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ABSTRACT 

This paper presents the concept of pluggable parallelisation that 

allows scientists to develop “sequential like” codes that can take 
advantage of multi-core, cluster and grid systems. In this approach 

parallel applications are developed by plugging parallelisation 

patterns/idioms into scientific codes (e.g., “sequential like” 
codes), softening the move from sequential to parallel 

programming and promoting the separation between domain 

specific code and parallelisation issues. Pluggable parallelisation 
combines three characteristics: 1) parallelisation is performed 

from “outside to inside”, localising parallelisation concerns into 

well defined modules, reducing changes required to the domain 
specific code and avoiding invasive parallelisation of base code; 

2) control view is separated from data view promoting a stronger 
separation of concerns which improves reuse of parallelisation 

concerns across platforms and enables fine-grained refinements; 

and 3) abstractions can be composed, supporting the development 
of more complex patterns based on fine-grained features. This 

paper presents the concept of pluggable parallelisation and shows 

how some well-known parallelisation strategies can be 
implemented in this approach. Results show that this is a feasible 

approach and performance is competitive with traditional parallel 

programming. 

Categories and Subject Descriptors 

D.1.3 [Programming Techniques]: Concurrent Programming - 

Parallel programming; D.3.3 [Programming Languages]: 

Language Constructs and Features – Concurrent programming 
structures. 

General Terms 

Performance, Design and Languages. 

Keywords 
Parallel programming, non-invasive parallelisation, separation of 

concerns. 

1. INTRODUCTION 
Parallel computing is being pushed to the mainstream by the 
advent of multi-core machines and grid systems. The number of 

cores on every desktop machine (currently 2 or 4 cores per 

machine) will keep increasing. This requires a massive migration 
of current sequential applications to this new reality, introducing a 

strong pressure for new parallel programming paradigms that can 

help on this move. 

public class JGFLUFactBench  
          extends Linpack implements JGFSection2{ 
 
  public static int nprocess; 
  public static int rank; 
 
  public void JGFinitialise() throws MPIException{ 
    int r_count,z_count; 
    int p_ldaa; 
    n = datasizes[size];  
    ipvt = new int [ldaa]; 
    p_ldaa = (ldaa + nprocess - 1) / nprocess; 
    rem_p_ldaa = (p_ldaa*nprocess) - ldaa; 
    /* ... */ 
 
    if(rank==0) { 
      long nl = (long) n; 
      ops = (2.0*(nl*nl*nl))/3.0 + 2.0*(nl*nl); 
      norma = matgen(a,lda,n,b); 
    } 
 
    if(rank==0) { 
      for(int i=0;i<a.length;i++){ 
       if(r_count==0) { 
         for(int l=0;l<a[0].length;l++){ 
           buf_a[z_count][l] = a[i][l];  
         } 
         z_count++; 
       } else { 
         MPI.Send(a,i,1,MPI.OBJECT,r_count,10); 
       } 
       buf_list[i] = z_count - 1; 
      } 
    } else {  // rank!=0 
      for(int i=0;i<real_p_ldaa;i++){ 
        MPI.Recv(buf_a,i,1,MPI.OBJECT,0,10); 
      } 
    } 
  } 

Figure 1. LuFact MPI-Based parallelisation 

The paradigm with the highest probability of success would 
resemble traditional sequential programming and should 

maximise reuse of existing sequential codes. Unfortunately, 

currently most parallel programming languages require extensive 
and invasive source code changes to enable codes to take 
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advantage of parallel systems. For instance, in MPI the 

programmer must insert code to perform data partitioning among 
MPI processes and to coordinate the execution and data moves 

among processes. As a consequence, parallelisation issues become 

tangled with domain specific code [8] and changes are non-
reversible. In large scale applications this can limit application 

modularity and maintainability, and consequently, the ability to 

evolve application code in an independent manner. 

We illustrate these issues by presenting code a snippet of the JGF 

MPI implementation of the LuFact [15] (Figure 1), a Java version 
of the popular Linpack benchmark. 

The code is shown in three colours (fonts): i) the basic 
functionality (LuFact) in black; ii) MPI control related issues in 

red (grey) and iii) data partition issues in blue (italic). These three 

concerns are tangled, harming modularity, understandability, etc. 

This paper proposes an approach that addresses these issues by 

supporting a traditional “sequential like” style of programming. 
Parallelisation is performed by “plugging” a set of parallelisation 

patterns/idioms that transform “sequential like” codes to take 

advantage of parallel systems (e.g., parallel codes). This approach 
modularises parallelisation issues into a set of transformations, 

enabling independent development of domain-specific and 

parallelisation issues, and reducing changes required to the basic 
code. These are key features to promote a broader usage of 

parallel processing, as most software companies will only have a 
few experts in parallel computing, although most programmers 

would be more familiar with a “sequential like” style of 

programming. Moreover, it promotes reuse of legacy code.  

This article is organised as follows. Section 2 presents the 

pluggable parallelisation approach. Section 3 performs an 
evaluation of this approach with two case studies, including 

performance results. Section 4 discusses the limitations of the 

approach and section 5 presents related work. Section 6 concludes 
the paper presenting directions for further research. 

2. PLUGGABLE PARALLELISATION 
Pluggable parallelisation addresses the development of parallel 
applications by providing abstractions to transform 

domain-specific code into parallel code. The process starts with a 

“sequential like” code that is transformed into a parallel code by 
using a set of parallel programming abstractions. In this process 

the programmer can also provide additional parallelisation 

specific code. 

This “transformation oriented” view presents several advantages 

over more traditional approaches. Parallelisation is performed 

“from outside to inside” minimising changes required to the base 
code and can be applied to legacy code that cannot be made 

parallel with parallelising compilers. Moreover, keeping these 

transformations in separate modules enables independent 
development: it is easier to maintain/change parallel code and 

programmers that write domain-specific code can be oblivious of 

parallelisation issues. 

This approach introduces several questions: 

1) What kind of transformations to support? 

2) How to specify transformations? 

3) How to combine transformations to achieve more complex 

ones? 

4) How to express common parallel patterns in this approach? 

5) What are the main limitations of this type of approach? 

The next sub-section contributes to answer to the first and second 

questions. The following sub-sections focus on the third and 
fourth questions. The discussion and related work sections discuss 

the main limitations of this approach. 

2.1 Parallel Programming by Transformation 
For several years we have been converting sequential Java codes 
to their equivalent parallel counterparts. One interesting source of 

case studies was the Java Grande Forum (JGF) benchmark [15]. 

This benchmark includes well known computational kernels that 
exist in many scientific codes (some kernels were simply taken 

from the SciMark benchmark). This benchmark includes parallel 

versions (e.g., MPI based) of most of these well known sequential 
codes. The main question was: how could a programmer 

transform sequential versions into parallel equivalents without 

directly inserting parallelisation code into the source, avoiding 

tangling presented in Figure 1? 

Parallelisation of the JGF benchmarks follows a SPMD model: all 

nodes execute the same sequential code, but each node works on a 
different part of the data and certain operations are performed by a 

subset of nodes. Additional data moves among nodes may be 

required, if each part of data can not be processed independently 
from others. This “natural style” of moving from sequential to 

parallel codes was confirmed by requesting undergraduate 

students, in parallel computing courses, to develop parallel 
versions of sequential Java codes. They tended to follow an 

approach similar to the one used in the JGF benchmarks. 

Based on this set of experiences, we devised a set of programming 
abstractions that could help to perform code transformations for 

parallelisation. Identified transformations specify actions like: 

1. Block B of sequential code executes on all nodes; 

2. Block B of code executes on nodes N where condition C holds; 

3. Data structure D is partitioned among nodes using strategy S; 

4. Update remote data at execution point E. 

Non-invasively applying these transformations to scientific codes 

requires a way to identify, from outside (i.e., through a unique 
global name), blocks of code B, data structures D and execution 

points E. For this purpose we resorted to an object-oriented 
language as the basic language. Object-oriented languages offer a 

richer set of abstractions (e.g., classes, methods, fields), besides 

traditional structured programming abstractions. As a 
consequence, they provide a richer set of alternatives to identify 

program elements. 

We implement transformations upon the concept of object 

aggregate [1][17]. Object aggregates are objects that are replicated 
on all nodes (i.e., each node has a local instance of the object). 

The idea is to transform object creations in the sequential code 
into creations of object aggregates in the parallel code (i.e., 

transformed code). Subsequent method calls (originally in the 

sequential code) can be performed by the local aggregate 
representative (by default) or by all elements of the aggregate. It is 

possible to restrict method executions to specific aggregate 



elements. For that purpose a condition can be provided that can 

depend on the node identifier, method parameters and object data.  

Operations of type 1) and 2) can be mapped into method 
executions that are (conditionally) executed by aggregate 

elements. Operations of type 3) and 4) are expressed by 

operations controlling how data stored in objects is distributed / 
updated among aggregate elements at specific execution points. 

Operations of type 1) and 2) manage task coordination (i.e., 

control view) and operations of type 3) and 4) manage data 
distribution and dependence issues (i.e., data distribution view). 

The proposed approach promotes the management of these issues 

as separate concerns, by managing these two views as separate as 
possible. The control flow view specifies how a sequential control 

flow is transformed into multiple control flows and how to 

coordinate parallel control flows. Data distributions specify how 
data is partitioned among parallel tasks and what data moves are 

required to keep data consistent. This separation introduces 

several benefits: 1) it allows a more incremental development and 
understanding (e.g. first understanding the control flow and then 

the data distribution strategy); 2) it is conceptually possible to 
change one independently of the other, although we foresee that 

the common case will be changing data distributions (e.g., some 

parallelisation patterns differ only in data dependencies, requiring 
specific data distributions and moves). 

Figure 2 illustrates this model. The sequential code creates a 

single object instance obj1. Method call a is performed on this 

instance, which issues a method call b to the same instance. After 
applying transformations of type 1), the resulting parallel code 

creates an aggregate of obj1 (one object instance per node) and 
call a executes on all nodes. Method call b is also issued on all 

nodes, since it is nested inside call a. But, in this specific 

example, we explicitly restricted the execution of call b to the 
object on node 0, by composing a transformation of type 2). 

 

Figure 2. Parallelisation process based on object aggregates 

By default each object aggregate manages its data in an 

independent manner (i.e., each aggregate has a local copy of the 
data). The same holds for static data allocated in static classes. We 

support several transformations that can change the default 

behaviour. The idea is to specify how data is distributed among 
aggregate elements. We support BLOCK and CYCLIC data 

partitions and global and local view of data. In the former, data 
indexes refer to the local partition, in the latter data indexes are 

relative to the global data structure. Figure 3 illustrates this 

transformation. There are transformations to inject code to change 
from one view to the other, during execution, and to update 

remote data. Moreover, since we start with a sequential code we 

allocate a shadow of the data in node 0. This is usually required 
since data initialisation performed in the sequential code usually 

needs to be performed in node with identification 0. 

 

Figure 3. Global and local view of data 

We also support non-SPMD code through remote objects and 
asynchronous method calls. In the former, an object in the 

sequential code can be placed on a remote node (chosen by the 

run-time system or specified by the programmer). In the latter, the 
method call is performed in a new thread of control. 

The remainder of this section gives an overview of the 

template-based syntax used to express these transformations and 
presents common transformations. The two next sub-sections 

overview currently supported control and data transformations. 

The last sub-section discusses cases where these two views are 
more tightly coupled and presents sample code. 

2.1.1 Template-Based Syntax 
Code transformations are expressed in a template-based syntax 
(similar to C++ templates). Transformations can be applied to 

classes, methods (including parameters and return values) and 

data fields: these are the types of parameters in templates. A 
template-based syntax also supports the specification of 

composition of abstractions through template nesting (described 

in subsection 2.2). Table 1 presents relevant transformations 
currently supported. 

Table 1. Transformations currently supported 

Transformation Description 

Separate<T> Instances of class T can be created 
on any cluster node 

GridSeparate<T> Instances of class T can be created 
on any grid node 

Replicate<T> Create an instance to class T on 

each available resource (e.g. node) 

Broadcast<T,M> Execute method call M on all 

aggregate elements (e.g., nodes) 

CondExe<T,M,C> Restrict execution of method M to 
places where condition C holds 

Async<T,M,E> Spawn a new thread to execute M, 

wait for the spawned thread at E 

Partitioned<T,D, 

[BLOCK,CYCLE]> 

Distribute the data field D, of class 

T, using a partition strategy 

ChangeView<T,E,D, 
[Local|Global]> 

Change field D from/to local/global 
view at execution point E 

Scatter*/Gather* 

<T,E,D>or<T,E,M> 

Update copy of field D or method 

parameter M at execution point E 

Node 0 Node 2 Node 1 

Global view 

Seq. code Parallel code 

Node 0 Node 2 Node 1 

Local view 

obj1 obj1 

call a 

Node 0 

call b call b call b 

call a call a 

call a 

obj1 

Seq. code 

call b 

Parallel code 

obj1 

Node 1 Node 2 



Transformations have the following generic syntax: 

  TemplateName< 

      Class T  

      [,Method M]* 

      [,ExecutionPoint E]* 

      [,Condition C] 

      [,DataField D] 

  > 

Class T specifies the class where the transformation applies, 
replacing instances of class T by a new type compatible version of 

the class. One example is Replicate<T> that specifies that one 

instance of class T should be created on each available computing 
resource (e.g., class T becomes an object aggregate). For 

compactness, in this article, we generally omit template parameter 

class T, although it is important to understand that transformations 
generally change the implementation of class T, so this parameter 

must be explicitly provided. 

Method M and ExecutionPoint E are syntactically similar (both 
specify method executions) but they are used for different 

purposes. The former is used to specify blocks of code (e.g., a 

method) and the latter is used to specify execution points to plug 
code generated by the transformation. One example is the 

Async<T,M,E> template, that spawns a new thread to execute 

method M and waits for thread completion on execution point E 
(generally another method execution). 

Parallelisation patterns may require case specific code. Method M 

can also be used for this purpose. In this case, the definition of M 
is given along with the template, instead of being defined in the 

sequential code. 

Condition C specifies that a transformation takes place only on 
certain conditions. This is particularly important in SPMD code 

since some operations are frequently performed by a subset of 

tasks. One example is CondExe<class, “someMethod”, 

“iAmRoot?”>, which just executes someMethod if calls to 

iAmRoot return true. 

2.1.2 Control Flow Transformations 
These intend to transform a single control flow in the “sequential 
like” code into multiple control flows running in parallel. The 

most basic transformation is to replicate the same task on multiple 
nodes, which is achieved using Broadcast<T, M>. This executes 

the method M in all resources (e.g., nodes). It can only be applied 

to static methods. For non-static methods an additional 
Replicate<T> is required to create an instance of class T on every 

node before performing the broadcast. A more loosely coupled 

task creation can be specified by Async<T, M>, which spawns a 
new task to execute the method M. Some transformations require 

more than one method parameter. For instance, a refined Async 

can specify a second method (i.e., execution point) to wait for the 
spawned threads on a different execution point (e.g., Async<T, M, 

E>). Two other currently supported templates have the purpose of 

limiting/synchronising the execution of parallel control flows. 
Barrier<T, E> inserts a barrier at the specified execution point. 

CondExe<T, M, C> limits execution of method M to aggregate 

elements (or compute nodes) where condition C holds. Note that 
Replicate<T>, Broadcast<T, M> and CondExe<T, M, C> 

implement transformations of type 1 and 2 presented in section 

2.1. 

2.1.3 Data Distribution View 
Data transformations support the specification of data partitions 

and updates among nodes (or aggregate elements, if the data is not 

stored in static fields). For this purpose we provide a set of 
pre-defined data partitions, including block and cyclic, that can be 

used of-the-shelf or extended to address application specific 

needs. Partitioned<T, D, partitionType> specifies that data field 
D will be partitioned among aggregate elements according to 

partitionType policy. The point where data is actually scattered or 

gathered (or reduced) is specified using templates Scatter<T, E, 
D> and Gather <T, E, D>. The reduce template requires an 

additional parameter specifying the reduce operator (this is 
another case where a method can be provided along with the 

template specification). These operations implement 

transformations of type 3 and 4 introduced in section 2.1. 
Conceptually, it is possible to provide a set of collective 

operations equivalent to MPI. The difference is that these manage 

information stored in class/object fields and the template 
parameter specifies the place in the code where the operation is 

inserted (by means of execution point E). More fine-grained data 

moves are supported by developing case specific templates 
(currently we must resort to AspectJ [11] to write these 

templates). One of such examples is the use of point-to-point 

messages (e.g., the JGF SOR benchmark). In that case a new 
template can be developed to perform the required data move. Our 

library of data partitions provides functions to access to local data 

(see Figure 3) within these templates. 

2.1.4 Interplay of Transformations 
Control flow transformations keep the data centralised, 

performing data initialisation at the root node. This behaviour is 
modified in three ways. 1) if data is initialised in an object 

constructor (e.g., the Replicate template implicitly calls the object 

initialisation method on each aggregate member); 2) when some 
data structure is used as a method parameter (e.g., in the 

Broadcast template all data is sent by value); 3) when data 

initialisation methods are broadcasted (or called from a 
broadcasted method). 

Figure 4 illustrates how data distribution transformations change 

this default behavior in the JGF Series benchmark. 
Transformations are specified into a separate module, but for 

compactness and understandability purposes these were inserted 

as comments in the basic code, showing where the transformation 
will inject the parallelisation code. 

class SomeClass { 
... 
  // Partitioned<SomeClass,TestArray,BLOCK> 
  double TestArray[] = new ... 
... 
  void Do() { 
    // ScatterBefore<SomeClass,Do(),TestArray> 
    // ChangeView<SomeClass,Do(),TestArray,LOCAL> 
    ... 
    for (int i = 0; i < TestArray.length; i++) 
      TestArray[i] = someComputation(/*.. */); 
    } 
    // GatherAfter<SomeClass,Do(),TestArray> 
    // ChangeView<SomeClass,Do(),TestArray,GLOBAL> 
  } 
} 

Figure 4. JGF Series data distribution view  



The Partitioned<SomeClass,TestArray,BLOCK> injects code to 

support the block-wise distribution of TestArray among aggregate 
elements. ScatterBefore<SomeClass,Do(),TestArray> injects 

code to update each partition before the execution of method Do 

(in this case, the template injects a MPI_Scatter function in the 
sequential code). ChangeView<…,Do(),TestArray,LOCAL> 

makes each process to switch to the local view of data. By 

changing to the local data view, after that execution point, the 
variable TestArray refers to the local block of data (e.g., the 

TestArray.length is the size of the local block). The reverse 

operations are performed at the end of method Do: data is again 
collected in the master and the view is changed to global. Note 

that there are means to change the data view independently from 

the scatter and gather operations. This allows performing 
scatter/gather and change view operations in different execution 

points, which, in some cases, may lead to more efficient programs, 

by scattering/gathering the data before it is actually needed. 

Figure 5 presents the complete example, now including the 

control view. In this case, SomeClass is transformed into an object 

aggregate (by applying the Replicate template) and calls to the Do 
method are executed by all members of the aggregate (by applying 

the Broadcast template). An additional Separate transformation  

can distribute instances of SomeClass across nodes of a cluster. 

Core functionality 
class SomeClass { 
  double[] TestArray = ... // initialise array 
  void Do() { 
    for (int i = 0; i < TestArray.length; i++) 
      TestArray[i] = someComputation(/*.. */); 
  } 
} 

Parallelisation (data view) 
Partitioned<SomeClass,TestArray,BLOCK> 
ScatterBefore<SomeClass,Do,TestArray> 
GatherAfter<SomeClass,Do,TestArray>  

Parallelisation (control view) 

Replicate<SomeClass> 
// all aggregate elements execute method Do 
Broadcast<SomeClass,Do> 

Figure 5. Example of separation of data and control view. 

 

2.2 Composing Transformations 
Composition issues can arise when multiple transformations have 

impact in the same place in the sequential code (e.g., a method). 
In addition, building complex parallelisation and the ability to 

extend existing templates requires the composition of several code 

transformations. 

The composition model builds upon an incremental development 

process: each transformation generates new code that can be 

transformed by another template. The key point is that each 
template might have impact on additional methods or execution 

points introduced by transformations previously applied. This 

enables the generation of different parallel code by composing 
transformations in different orders. Thus, a small set of templates 

can be used to generate a larger range of parallel programs. 

Moreover, additional tools can be provided to ensure that only 
valid compositions are allowed.  

Figure 6 presents the code generated (for a shared memory 

machine) by applying a sequence of Replicate, Broadcast and 
Async transformations. Each call to someMethod is executed by a 

new thread on each aggregate element.  

“Sequential like” code 

 
public class SomeClass { 
   void someMethod () { … } 
} 
 
SomeClass f = new SomeClass(); 
f.someMethod(); 

Generated parallel code 

... 
for (int i=0; i<numOfReplicas; i++) { 
  agg.add(new SomeClass());    // Replicate 
  new Thread() {               // Async 
    void run() { 
      agg.elementAt(i).someMethod(); 
    } 
  }.start(); 
} 

Figure 6 - Code resulting from the application of the sequence 

of transformations: Replicate<SomeClass>, 

Broadcast<SomeClass, ”someMethod”> and Async< 

SomeClass, ”someMethod”>. 

In this case, the Replicate template injects code to create an 

aggregate of instances of SomeClass. The default behaviour 
would be to issue the call to someMethod only in the aggregate 

representative. By applying the Broadcast transformation to 

someMethod it will be executed in all aggregate members. The 
Async template acts upon the result of the Broadcast template, by 

issuing all method calls in a new thread (i.e., it also has impact on 

method calls generated by the Broadcast template). 

A different parallel program can be generated by changing the 

order of Broadcast and Async transformations. In that case, a 

single thread will sequentially perform the call to each aggregate 
element, since first the asynchronous call is applied and then the 

broadcast. 

A composition of transformations is specified by nesting 
templates. The composition in the example of Figure 6 would be 

specified as Async<Broadcast<Replicate<SomeClass>,…>,…>). 

This syntax may become cumbersome for complex compositions. 
One problem is the lack of line breaks. This issue is solved by 

introducing a syntax that allows to store each program 

transformation into a variable and introducing one additional 
template parameter that specifies the program where the 

transformation applies. A special name (e.g., MAIN) represents 

the original “sequential like” code. Under this approach, we could 
write the transformation of Figure 6 as: 

   prog1 = Replicate<MAIN,SomeClass> 

   prog2 = Broadcast<prog1,SomeClass,”someMethod”> 

   prog3 = Async<prog2,SomeClass,”someMethod”> 

This syntax introduces the possibility to specify a transformation 

tree (always starting in the “sequential like” program) instead of a 

single transformation chain. This allows a partial ordering of 
transformations (enough for many applications). Transformations 

acting on common methods/execution points should be 

completely ordered. Otherwise, the composition may produce an 
unpredictable result as it must select an order to apply 

transformations (e.g., the final result could be implementation 
dependent). 

Template extensibility is also based on composition of templates 

(although we also provide means to build a new template from 



scratch, by using code templates in AspectJ [11]). To extend a 

template we compose additional functionality to that template. For 
instance, we could define a new template to implement a Farm 

based on Replicate, Scatter and Gather: 

 Farm<Class T, Method compute, DataField field>{ 

  prog1= Replicate<T> 

  prog2 = Broadcast<prog1, T, compute> 

  prog3 = Scatter<prog2, T, compute, field> 

  prog4 = Gather<prog3, T, compute, field> 

 } 

The last composition issue is related to the generation of code for 
specific target platforms. The proposed approach targets the 

generation of efficient code for a wide range of architectures, 
including multi-core, clusters, computational grids and systems 

composed of combinations of these. One common way to take 

advantage of clusters of multi-core machines is to use a mix of 
MPI and OpenMP. For this purpose the approach supports the 

Separate template to specify cluster-aware transformations and 

GridSeparate to specify transformations for computational grids. 
For instance, an aggregate of objects distributed through the 

nodes of a cluster, with a second level of inner aggregates can be 

specified by Replicate<Separate<Replicate <SomeClass>>>. 
This inner aggregate can more efficiently take advantage of 

multi-core processors by communicating through shared memory. 

2.3 Expressing Common Patterns 
This section revises some well known parallelisation patterns and 
outlines how they can be supported in the proposed approach. 

Patterns are directives, providing guidelines for solving classes of 

parallelisation problems. They are collections of solutions and 
there is no “one solution fits all”. The proposed approach does not 

force a particular solution for each problem. Instead, it provides a 

set of parallelisation patterns that can be composed to address 
each specific case. The purpose of this section is to illustrate how 

to implement one specific variant of each of these patterns, 

namely, it shows how Farm, Pipeline, Divide & Conquer and 
Heartbeat can be plugged into “sequential-like” codes. 

2.3.1 Farm 
In the farm parallelisation the data is divided into independent 
parts, which are processed in parallel by several workers, and 

joined after processing. 

The farm pattern can be plugged into “sequential like” code by 
transforming a single object instance into an aggregate of objects. 

This requires the specification of the class to be replicated, the 

method to process each task and split and merge functions (e.g., 
Farm<Class T, Method compute, Method split, Method join>). It 

can be implemented by composing Replicate with Broadcast, and 

providing methods to split and join the data, in a similar way to 
Scatter and Gather functions. However, in this case the Scatter 

and Gather act on method parameters and return value, instead of 

acting on data stored in object fields (although using an object 
field to store the data is also possible, as shown in section 2.2). 

Figure 7 shows a farm pattern applied to the JGF RayTracer. 

Class T was replaced by the RayTracer class and the compute 
method becomes calls to render method. 

Figure 7 - JGF RayTracer parallelisation. 

This case shows how it is possible to provide case specific code to 
inject in the parallel code. Methods split and join, defined in the 

parallelisation, specify how to divide the Interval method 

parameter and how to merge the resulting integer array. 

2.3.2 Pipeline 
A pipeline consists of a chain of processes working in parallel on 

different parts of data. Each part of data is successively processed 
by all processes in the chain. 

A pipeline can be plugged into sequential code by replacing an 

instance of a class by a pipeline of elements of the same class. 

Additional split and join methods can be used to divide the 
original data into independent pieces and to merge the processed 

pieces (e.g., Pipe<Class T, Method compute[, Method split, 

Method join]>. Another way to implement a pipeline, when the 
sequential code includes a chain of method calls, is to use the 

Async pattern. 

2.3.3 Divide & Conquer 
 This pattern addresses problems that are recursively divided into 

simpler sub-problems that can be solved in parallel. The 

“sequential like” code where the pattern applies can be 
intrinsically divide & conquer (e.g., problems that are sequentially 

solved in a recursive manner). In this case, the parallelisation 

pattern spawns a new parallel task on each recursive call, using 
the Async template (with future type synchronisation [3], an 

approach similar to fork & join frameworks [12][14], but 

avoiding invasive changes in sequential code).  

We illustrate this pattern (Figure 8) with the classic Fibonacci 

function (this is an example of how the proposed approach can 

support non-SPMD code). 

Figure 8 - Parallel computation of Fibonacci numbers. 

Core functionality 
RayTracer rt = new RayTracer(); 
Interval interval = new Interval(0,500); 
int Result[] = rt.render(interval); 

Farm parallelisation 
Vector<Interval> split(Interval in) { 
   … // split in into sub-intervals  
} 
int[] join(Vector<int[] in) { 
   … // join rendered sub-images 
} 
Separate<Farm<RayTracer, render, split, join> > 

Core functionality 
public class Fib { 
  long value; 
  public Fib(long val) { value = val; } 
  public long compute() { 
    if (value <=1) return(value); 
    else{ 
      Fib f1 = new Fib(value-1); 
      Fib f2 = new Fib(value-2); 
      Long r1 = f1.compute(); 
      Long r2 = f2.compute(); 
      return(r1.longValue()+r2.longValue()); 
    } 
  } 
} 

Parallelisation 
Async<Fib,”compute”,”Long.longValue”> 
Separate<Fib> 



Calls to compute methods are made asynchronously through the 

Async template. Calls to Long.longValue (i.e., the unboxing 
function that transforms an object Long into a long value) provide 

the execution point where a fake return value is replaced by the 

result of the computation. We also specify that instances of the 
Fib class can be placed on remote resources, by making them 

Separate objects, otherwise the application would run on a single 

machine. 

A variant of Divide & Conquer is the search for the best solution 
(e.g., N-Queens). Recursive calls are only issued if they could 

lead to a better solution. This data dependence can be addressed 
by additionally plugging appropriate template to conditionally 

Broadcast data field at certain execution points. 

Figure 9 – JGF LuFact parallelisation. 

 

2.3.4  Heartbeat 
Heartbeat patterns are generally applied to problems solved 

iteratively. This type of pattern is addressed by executing (i.e. 

broadcasting) the method that computes iterations on all nodes. 
Additional data moves (at each iteration) can be injected into the 

sequential code through data distribution transformations. 

The JGF LuFact example of a typical heartbeat application 
(Figure 9), it is a Java version of the popular Linpack benchmark. 

In this example we extracted three blocks of code into methods in 

order to support conditional execution by means of CondExe. 
Before and after executing the dgefa method we need to scatter 

and gather values of matrix a. Note that in this case a method that 

returns a value is conditionally executed. That value is 
automatically broadcasted to all aggregate elements (e.g., by 

CondExe).  

The parallelisation of the LUFact is very close to the 
parallelisation of the computation of All-Pairs Shortest Paths 

(ASP) [2]. This makes it attractive to develop a template that can 

be used in both cases. Figure 10 presents that template. It creates 
an aggregate of ClassT, broadcast execution of method2BCast to 

all aggregate elements, conditionally executes method2CEx when 

condEx is true and field2Dist is distributed among aggregate 
elements using the partType. This template is enough for the ASP 

application, but for LUFact it only implements statements in 

italics from Figure 9. As such, in this case, three additional 
condExe templates are also applied. 

HearbeatBC<ClassT, method2BCast,  
   method2CEx, condEx, field2Dist, partType> { 
 
 Separate<Replicate<ClassT>> 
 Broadcast<ClassT, method2BCast> 
 CondExe<ClassT, method2CEx, condEx> 
   
 Partitioned< field2Dist, partType > 
 ScatterBefore<ClassT, method2BCast,field2Dist> 
 GatherAfter< ClassT, method2BCast, field2Dist> 
} 

Figure 10 – Template for JGF LuFact and ASP parallelisation. 

Another important point about code in Figure 9 is that a shared 

memory version of the LUFact can be efficiently derived by 

ignoring transformations that implement the data distribution. 

3. PERFORMANCE EVALUATION 
This section evaluates the proposed approach with two case 

studies from the Java Grande Forum (JGF) [15] and presents 
performance results. JGF includes benchmarks in sequential, 

concurrent (i.e., Java threads) and parallel (Java MPI) variants. 

This section describes developed parallel versions of Crypt and 
LU factorisation, which are in the Farm and Heartbeat category. 

Parallel versions of the other benchmarks were developed in a 
similar way, as they are also in these pattern categories. 

The Crypt benchmark encrypts and decrypts a byte array. The 

processing is performed in the method Do of IDEATest. This 

application is parallelised by processing parts of the byte array in 
parallel, which was performed with the Replicate template to 

create one instance of IDEATest on each node and executing the 

method Do on all nodes. Scatter and Gather templates divide the 
byte array among workers (field plain1) and gather the processed 

results (field plain2). The CondExe template was used to ensure 
that some data initialisations were performed only at node 0. 

Core functionality 
public class Linpack { 
... 
 final int dgefa(double a[][],  
         int lda, int n, int ipvt[]) { 
  double[] col_k, col_j; 
  double t; 
  int j, k, kp1, l, nm1; 
  int info; 
 
  // gaussian elimination with partial pivoting 
  info=0; 
... 
    // find l = pivot index 
    l=idamax(n-k, col_k, k, 1)+k; 
    ipvt[k]=l; 
 
    col_k=calcMults(col_k, n, k, kp1, l); 
    if(col_k[l]!=0)    { 
      for(j=kp1; j<n; j++) 
       reduceColumn(a, n, col_k, j, k, kp1, l); 
    } 
...  
  info=calcInfo(a, n, info); 
  return info; 
 } 
} 

Parallelisation code (control view) 

Separate<Replicate<Linpack>> 
Broadcast<Linpack, 
  'int dgefa(double[][], int, int, int[])'> 
CondExe<Linpack, 
  'double[] calcMults(double[] col_k, int n, 
       int k, int kp1, int l)', 'a.getPart(k)'> 
CondExe<Linpack, 
  'int calcInfo(double[][] a, int n,  
                   int info)','a.getPart(n-1)'> 
CondExe<Linpack, 
  'int idamax(int n,double dx[],int dx_off, 
                int incx)','a.getPart(dx_off)'> 
CondExe<Linpack, 
  'void reduceColumn(double[][] a, int n, 
               double[] col_k, int j, int k, 
               int kp1, int l)','a.getPart(j)'> 

Parallelisation code (data view) 

Partitioned<'Linpack.a',[CYCLE][*]> 
ScatterBefore<Linpack, 
  'int dgefa(double[][], int, int, int[])', 
  'double[][] Linpack.a'> 
GatherAfter<Linpack, 
  'int dgefa(double[][], int, int, int[])', 
  'double[][] Linpack.a'> 



The LUFact performs a LU factorisation through an iterative 

algorithm (e.g., Heartbeat), requiring the broadcast of a matrix 
column at each iteration (different for each iteration). We 

followed a similar approach to the Crypt benchmark, by 

replicating instances of class Linpack and executing the dgefa 
method on all nodes. This example was presented in Figure 9. 

Performance benchmarks were performed by comparing execution 

times of parallel versions built with this approach and equivalent 

hand written parallel versions (MPI based taken from JGF). Table 
2 presents the speed-up, relative to the sequential versions, on a 

cluster of 8 bi-Xeon 5130 machines (a total of 32 cores, 4 per 
machine) and JDK 1.5_3. The first four benchmarks are from JGF 

(SOR is red-black successive-over relation, another typical 

heartbeat and the RayTracer is a typical farm). 

Table 2. Speed-up of hand written (HW) parallel applications 

and built using pluggable parallelisation (PP) on a cluster 

4 cores 16 cores 32 cores 
Application 

HW PP HW PP HW PP 

CryptC 3.54 3.53 7.80 7.56 9.56 9.27 

SeriesC 3.11 3.13 12.26 12.29 24.42 24.61 

SparseMatmultC 2.11 2.12 6.85 8.28 10.53 19.46 

LUFactC 2.22 2.29 2.85 3.03 2.07 2.53 

SORC 1.53 1.25 2.93 1.86 2.87 2.49 

MDB 3.78 3.74 9.94 10.89 - - 

RayTracerB 3.82 3.88 14.13 14.38 25.64 26.16 

 

Overheads introduced by our approach are generally very low. 
These are due to code re-factorings (e.g, moving blocks of code to 

methods) and due to the use of AspectJ. These are generally low 

as code transformations are made at compile-time and most 
injected code can be inlined. The amount of overhead depends on 

method granularity: fewer operations executed at each intercepted 

execution point represent higher overheads. The sparse matrix 
multiplication performs better with pluggable parallelisation. 

Interestingly, in this benchmark, we simply used a standard data 

partition strategy that seems to provide some advantage over the 
one used in JGF. Both LuFact and SOR scale poorly due to 

communication overheads (both require certain amount of 
communication per iteration). 

Table 3 presents the execution times on machine bi-Xeon E5430 

(a total of 8 cores). In this case hand written versions are 

implemented with Java Threads (also provided by the JGF). It 
should be stressed that shared memory implementations with 

pluggable patterns share most of the code with the distributed 

memory implementations and the “sequential like” code is the 
same for both versions (usually only data distribution issues are 

not included). 

In this case the performance of both versions is also very close. 
The speed-up of sparse matrix multiplication drops with 8 cores. 

We are currently investigating this issue but it is probably due to 

less data locality. There is also some performance difference in 
MolDyn. In this case the difference is due to generation of fine-

grained tasks that impose higher overheads. 

Table 3. Speed-up of hand written (HW) parallel applications 

and built using pluggable parallelisation (PP) on a SMP 

4 cores 8 cores 
Application 

HW PP HW PP 

CryptC 3.7 4.1 7.0 7.5 

SeriesC 3.4 3.7 7.9 7.9 

SparseMatmultC 4.1 4.3 8.3 3.0 

LUFactC 3.6 3.6 5.7 5.5 

SORC 3.7 3.9 5.9 6.7 

MDB 2.9 2.4 4.2 3.2 

RayTracerB 3.3 3.8 7.5 7.2 

4. DISCUSSION 
We start this section by comparing the proposed approach against 

current mainstream programming languages, i.e., MPI and 
OpenMP (Table 4). 

Table 4. Assessment of OpenMP, MPI and pluggable patterns  

 OpenMP MPI PP 

localised / modular 

parallelisation 

no (yes) no yes 

incremental 
parallelisation 

yes (no) no yes 

unpluggability yes no yes 

code reuse / composition 
of abstractions 

no no yes 

support for new 

abstractions 

no no yes 

support for multi-core/ 

cluster/grids 

yes/ 

no/ no 

no/ 

yes/no 

yes/ 

yes/yes 

Both OpenMP and MPI lead to tangled code (e.g., no modular 

parallelisation), however OpenMP seems better in this respect, as 

all parallelisation statements can be placed into annotations 
(except for more complex issues). The use of annotations makes it 

easy to identify parallelisation-related statements. Tangled code 

makes it hard to understand MPI programs, as each statement 
must be tracked either to domain-specific issues or to 

parallelisation issues. The proposed approach modularises 

parallelisation issues into transformations. 

Incremental parallelisation means that we can start by sequential 

code and progressively perform the parallelisation, with minor 

impact on the original code. This is supported in OpenMP by 
inserting code annotations, although, more complex issues usually 

require code re-factorings. In this matter, OpenMP and our 

approach seem to have a similar support. 

Unpluggability of parallel code is a nice property of OpenMP 

since the standard allows a compiler to ignore parallelisation 

directives. This can also be true even if the program has calls to 
OpenMP run-time. The standard defines stubs for implementing 

these run-time libraries on machines that do not support OpenMP. 

Unpluggability is also supported in our approach. 



A weak point of MPI or OpenMP is the lack of support to include 

new abstractions and to compose instances of parallelisation code 
into reusable modules. In MPI this is due to the fact that 

parallelisation code is mixed with domain specific code. In 

OpenMP this limitation is mainly due to its annotation-based 
nature that confines the set of abstractions to the set provided by 

the language and pre-empts the addition of parallelisation specific 

code in a modular way. 

OpenMP only supports shared memory systems and MPI only 
supports distributed memory systems. Pluggable parallelisation 

supports both types of target platforms by “plugging” different 
transformations for each type of target platform. Our 

GridSeparate template supports grid environments. 

We performed additional measurements to assess the usability and 

code reuse of each approach. Table 5 presents the number of non 
commenting source statements (NCSS) for each benchmark 

measured with the JavaNCSS tool [19], version 29.50. The NCSS 

of parallelisation statements were manually collected, following a 
philosophy similar to the one implemented by the tool. OpenMP 

data is based on the JGF JOMP implementation, where OpenMP 
directives are specified as Java comments that are not considered 

by the NCSS tool. In that case we counted each OpenMP directive 

as one statement. 

Table 5. NCSS of various parallelisation approaches 

Base 

code 
JOMP MPI Java PP 

Application 
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Crypt 190 193 2% 242 27% 217 14% 

LUFact 239 240 0% 328 37% 262 10% 

Series 70 71 1% 115 64% 79 13% 

SOR 56 72 29% 155 176% 110 96% 

SparseMatmult 60 100 67% 109 82% 74 23% 

MD 261 -1 - 283 8% 271 4% 

RayTracer 240 240 0% 273 14% 259 8% 

The OpenMP parallelisation (using JOMP) usually results in a 

small increase due to OpenMP directives. There are two 

exceptions: the SOR and the SparseMatMult. The increase in the 
former is due to the use of a different algorithm for all parallel 

versions (a version named red-black). The increase in the later is 

due to code to schedule loop iterations to threads. 

The MPI version leads to the highest number of statements on 

every cases. This is due to the statements to specify data 

partitioning and coordination among MPI processes. More 
problematic is that these statements are tangled with the basic 

functionality, making hard to reuse parallelisation code. 

The proposed approach always requires fewer statements than its 
MPI equivalent implementation. This is due to the reuse of the 

data partitioning strategy in the library and to the template based 

syntax. The lower count of SparseMatMult is due to the reuse of a 

                                                                 
1  The JGF does not include the JOMP implementation of MD 

default partitioning strategy, as the data partitioning, in this case, 

is simpler than the scheduling of loops to threads (the same can 
also be noticed in the MPI-based implementation, where this case 

is the one with less increase in statements, when compared with 

the JOMP implementation). The proposed approach tends to 
generate a higher number of statements than OpenMP, although it 

should be stressed that OpenMP does not support distributed 

memory systems (i.e., these numbers do not include the code 
required to specify data partition). 

Applying pluggable patterns to parallelise legacy code requires 

that the base code should be amenable for parallelisation. For 
instance, the sequential JGF version of the SOR does not use the 

red-black variant, so the parallelism that can be introduced is 

quite limited (in the case a complete re-write was required). 
Experience showed that in general some code re-factorings are 

required. The most common is to move a block of code to a 

method (M2M) to expose a new execution point and/or to name a 
block of code (as it was performed in LuFact) or to change the 

place where a certain operation is performed (MMC). These 

execution points are required to “plug” the parallelisation code 
into the right places. One less frequent re-factoring is the 

exposition of context (e.g., the addition of a new parameter to a 

method (PDP), or to move a variable to an object field (M2OF). 
Since the parallelisation is performed “from outside to inside” the 

pluggable parallelisation must have access to context information. 

In traditional systems context information is “pushed” by calling a 
programming API (e.g., creating a Farm class). In the proposed 

approach this information must be “pulled” by the pattern. To 

preserve modularity, sometimes the required information must be 
explicitly exposed by making a re-factoring (e.g., it does not make 

sense to expose a local variable). Table 6 summarises the re-

factorings performed on each benchmark. We classify each re-
factoring as improving the program structure (G), degrading the 

structure (B) and neutral (N).  

Table 6. Description of re-factorings required to JGF 

benchmarks 

 Expose exec. point Expose context 

Crypt 2xM2M (G) - 

Series 2xM2M (B) - 

SOR M2M (G), MMC (G)  M2OF (G) 

LuFact 3xM2M (2G/B) - 

RayTracer M2M (G) 2xM2OF (G/B), 

PDP (G) 

SparceMatmult M2M (G), MMC (N) - 

MD M2M (G) - 

M2M – Move to Method; MMC - Move Method Call; M2OF – Move 

Variable to Object field, PDP – Processing Dependent of new Parameter 

The current implementation uses AspectJ code templates that are 
pre-processed by a tool. These issues and implementation details 

are out of the scope of this paper (some details can be found in 

[18]). Since we rely on AspectJ as an implementation tool, the 
supported execution points is a subset of the one provided by 

AspectJ. The implementation of the Partitioned template requires 

direct processing of the source code, since we needed to keep 
track of data allocation statements, identifying the size of data 

allocated to each object field. 



5. RELATED WORK 
Recent work focuses on using Aspect Oriented Programming [10] 

(AOP), namely AspectJ [11], to separate parallelisation concerns 
from domain specific code [8][16][13], on the development of 

reusable aspects to implement well known patterns [7][4][17] and 

on extending AspectJ with a joinpoint model for loops [9]. 
AspectJ is an alterative to implement parallelisation concerns but 

it has three significant limitations: 1) it unnecessarily exposes 

AOP technology to the programmer (e.g., aspects, advices and 
pointcuts). 2) it lacks a suitable composition model, since aspects 

were designed to compose with some basic functionality and not 

to compose one with each other. Composability of abstractions is 
essential to develop complex patterns. 3) the most important is the 

lack of powerful constructs to implement static code 

transformations as it relies too much on a joinpoint model that 
captures dynamic events. There are no language constructs to 

address accesses to data arrays (e.g., there is no way to intercept 
accesses to specific array indexes to implement data 

transformations). This is essential to parallelise legacy code, 

where methods share data structures. Probably this is why authors 
of [8] have written “without completely re-writing LUFact, there 

is nothing more that can be done using AspectJ”. Our approach 

overcomes these issues by relying on a template based approach 
that hides AOP technology, providing a model to compose these 

templates and providing templates to explicitly address data 

distributions and moves. Separating transformations of control 
flow from data view makes it more manageable to plug 

parallelisation into legacy code as in the LUFact. 

Java-based skeleton approaches [5][6] are an object-oriented 
alternative to pluggable parallelisation. These systems provide a 

set of high-level patterns to implement common parallelisation 

strategies. Parallelisation is performed “from inside to outside” 
resulting in invasive and non-reversible changes to the base code. 

This results in a weak support for legacy code and scientific codes 

become dependent on a specific parallelisation strategy. As a 
consequence skeleton systems do not promote a so clear 

separation between domain-specific code and parallelisation 

issues. Moreover, there is no support for “sequential like” style: 
programmers build parallel applications by composing provided 

skeletons. The proposed approach follows a different philosophy: 

domain specialists develop their code in a traditional manner and 
specialists in parallel computing work on pluggable 

parallelisation issues that enable codes to take advantage of 

parallel systems. 

6. CONCLUSION 
This paper proposes an approach to develop parallel applications 

by plugging transformations into “sequential like” code. Code 
transformations are specified through templates that can be 

composed to implement more complex patterns. The approach 
promotes the separation of the control from the data view through 

the use of a specific set of templates for each purpose. 

This approach is able to support a “sequential like” style of 

programming and to support parallelisation of legacy code by 
plugging parallelisation issues, requiring fewer changes than 

competitive approaches. In cases where code re-factorings are 

necessary, scientific code remains “sequential like” (e.g., domain 
specific code does not become dependent of the parallelisation, 

being able to run when patterns are unplugged). 

Future work includes applying this technique to codes that require 

a larger amount of parallel code when moving from sequential to 
parallel (e.g., parallel sorting), to address other kinds of 

applications, such as pointer based structures (e.g., graphs) and to 

investigate how to provide contracts between domain specific 
code and pluggable parallelisation. 
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