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Abstract The SCOOPP (Scalable Object Oriented Parallel Programming) 
system efficiently adapts, at run-time, an object oriented parallel application to 
any distributed memory system. It extracts as much parallelism as possible at 
compile time, and it removes excess of parallel tasks and messages through 
run-time packing. These object and call aggregation techniques are briefly 
presented. A design methodology was developed for three main types of 
scalable applications: pipeline, divide & conquer and farming. This paper 
reviews how the method can help programmers to design portable and efficient 
parallel applications. It details its application to a farming case study (image 
threshold) with measured performance data, and compares with programmer’s 
tuned versions in a Pentium cluster. 

1 Introduction 

The development of portable parallel applications that efficiently run on several 
platforms imposes a platform-tuning overhead. This paper addresses issues that may 
reduce this overhead, namely to up/down scale an object oriented parallel 
application, including the automatically tuning of the application for each platform. 

Applications may require dynamic granularity control to get an acceptable parallel 
execution performance in time-shared platforms, namely when the parallel tasks are 
dynamically created and whose behaviour cannot be accurately estimated at compile-
time. Few systems provide dynamic granularity control [1][2][3][4], based on 
fork/join parallelism constructs, ignoring the fork construct and executing tasks 
sequentially (parallelism serialisation). 

The SCOOPP system [5] is a hybrid compile and run-time system, that extracts 
parallelism, supports explicit parallelism and dynamically serialises parallel tasks 
and packs communication in excess at run-time. A design methodology was 
developed for three main types of scalable applications: object pipelines [6], static 
object trees (e.g., farming) and dynamic object trees (e.g., divide & conquer). Several 
case studies have been tested on various platforms: a 7 node Pentium cluster, a 16 
node PowerPC based Parsytec PowerXplorer and a 56 node Transputer based MC-3. 

This paper shows evaluation results that were experimentally obtained by 
executing a farm type application and a comparison with a programmer’s optimised 
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version, on a 7 node Pentium III based cluster, under Linux with a threaded PVM on 
TCP/IP. The cluster nodes are inter-connected through a 1,2 Gbit Myrinet switch. 

Section 2 presents an overview of the SCOOPP system. Section 3 introduces a 
farm type application, the design methodology applied for scalability, and presents 
performance results. Section 4 closes the paper with suggestions for future work. 

2 SCOOPP System Overview 

SCOOPP system scales parallel applications to any distributed memory systems, in 
two steps: at compile-time, the compiler and/or the programmer specifies a large 
number of fine-grained parallel tasks; at run-time, parallel tasks are packed into 
larger grains - according to the application/platform behaviour and based on security 
and performance issues – and communications are packed into larger messages. 

The SCOOPP programming model is based on an OO paradigm supporting both 
active and passive objects. Active objects (parallel objects in SCOOPP) specify 
explicit parallelism: they model parallel tasks, they may be placed at remote 
processing nodes and they communicate through either asynchronous or synchronous 
method calls. Passive objects take advantage of existing code; they are placed in the 
context of the parallel object that created them, and only copies can be moved 
between parallel objects; method calls on these objects are always synchronous. 

SCOOPP extracts parallelism by transforming selected passive objects into 
parallel ones [7], and at run-time it removes parallelism overheads by transforming 
(packing) parallel objects in passive ones and by aggregating method calls [8]. 

These run-time optimisations are implemented through: 
- method call aggregation: (delay and) combine a series of asynchronous method 

calls into a single aggregate call message; this reduces message overheads and 
per-message latency; 

- object agglomeration: when a new object is created, create it locally so that its 
subsequent (asynchronous parallel) method invocations are actually executed 
synchronously and serially. 

The decision to pack objects and method calls considers several factors: the 
latency of a remote "null-method" call (λ), the inter-node communication bandwidth, 
the average overhead of the method parameters passing (ν) and the average local 
method execution time on each node type (ε). More details of the run-time 
granularity control and how decision factors are estimated can be found in [6]. 

3 Design and Performance Evaluation of Farming Applications 

This section presents and analyses a farming parallel algorithm, based on master and 
slaves. The master executes the sequential part of the work, e.g., it divides the work 
into several tasks, sends them to the slaves and joins the received processed results. 

In SCOOPP, two parallel objects classes implement the farming applications: 
master and the slave classes. Both classes have other methods, which promote code 
reuse, since the master and slave classes are generic.  



The design of a scalable farming application to efficiently run on several target 
platforms, must adequately address three main issues: the number of slaves to 
specify, the master hierarchy (if any), and the task granularity. 

A high number of slaves helps to scale the application to a larger system, since the 
number of slaves limits the number of nodes that the application can use. However, if 
the slave/node is high, performance may suffer due to the slave management time. 
Specifying a number of slaves equal to the number of nodes limits dynamic changes 
on the number nodes used and when more than one master is used, it may be easier 
to use a number of slaves proportional to the number of masters. 

Using just one master may limit the application performance, since the tasks and 
slaves management is centralised. A high number of slaves should be followed by a 
decentralisation of management work, by using a master hierarchy. However, using 
several masters introduces overheads due to the coordination among masters. 

The specification of the task size depends on the number of slaves and on the 
target platform. The work division should provide a number of tasks higher than the 
number of slaves to provide enough work for all slaves. A high number of tasks helps 
the load distribution, but also introduces higher overheads, due to the additional 
work to join and split work, and each task may be too small for a platform. 

The SCOOPP methodology can help to achieve an adequate solution to these 
issues, showing the feasibility to develop parallel applications, that are portable and 
scalable on several target platforms, without requiring source code changes. The 
SCOOPP methodology suggests the programmer to specify a high number of slaves 
and masters (e.g., parallel objects) and a high number of parallels tasks (e.g., method 
invocations). The SCOOPP run-time system is responsible to pack excess of masters 
and slaves, and to aggregate method invocations, reducing the impact of the 
overhead due to excess of parallelism and communication. 

3.1 Packing Policy for Farming Applications 

Packing policies defines “when” and “how much” to pack. These are grouped 
according to the structure of the application: object pipelines, static object trees and 
dynamic object trees. This section focuses on packing policies for farming. 

When communication overhead becomes higher than the task processing time, 
method calls should be packed. This occurs in SCOOPP when the overhead of a 
remote method call - given by the sum of the average latency of a remote 
"null-method" call (λ) and the overhead of the method parameters passing (ν) is 
higher than the average method execution time, ε, e.g., (λ+ν)>ε. This is the turnover 
point to pack, where the communication overhead is considered too high. 

The communication grain-size, Gm, is computed from the λ, ν and ε and defines 
“how many” method calls to pack into a single message. Sending a message that 
packs Gm method calls introduces a time overhead of (λ+Gmν) and the time to 
execute this pack is Gmε. Packing should ensure that (λ+Gmν)<Gmε, e.g., that the 
overhead to send a pack of several remote method calls is lower than the time to 
locally execute the pack of method calls, e.g., Gm=λ/(ε-ν). This point defines the 
minimum number of method calls to pack into a message. The packing policy is 



Table 1. Execution times with and without 
SCOOPP and decision factors (7-nodes). 

based on a dynamic criterion, which initially packs λ/(ε-ν) method calls on each 
message, to spread the work rapidly, and progressively increases the number of 
method calls on each pack, proportionally to the number of packs sent to each node 
(µ), to further reduce the overheads, e.g., Gm=λ(1+µ)/(ε-ν). 

Object farming places some limitations on object packing. When only one master 
is provided, the excess of parallel objects (slaves) cannot be effectively removed, 
since to remove parallelism they should be packed with the master, which 
concentrates most of the slaves on the master’s node. Note that packing slaves 
together do not remove parallelism overheads, since no method calls are performed 
between slaves. However, this limitation can be overcome by using a hierarchy of 
masters, which allows the packing of slaves with intermediate masters. 

3.2 A Farming Case Study 

An image processing case study, using a farming structure, was selected to show the 
impact of SCOOPP: a dynamic threshold with a predefined window size. The 
application was developed on a C++ SCOOPP prototype [7][8]. Performance results 
were obtained using an image of 512x512 (windows of 11x11) and 16 slaves 
(~2/node), and a 2-level master hierarchy. 

In this application the master splits the image into frames and sends the frames to 
the slaves (call a method on the slaves). Each slave processes the frames and sends 
them back to the master (call a method on the master). On this case study, frames are 
square-shaped and there is some frame overlap to reduce intermediate 
communication during frame processing. 

To select the frame size, a programmer may opt for a higher number of frames, if 
she/he aims scalability for large distributed systems. To guarantee an efficient 
execution, the programmer has to tune the application for each target platform. Fig.1 
shows the several experiments data she/he had to collect (using 4096 frames and 
manually packing several frames per message), just for two platforms: a 4- and a 
7-node cluster. Using SCOOPP, a single point is automatically obtained for any 
platform, where performance is very close to the optimum value. 

Table 1 shows how the grain-size of the selected frame may affect the overall 
performance, without any further tuning (worst case). This table clearly suggests that 
 

 
 
 
 
 
 
 
 
 
 
 

Frames Programmer SCOOPP Gm ε λ+ν 

1 2,11 2,10 1 672k 54k 

4 0,57 0,56 1 218k 14k 

16 0,45 0,45 1 60k 4129 

64 0,39 0,39 1 15k 1415 

256 0,36 0,37 2 4k 673 

1024 0,49 0,40 6 997 455 

4096 1,45 0,56 29 260 385 

16384 5,20 1,07 95 66 329 
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Fig. 1. Execution times using a single master 



the use of 256 frames might be the best option for this case study and target platform 
(it still requires manual tuning), and that the programmer should test several 
parameters for each platform for an adequate tuning. However in a larger and time 
shared environment, the use of 4096 frames may prove an advantage. By applying 
the SCOOPP methodology, significant gains in performance can be obtained. 

Conclusion 

The success of parallel computation in the past did not had the expected results 
mainly due to (i) the lack of adequate tools to support automatic mapping of the 
applications into distinct target platforms, without compromising efficiency, and (ii) 
the portability costs due to excessive overhead to tune the application for each target 
platform. Current trends (time-shared clusters and the Grid) place additional 
challenges, namely on dynamic tuning. SCOOPP attempts to overcome these 
limitations by providing dynamic and efficient scalability of object oriented parallel 
applications across several target platforms, without requiring any code modification. 
The presented results show the effectiveness of the SCOOPP methodology when 
applied to farming applications; it dynamically increases grain-sizes, improving 
execution times and showing that this methodology successively identifies and 
removes most parallelism overheads. 

Current experimental results gathered data related to both the platform and the 
application behaviour; the latter is dynamically updated, while the former was, so 
far, statically gathered before execution. Research work is also being carried out to 
support a dynamic decision mechanism based on stochastic approaches [9]. 
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