
Designing Scalable Object Oriented Parallel Applications

João Luís Sobral, Alberto José Proença

Departamento de Informática - Universidade do Minho
4710 - 057 Braga – Portugal

{jls, aproenca}@di.uminho.pt

Abstract The SCOOPP (Scalable Object Oriented Parallel Programming)
system efficiently adapts, at run-time, an object oriented parallel application to
any distributed memory system. It extracts as much parallelism as possible at
compile time, and it removes excess of parallel tasks and messages through
run-time packing. These object and call aggregation techniques are briefly
presented. A design methodology was developed for three main types of
scalable applications: pipeline, divide & conquer and farming. This paper
reviews how the method can help programmers to design portable and efficient
parallel applications. It details its application to a farming case study (image
threshold) with measured performance data, and compares with programmer’s
tuned versions in a Pentium cluster.

1 Introduction

The development of portable parallel applications that efficiently run on several
platforms imposes a platform-tuning overhead. This paper addresses issues that may
reduce this overhead, namely to up/down scale an object oriented parallel
application, including the automatically tuning of the application for each platform.

Applications may require dynamic granularity control to get an acceptable parallel
execution performance in time-shared platforms, namely when the parallel tasks are
dynamically created and whose behaviour cannot be accurately estimated at compile-
time. Few systems provide dynamic granularity control [1][2][3][4], based on
fork/join parallelism constructs, ignoring the fork construct and executing tasks
sequentially (parallelism serialisation).

The SCOOPP system [5] is a hybrid compile and run-time system, that extracts
parallelism, supports explicit parallelism and dynamically serialises parallel tasks
and packs communication in excess at run-time. A design methodology was
developed for three main types of scalable applications: object pipelines [6], static
object trees (e.g., farming) and dynamic object trees (e.g., divide & conquer). Several
case studies have been tested on various platforms: a 7 node Pentium cluster, a 16
node PowerPC based Parsytec PowerXplorer and a 56 node Transputer based MC-3.

This paper shows evaluation results that were experimentally obtained by
executing a farm type application and a comparison with a programmer’s optimised

* This work was partially supported by grant PRAXIS 2/2.1/TIT/1557/95

jls
Euro-Par 2002, LNCS 2400, pp. 661 – 665, 2002.© Springer-Verlag Berlin Heidelberg 2002

version, on a 7 node Pentium III based cluster, under Linux with a threaded PVM on
TCP/IP. The cluster nodes are inter-connected through a 1,2 Gbit Myrinet switch.

Section 2 presents an overview of the SCOOPP system. Section 3 introduces a
farm type application, the design methodology applied for scalability, and presents
performance results. Section 4 closes the paper with suggestions for future work.

2 SCOOPP System Overview

SCOOPP system scales parallel applications to any distributed memory systems, in
two steps: at compile-time, the compiler and/or the programmer specifies a large
number of fine-grained parallel tasks; at run-time, parallel tasks are packed into
larger grains - according to the application/platform behaviour and based on security
and performance issues – and communications are packed into larger messages.

The SCOOPP programming model is based on an OO paradigm supporting both
active and passive objects. Active objects (parallel objects in SCOOPP) specify
explicit parallelism: they model parallel tasks, they may be placed at remote
processing nodes and they communicate through either asynchronous or synchronous
method calls. Passive objects take advantage of existing code; they are placed in the
context of the parallel object that created them, and only copies can be moved
between parallel objects; method calls on these objects are always synchronous.

SCOOPP extracts parallelism by transforming selected passive objects into
parallel ones [7], and at run-time it removes parallelism overheads by transforming
(packing) parallel objects in passive ones and by aggregating method calls [8].

These run-time optimisations are implemented through:
- method call aggregation: (delay and) combine a series of asynchronous method

calls into a single aggregate call message; this reduces message overheads and
per-message latency;

- object agglomeration: when a new object is created, create it locally so that its
subsequent (asynchronous parallel) method invocations are actually executed
synchronously and serially.

The decision to pack objects and method calls considers several factors: the
latency of a remote "null-method" call (λ), the inter-node communication bandwidth,
the average overhead of the method parameters passing (ν) and the average local
method execution time on each node type (ε). More details of the run-time
granularity control and how decision factors are estimated can be found in [6].

3 Design and Performance Evaluation of Farming Applications

This section presents and analyses a farming parallel algorithm, based on master and
slaves. The master executes the sequential part of the work, e.g., it divides the work
into several tasks, sends them to the slaves and joins the received processed results.

In SCOOPP, two parallel objects classes implement the farming applications:
master and the slave classes. Both classes have other methods, which promote code
reuse, since the master and slave classes are generic.

The design of a scalable farming application to efficiently run on several target
platforms, must adequately address three main issues: the number of slaves to
specify, the master hierarchy (if any), and the task granularity.

A high number of slaves helps to scale the application to a larger system, since the
number of slaves limits the number of nodes that the application can use. However, if
the slave/node is high, performance may suffer due to the slave management time.
Specifying a number of slaves equal to the number of nodes limits dynamic changes
on the number nodes used and when more than one master is used, it may be easier
to use a number of slaves proportional to the number of masters.

Using just one master may limit the application performance, since the tasks and
slaves management is centralised. A high number of slaves should be followed by a
decentralisation of management work, by using a master hierarchy. However, using
several masters introduces overheads due to the coordination among masters.

The specification of the task size depends on the number of slaves and on the
target platform. The work division should provide a number of tasks higher than the
number of slaves to provide enough work for all slaves. A high number of tasks helps
the load distribution, but also introduces higher overheads, due to the additional
work to join and split work, and each task may be too small for a platform.

The SCOOPP methodology can help to achieve an adequate solution to these
issues, showing the feasibility to develop parallel applications, that are portable and
scalable on several target platforms, without requiring source code changes. The
SCOOPP methodology suggests the programmer to specify a high number of slaves
and masters (e.g., parallel objects) and a high number of parallels tasks (e.g., method
invocations). The SCOOPP run-time system is responsible to pack excess of masters
and slaves, and to aggregate method invocations, reducing the impact of the
overhead due to excess of parallelism and communication.

3.1 Packing Policy for Farming Applications

Packing policies defines “when” and “how much” to pack. These are grouped
according to the structure of the application: object pipelines, static object trees and
dynamic object trees. This section focuses on packing policies for farming.

When communication overhead becomes higher than the task processing time,
method calls should be packed. This occurs in SCOOPP when the overhead of a
remote method call - given by the sum of the average latency of a remote
"null-method" call (λ) and the overhead of the method parameters passing (ν) is
higher than the average method execution time, ε, e.g., (λ+ν)>ε. This is the turnover
point to pack, where the communication overhead is considered too high.

The communication grain-size, Gm, is computed from the λ, ν and ε and defines
“how many” method calls to pack into a single message. Sending a message that
packs Gm method calls introduces a time overhead of (λ+Gmν) and the time to
execute this pack is Gmε. Packing should ensure that (λ+Gmν)<Gmε, e.g., that the
overhead to send a pack of several remote method calls is lower than the time to
locally execute the pack of method calls, e.g., Gm=λ/(ε-ν). This point defines the
minimum number of method calls to pack into a message. The packing policy is

Table 1. Execution times with and without
SCOOPP and decision factors (7-nodes).

based on a dynamic criterion, which initially packs λ/(ε-ν) method calls on each
message, to spread the work rapidly, and progressively increases the number of
method calls on each pack, proportionally to the number of packs sent to each node
(µ), to further reduce the overheads, e.g., Gm=λ(1+µ)/(ε-ν).

Object farming places some limitations on object packing. When only one master
is provided, the excess of parallel objects (slaves) cannot be effectively removed,
since to remove parallelism they should be packed with the master, which
concentrates most of the slaves on the master’s node. Note that packing slaves
together do not remove parallelism overheads, since no method calls are performed
between slaves. However, this limitation can be overcome by using a hierarchy of
masters, which allows the packing of slaves with intermediate masters.

3.2 A Farming Case Study

An image processing case study, using a farming structure, was selected to show the
impact of SCOOPP: a dynamic threshold with a predefined window size. The
application was developed on a C++ SCOOPP prototype [7][8]. Performance results
were obtained using an image of 512x512 (windows of 11x11) and 16 slaves
(~2/node), and a 2-level master hierarchy.

In this application the master splits the image into frames and sends the frames to
the slaves (call a method on the slaves). Each slave processes the frames and sends
them back to the master (call a method on the master). On this case study, frames are
square-shaped and there is some frame overlap to reduce intermediate
communication during frame processing.

To select the frame size, a programmer may opt for a higher number of frames, if
she/he aims scalability for large distributed systems. To guarantee an efficient
execution, the programmer has to tune the application for each target platform. Fig.1
shows the several experiments data she/he had to collect (using 4096 frames and
manually packing several frames per message), just for two platforms: a 4- and a
7-node cluster. Using SCOOPP, a single point is automatically obtained for any
platform, where performance is very close to the optimum value.

Table 1 shows how the grain-size of the selected frame may affect the overall
performance, without any further tuning (worst case). This table clearly suggests that

Frames Programmer SCOOPP Gm ε λ+ν

1 2,11 2,10 1 672k 54k

4 0,57 0,56 1 218k 14k

16 0,45 0,45 1 60k 4129

64 0,39 0,39 1 15k 1415

256 0,36 0,37 2 4k 673

1024 0,49 0,40 6 997 455

4096 1,45 0,56 29 260 385

16384 5,20 1,07 95 66 329

0,0

0,4

0,8

1,2

1,6

2,0

1 10 100 1000 10000
Messages

E
xe

cu
ti

o
n

 t
im

e
(s

ec
on

ds
)

4 nodes
7 nodes
SCOOPP

Fig. 1. Execution times using a single master

the use of 256 frames might be the best option for this case study and target platform
(it still requires manual tuning), and that the programmer should test several
parameters for each platform for an adequate tuning. However in a larger and time
shared environment, the use of 4096 frames may prove an advantage. By applying
the SCOOPP methodology, significant gains in performance can be obtained.

Conclusion

The success of parallel computation in the past did not had the expected results
mainly due to (i) the lack of adequate tools to support automatic mapping of the
applications into distinct target platforms, without compromising efficiency, and (ii)
the portability costs due to excessive overhead to tune the application for each target
platform. Current trends (time-shared clusters and the Grid) place additional
challenges, namely on dynamic tuning. SCOOPP attempts to overcome these
limitations by providing dynamic and efficient scalability of object oriented parallel
applications across several target platforms, without requiring any code modification.
The presented results show the effectiveness of the SCOOPP methodology when
applied to farming applications; it dynamically increases grain-sizes, improving
execution times and showing that this methodology successively identifies and
removes most parallelism overheads.

Current experimental results gathered data related to both the platform and the
application behaviour; the latter is dynamically updated, while the former was, so
far, statically gathered before execution. Research work is also being carried out to
support a dynamic decision mechanism based on stochastic approaches [9].

References

1. Mohr, E., Kranz, A., Halstead, R.: Lazy Task Creation: A Technique for Increasing the
Granularity of Parallel Programs, IEEE Trans. on Par.& Dist. Proc., Vol. 2(3), July (1991)

2. Goldstien, S., Schauser, K., Culler, D: Lazy Threads: Implementing a Fast Parallel Call,
Journal of Parallel and Distributed Computing, Vol. 37(1), August (1996)

3. Karamcheti, V., Plevyak, J., Chien, A.: Runtime Mechanisms for Efficient Dynamic
Multithreading, Journal of Parallel and Distributed Computing, Vol. 37(1), August (1996)

4. Taura, K., Yonezawa, A.: Fine-Grained Multithreading with Minimal Compiler Support,
Proc. ACM SIGPLAN CPLDI’97, Las Vegas, July (1997)

5. Sobral, J., Proença, A.: Dynamic Grain-Size Adaptation on Object-Oriented Parallel
Programming - The SCOOPP Approach, Proc. 2nd IPPS/SPDP, Puerto Rico, April (1999)

6. Sobral, J., Proença, A.: A SCOOPP Evaluation on Packing Parallel Objects in Run-time,
VecPar’2000, Porto, Portugal, June (2000)

7. Sobral, J., Proença, A.: ParC++: A Simple Extension of C++ to Parallel Systems, Proc. of
the 6th Euromicro Work. on Par. & Dist. App. (PDP’98), Madrid, Spain, January (1998)

8. Sobral, J., Proença, A.: A Run-time System for Dynamic Grain Packing, Proceedings of
the 5th Int. EuroPar Conference (Euro-Par'99), Toulouse, France, September (1999)

9. Santos, L., Proença, A.: A Bayesian RunTime Load Manager on a Shared Cluster,
Scheduling and Load Balancing on Clusters (SLAB'2001), special session in IEEE Int.
Symp. on Cluster Computing and the Grid (CCGrid'2001), Brisbane, Australia, May, 2001

0

5

10

15

20

25

30

35

40

45

50

1 10 100 1000 10000
Computation grain-size

(parallel objects per grain)

E
xe

cu
ti

o
n

 t
im

e
(s

ec
on

ds
)

25 Values per message
100 Values per message
400 Values per message

