,

where methods share data structures. Probably this is why authors
of [8] have written “without completely re-writing LUFact, there

is nothing more that can be done using AspectJ”. Our approach

overcomes these issues by relying on a template based approach
that hides AOP technology, providing a model to compose these

templates and providing templates to explicitly address data

distributions and moves. Separating transformations of control
flow from data view makes it more manageable to plug

parallelisation into legacy code as in the LUFact.

Java-based skeleton approaches [5][6] are an object-oriented
alternative to pluggable parallelisation. These systems provide a

set of high-level patterns to implement common parallelisation

strategies. Parallelisation is performed “from inside to outside”
resulting in invasive and non-reversible changes to the base code.

This results in a weak support for legacy code and scientific codes

become dependent on a specific parallelisation strategy. As a
consequence skeleton systems do not promote a so clear

separation between domain-specific code and parallelisation

issues. Moreover, there is no support for “sequential like” style:
programmers build parallel applications by composing provided

skeletons. The proposed approach follows a different philosophy:

domain specialists develop their code in a traditional manner and
specialists in parallel computing work on pluggable

parallelisation issues that enable codes to take advantage of

parallel systems.

6. CONCLUSION
This paper proposes an approach to develop parallel applications

by plugging transformations into “sequential like” code. Code
transformations are specified through templates that can be

composed to implement more complex patterns. The approach
promotes the separation of the control from the data view through

the use of a specific set of templates for each purpose.

This approach is able to support a “sequential like” style of

programming and to support parallelisation of legacy code by
plugging parallelisation issues, requiring fewer changes than

competitive approaches. In cases where code re-factorings are

necessary, scientific code remains “sequential like” (e.g., domain
specific code does not become dependent of the parallelisation,

being able to run when patterns are unplugged).

Future work includes applying this technique to codes that require

a larger amount of parallel code when moving from sequential to
parallel (e.g., parallel sorting), to address other kinds of

applications, such as pointer based structures (e.g., graphs) and to

investigate how to provide contracts between domain specific
code and pluggable parallelisation.

7. ACKNOWLEDGMENTS
This work was supported by AspectGrid (GRID/GRI/81880/2006)
and PRIA (UTAustin/CA/0056/2008) funded by Portuguese FCT

and European funds (FEDER).

8. REFERENCES
[1] Baduel, L., Baude, F., Caromel, D., Object-Oriented SPMD,

IEEE CCGrid2005, Cardiff, May 2005
[2] Bornemann, M., Nieuwpoort, M., Kielmann T., MPJ/Ibis: a

Flexible and Efficient Message Passing Platform for Java,
EuroPVM/MPI 2005, Sorrento, Italy, September 2005.

[3] Caromel, D., Towards a Method of Object-Oriented

Concurrent Programming, Communications of the ACM, 36,
9, Sept. 1993.

[4] Cunha,C., Sobral J., Monteiro M., Reusable Implementations

of Concurrency Patterns and Mechanisms using Aspect-
Oriented Programming, AOSD’06, Bonn, March 2006.

[5] Danelutto, M., Teti, P., An advanced environment supporting

structured parallel programming. Java, FGCS 19 2003
[6] Fernando, J., Sobral, J., Proenca, A., JaSkel: A Java

Skeleton-Based Framework for Structured Cluster and Grid

Computing, CCGrid'06, Singapore, May 2006
[7] Hannemann, J., Kiczales, G., Design Pattern implementation

in Java and in AspectJ, OOPSLA 2002, Seattle, USA,

November 2002
[8] Harbulot, B., Gurd, J., Using AspectJ to Separate Concerns

in Parallel Scientific Java Code, AOSD 2004, ACM Press,

Lancaster, UK, March 2004
[9] Harbulot, B., Gurd, J., A Join Point for Loops in AspectJ,

AOSD’06, Bonn, Germany, March 2006.

[10] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes,
C., Loingtier, J., Irwin, J., Aspect-Oriented Programming.

ECOOP’97, LNCS, Jyväskylä, Finland, June 1997

[11] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J.,
Griswold, W. G., An Overview of AspectJ. ECOOP 2001,

LNCS, Budapest, Hungary, June 2001
[12] Lee, D., A Java fork/join framework, Java Grande 2000

[13] Maia, M., Maia, P., Mendonça, N., Andrade, R., An Aspect-

Oriented Programming Model for Bag-of-Tasks Grid
Applications, IEEE CCGrid 07, 2007

[14] Nieuwpoort, R., Kielmann, T., Bal, H., Satin: Efficient

Parallel Divide-and-Conquer in Java. Euro-Par 2000
[15] Smith, A., Bull, J., Obdrzálek, J., A Parallel Java Grande

Benchmark Suite, SC 2001, Denver, USA, November 2001

[16] Sobral, J., Incrementally Developing Parallel Applications
with AspectJ, IEEE IPDPS’06, Rhodes, Greece, April 2006

[17] Sobral, J., Cunha, C., Monteiro, M., Aspect-Oriented

Pluggable Support for Parallel Computing, VecPar’06,
LNCS, Rio de Janeiro, Brasil, June 2006

[18] Sobral, J., Monteiro, M., A Domain-Specific Language for

Parallel and Grid Computing, DSAL08, Belgium, April 2008
[19] http://www.kclee.de/clemens/java/javancss/

