
Reusable Aspect-Oriented Implementations of
Concurrency Patterns and Mechanisms

Carlos A. Cunha
Escola Superior de Tecnologia

Instit. Politécnico de Viseu
Campus de Repeses

3504-510 Viseu
PORTUGAL

João L. Sobral
Departamento de Informática

Universidade do Minho
Campus de Gualtar

4710-057 Braga
PORTUGAL

Miguel P. Monteiro
Escola Superior de Tecnologia

Instit. Politécnico de Castelo Branco
Avenida do Empresário

6000-767 Castelo Branco
PORTUGAL

ABSTRACT
In this paper, we present a collection of well-known high-level
concurrency patterns and mechanisms, coded in AspectJ. We
discuss benefits of these implementations relative to plain Java
implementations of the same concerns. We detect benefits from
using AspectJ in all the cases presented, in the form of higher
modularity, reuse, understandability and unpluggability. For most
of the implementations, two alternatives can be used: one based
on traditional pointcut interfaces and one based on annotations.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and
Features – Concurrent programming structures, Patterns.

Keywords
Concurrency Mechanisms and Patterns, Object-Oriented
Concurrent Programming, Aspect-Oriented Programming.

1. INTRODUCTION
Programming with concurrency using traditional languages is a
complex task, usually left to experts. Examples of concurrency-
related concerns are the definition of sections of behaviour that
must be subject to synchronised access, in order to avoid race
conditions, applying the right scheduling policies to those parts,
placing barriers where threads must synchronise, and identifying
tasks that can run in a separate thread. Such concerns do not align
well with the class decomposition, and therefore source code
related to such concerns suffers from the well-known negative
phenomena of code scattering and tangling [14]. Debugging
concurrent applications is equally complex, due to the execution
unpredictability introduced by concurrency. It is often hard to
trace incorrect behaviour to its underlying cause (e.g., trace the
defect to concurrent or core behaviour). Concurrent programming
is gaining importance, has built-in support in recent object-
oriented (OO) languages, such as C# and Java [17][25] and is
essential to leverage the fast growing multi-core CPU market.
Various efforts have been carried out to improve development of
concurrent applications. Specialised libraries such as those
provided by Java 1.5 [25] help to reduce the number of lines of

code needed to add concurrent behaviour to applications.
However, they fail to eliminate the problems associated with
crosscutting. New languages have been proposed that provide
alternative abstractions, which incorporate high-level concurrency
constructs. ABCL [30] is an early example using active objects,
one-way calls and futures to model concurrency.
Aspect-Oriented Programming (AOP) was proposed to deal with
crosscutting concerns in OO systems [14]. AOP promises to bring
to concurrency-related concerns the usual benefits of
modularisation, namely improved code readability and
analysability, a greater level of reusability and (un)pluggability
and more independent development, testing and configurability.
However, these promises were not yet fully put to the test. We set
ourselves to do that, by developing an aspect-oriented (AO)
collection of high-level concurrency patterns and mechanisms.
The purpose of this paper is to present such a collection, which
includes one-way calls, futures, waiting guards, readers/writers
(RW) locks, barriers and active objects [17][27][29]. The
collection is coded in AspectJ [13] and built on top of Java’s
concurrency mechanisms. It does not include classic low-level
mechanisms [5] such as semaphores and monitors. This paper
does not address the design of concurrent applications in order to
separate concurrency from core functionality [23][6][26].
Developing the collection gives rise to the following questions –
in this paper, we provide a contribution to answering them:
1. What are the main benefits and drawbacks from going from a

modern OO implementation to an AO implementation?
2. Can we replace concurrent OO approaches using this

collection?
The rest of the paper is structured as follows. Section 2 presents
the collection. Section 3 presents illustrative examples using the
collection. Section 4 discusses the implementations. Section 5
briefly surveys related work. Section 6 presents directions for
future work and section 7 concludes the paper.

2. CONCURRENCY PATTERNS AND
MECHANISMS
The mechanisms whose implementations1 we present in this
section are often used in the development of concurrent
applications to introduce flexibility, though with an added cost to
complexity and analysability [24]: pattern code is scattered across
many classes tangled with code not related to the concern, making

1 All implementations, code samples and benchmarks are

available from http://gec.di.uminho.pt/ppc-vm/conccollection/

© ACM, 2006. This is the author's version of the work. It is
posted here by permission of ACM for your personal use. Not
for redistribution. The definitive version was published in
AOSD 06 March 20-24, 2006 Bonn, Germany
http://doi.acm.org/10.1145/1119655.1119674

it hard to reuse pattern implementations. AspectJ enables the
development of reusable implementations of such patterns and
mechanisms, by moving each reusable part to a separate module,
independent of any case-specific code [10]. The structure of
AspectJ implementations follows the template advice idiom [9],
which entails creating an abstract aspect declaring reusable
abstractions and a concrete aspect tailored to a case-specific code
base that defines the case-specific joinpoints to be captured in the
logic declared by the abstract aspect (see Figure 1).

Figure 1: Structure of reusable AO implementations

2.1 One-way calls
One-way [17] is a mechanism that applies to void methods only –
when the method does return a value, a future (see 2.2) should be
used. One-way methods run on a thread of their own: the client
never blocks, waiting for some result. One-way calls can improve
throughput in cases in which parallel tasks can run faster than the
pure sequential counterparts. Our implementation is based on
abstract aspect OnewayProtocol (see Figure 2) that can be applied
through the concretisation of pointcut onewayMethodExecution
and optional definition of join, interrupt and interruptAll. Pointcut
onewayMethodExecution specifies the events that are intended to
run concurrently. The aspect creates a new thread per captured
joinpoint, which will run the method call. In the around advice,
proceed() runs inside a Runnable anonymous class. In Figure 3,
pointcut onewayMethodExecution specifies the method
invocations that should run in a new thread. Threads created by
the aspect can be spawned with specific thread group other than
the current (getThreadGroupName method).
The concrete aspect may optionally define a blocking point where
the calling thread waits for the termination of all spawned threads.
Pointcut join specifies the joinpoints where the main thread
should block, waiting for the spawned threads to terminate (by
calling Thread.join per each thread started before). All started
threads are registered along with the thread that started them,
enabling the aspect to relate the current thread to the threads
spawned by it. Pointcuts interrupt and interruptAll use the
registration data structure to interrupt threads spawned by the
aspect: interrupt specifies the joinpoints where all threads created
by the current thread should be interrupted and interruptAll does
the same for all threads created by the aspect.

2.1.1 Annotations
The annotations mechanism of Java 1.5 [15] provides an
alternative way to intercept method calls. All methods annotated
with the @Oneway annotation are intercepted by the aspect
OnewayProtocol. Pointcut onewayMethodExecution is no longer
needed. Definitions of join, interrupt and interruptAll pointcuts
can similarly be replaced by annotations.

public abstract aspect OnewayProtocol {
 //pointcuts presented before
 //data structure for thread registration

 void around(): onewayMethodExecution(){
 Thread t = new Thread(new ThreadGroup(
 getThreadGroupName()), new Runnable(){
 public void run(){
 //...
 proceed();
 // exception handler logic...
 }
 });
 registerThread(t);
 t.start();
 }
 after() : join() {
 waitForAllSpawnedThreads();
 }
 // Definition of other advice...
}

Figure 2: Reusable AO implementation of Oneway

public aspect aspect_name extends OnewayProtocol {
 protected pointcut onewayMethodExecution () :
 <pointcut definition>;
 protected pointcut join() :
 <pointcut definition>;
 protected pointcut interrupt();
 protected pointcut interruptAll();
 protected String getThreadGroupName();
}

Figure 3: Example of the use of One-way

2.2 Futures
Futures are join-based mechanisms based on data objects that
automatically block when clients try to use their values before the
corresponding computation is complete [17]. Futures allow
two-way asynchronous invocations that return a value to the
client. In typical situations, a variable stores the result of a
computation, which will be used later. Instead of blocking at the
computation phase, the thread blocks when the variable is actually
accessed. Figure 4 shows the synopsis for the use of futures.

public aspect aspect_name
extends FutureReflectProtocol {
 protected pointcut futureMethodExecution(Object
servant):
 <pointcut definition>;
 protected pointcut useOfFuture(Object servant):
 <pointcut definition>;
}

Figure 4: Composition of Future behaviour
Pointcut futureMethodExecution defines the points where the
computation methods are invoked and pointcut useOfFuture
defines the joinpoints where the result is needed. The thread will
block on the joinpoints captured by useOfFuture, in case the
methods defined in futureMethodExecution have not returned.
Figure 5 shows the relevant parts of aspect FutureReflect
Protocol. The first around advice intercepts invocations of
methods and the second around advice intercepts accesses to the
returned object. The first advice starts by creating a fake object
and an object of type Future where the returned value will be
stored. It subsequently creates a new thread to execute the
method. The thread stores the returned object in the associated
Future object after execution. After the method invocation, the

fake object is used in place of the genuine one until an attempt to
use it takes place. Method mapFake2Future associates fake
objects to futures.

public abstract aspect FutureReflectProtocol {
 //abstract pointcuts presented before
 //data structure for fake and future registration
 Object around(final Object server) :
 futureMethodExecution (server) {
 fake = //create fake using introspection
 final Future future = new Future();
 Thread t = new Thread(new Runnable() {
 public void run() {
 //...
 future.setValue(proceed(server));
 //exception handler logic
 }
 });
 mapFake2Future(fake, future);
 t.start();
 return fake;
 }
 Object around(Object server): useOfFuture(server){
 Object s = removeFakeFromMap(server);
 if(s != null) server = s; //if server is a fake
 return proceed(server);
 }
}

Figure 5: Reusable AO implementation of Future
In the around advice acting on pointcut useOfFuture, the fake
value is replaced by the real one. If it is not yet available, the
client thread blocks until the server thread stores the value in the
future. Method removeFakeFromMap removes the fake from the
map and returns the real one. Method removeFakeFromMap also
blocks when the real value is not available.
The use of introspection to instantiate fake objects can be avoided
by using the aspect FutureProtocol. In this case, method
getFakeObject should be defined in concrete aspects. This
solution entails creating a case-specific aspect for each method
return type. Types without argumentless constructors must use
this solution.

2.3 Barrier
Barrier [17] is a mechanism to set blocking points for a set of
threads. Threads reaching such points block until a specified
threshold number of blocking threads is reached. Aspect
BarrierProtocol (see Figure 6) is subclassed by a concrete aspect,
defining inherited pointcuts capturing the joinpoints where
threads must synchronise and the threshold number of blocking
threads. Two pointcuts may be defined: (1) barrierAfterExecution
defines events where threads must block, immediately after the
execution of methods associated with those events;
(2) barrierBeforeExecution has a similar purpose, but in this case
threads block before the method execution. In many situations,
barriers should apply only to a specific set of threads. For that
purpose, method getThreadGroupName can be redefined to
specify the thread group name of the threads where barrier should
apply. Concrete aspects must implement method getNumber
Threads to set the threshold number of blocking threads.
The implementation of Barrier presented in Figure 7 is based on a
cyclic barrier [17]. It intercepts the joinpoints defined by the
concrete subaspect and blocks all the threads that reach one of the
specified joinpoints, until the number of blocking threads reaches
the threshold.

public aspect aspect_name extends BarrierProtocol {
 //barrier number of threads can be specified by:
 protected int getNumberThreads() {
 return numberOfThreads;
 }

 protected String getThreadGroupName() {
 return threadGroup;
 }

 //and define one of the following:
 protected pointcut barrierAfterExecution():
 <pointcut definition>;
 protected pointcut barrierBeforeExecution () :
 <pointcut definition>;
}

Figure 6: Outline of the use of Barrier

public abstract aspect BarrierProtocol {
 after() : barrierAfterExecution() {
 //...
 applyBarrier(thisJoinPoint, parameters);
 //exception handling logic
 }
 before() : barrierBeforeExecution() {
 //...
 applyBarrier(parameters);
 //exception handling logic
 }
 protected void applyBarrier(parameters) {
 State s = mapJoinPoint2State(parameters)
 synchronized(s) {
 barrier(s); // barrier implementation
 }
 //...
 }
}

Figure 7: Reusable AO implementation of Barrier

2.3.1 Annotations
Element-pair values in annotations allow definition of values that
can be used to store the number of blocking threads. Element-pair
values named nThreads and threadGroup should be assigned with
the number of threads and thread group where the barrier should
apply. For instance, for five threads blocking after method
execution associated to thread group calculus, the annotation is
 @BarrierAfterExecution
 (nThreads = 5, threadGroup = ”calculus”)

2.4 Active Object
Active object decouples the invocation of methods from their
execution [17]. Each object runs into its own thread of control.
Whenever a client object invokes a method from an active object,
the thread associated with the active object carries out the
execution. Traditional implementations of active objects are
structured into three layers. The first layer includes the object that
makes the call, the second layer comprises the mechanisms that
forward the call to the target object and in the third layer the
target object running in its dedicated thread is continuously
waiting for method invocations. The implementation of active
objects with aspects moves the second and third layer to an aspect
and makes participant classes oblivious of their roles in the
pattern. Thus, we can make traditional method invocations on
active objects and plug the pattern through the introduction of a
marker interface [8] into active object classes, using the intertype
declaration mechanism of AspectJ.

To specify active object behaviour, simply add the ActiveObject
interface to the list of the object class implemented interfaces (see
Figure 8).

public aspect aspect_name
extends ActiveObjectProtocol {
 declare parents :
 <case-specific class> implements ActiveObject;
}

Figure 8: Composition of Active object
Whenever an instance of ActiveObject is created, the aspect
associates the object to a scheduler object that assumes the role of
a communication channel between client threads and active object
threads (see Figure 9). Each invocation of an active object method
is intercepted by the aspect, wrapped within a
concurrentlib.activeobject.Callable object and stored in the active
object scheduler queue. The active object thread continuously
picks requests inserted in the queue and executes them.

before(ObjectActive s) : create(s) {
 MQScheduler mqs = new MQScheduler(50);
 synchronized(this){
 hash.put(s, mqs);
 }
 (new Thread(mqs)).start();
}

Figure 9: Interception of Active object instantiation
Figure 10 presents an overview of the implementation of active
object. The aspect wraps each method invocation into an instance
of a Callable anonymous class and puts it in the queue through
the scheduler (Figure 11). The client thread controls execution.

Figure 10: Active object dynamics using AOP

2.4.1 Annotations
Using the @ActiveObject annotation in active object classes is
equivalent to the declare parents clause. Annotated classes are
intercepted by the aspect as if they implement the ActiveObject
interface.

2.5 Synchronised mechanism
The synchronised mechanism with aspects is straightforward to
implement. The synopsis is presented in Figure 12.

Object around(final ObjectActive s): getMeth(s){
 MethodRequest request = new MethodRequest(
 new Callable(){
 private Object msg = null;
 public void call(){ msg = proceed(s); }
 public Object getValue(){ return msg; }
 });
 sendToQueue(request,s);
 Object ret = null;
 //exception handler logic
 ret = request.getResult().getValue();
 // exception handler logic
 return ret;
}

Figure 11: Method call interception of Active object

public aspect aspect_name
extends SynchroniseProtocol {
 protected pointcut
 synchronisedUsingCapturedLock
 (Object targetObject): <pointcut definition>;
 protected pointcut synchronisedUsingSharedLock():
 <pointcut definition>;
}

Figure 12: Introduction of the synchronisation mechanism
The SynchroniseProtocol aspect wraps the intercepted method
execution or variable access into the Java synchronized
mechanism (Figure 13). synchronisedUsingCapturedLock uses
the monitor of the target object while
synchronisedUsingSharedLock uses the aspect monitor to control
the access to all captured joinpoints. The second alternative is
useful to associate a single lock to multiple type-unrelated
objects.

public abstract aspect SynchroniseProtocol {
 //Aspect variables...
 //pointcuts...

 Object around(Object targetObject) :
 synchronisedUsingCapturedLock(targetObject){
 synchronized(targetObject) {
 return proceed(targetObject);
 }
 }
 Object around() : synchronisedUsingSharedLock() {
 synchronized(this){
 return proceed();
 }
 }
 //definition of methods and other advices
}

Figure 13: AO implementation of the synchronised
mechanism

2.5.1 Annotations
The style of quantification shown in Figure 12 can be replaced by
@Synchronised annotations on method to synchronise.
Synchronisation using a shared aspect lock uses an id value,
which identifies a particular lock in the application, e.g.

 @Synchronised(id = "clientTransaction")

If id is not set, the captured target object lock is used to control
the access to annotated methods. Implementation of locks
specified through annotation ids requires an additional map to
associate shared locks to their associated ids.

2.6 Waiting guards
Execution of a particular method may depend on the state of the
object. When some precondition is not satisfied, two situations
can occur: (1) raise an exception (also known as balking),
(2) waiting until the precondition is satisfied. Waiting guards
implements the latter policy. When a precondition is not satisfied,
the client thread blocks until some action that changes the state
unblocks the thread and triggers a precondition re-evaluation. The
process is repeated until the precondition is valid. A timeout value
can be optionally defined in order to set a waiting time for
precondition revalidation. Figure 14 presents the synopsis for the
usage of waiting guards.

public aspect aspect_name
extends WaitingGuardsProtocol {
 protected pointcut
 deblockingOperation(Object targetObject) :
 <pointcut definition>;
 protected pointcut blockingOperation
 (Object targetObject): <pointcut definition>;

 protected boolean preCondition
 (Object ob, Object[] args) {
 return <precondition validity>;
 }

 //and optionally override method getWaitingTime
 protected long getWaitingTime(){
 return <time in milliseconds>;
 }
}

Figure 14: Synopsis of the use of Waiting guards
Pointcut blockingOperation specifies joinpoints associated with
methods where a precondition is checked. Pointcut
deblockingOperation specifies methods that may change
precondition validity, forcing a re-evaluation. Method
precondition returns the logical value representing the
precondition validity. This method receives two parameters that
can be used to retrieve information from the context. Optionally,
time over value (representing the maximum waiting time in
milliseconds before the precondition revalidation) can be defined
by overriding method getWaitingTime. The implementation of
Waiting Guards (Figure 15) notifies all blocked threads in
deblockingOperations joinpoints and checks precondition validity
before allowing blockingOperations joinpoints to proceed.

2.7 Reader/Writer Lock
The synchronisation mechanism allows a single thread to enter in
a critical section of code for reading or writing. RW lock
differentiates accesses that change object state from the ones that
just read state, allowing multiple simultaneous readers but just
one writer. Access for reading is allowed when no writers are
executing or waiting to access object state whereas writers can
access when there are no writing or reading operations executing.
One typical use of RW lock is when there are many reads and just
few writes.
In order to specify which methods change object state and which
ones reads it, four pointcuts may be specified in concrete aspects
(Figure 16): pointcuts readMethodObjectLock and
readMethodSharedLock capture executions of reader methods;
pointcuts writeMethodObjectLock and writeMethodSharedLock
capture the execution of writer methods. *SharedLock pointcuts
quantify over methods synchronised by a single shared lock.

*ObjectLock pointcuts perform synchronisation using one lock
per target.

public abstract aspect WaitingGuardsProtocol {
 //...
 protected long getWaitingTime(){ return 0; }

 after(Object ob) : deblockingOperation(ob) {
 synchronized(ob) {
 ob.notifyAll();
 }
 }
 before(Object ob, Object[] parameters) :
 blockingOperation(ob) && args(parameters){
 //...
 synchronized(ob) {
 while(! preCondition(ob, parameters)) {
 ob.wait(getWaitingTime());
 }
 }
 //exception handling logic
 }
}

Figure 15: AO reusable implementation of Waiting guards

public aspect aspect_name extends RWLockProtocol {
 protected pointcut
 readMethodObjectLock(Object targetObject) :
 pointcut_definition;
 protected pointcut
 writeMethodObjectLock(Object targetObject) :
 pointcut_definition;
 protected pointcut readMethodSharedLock() :
 pointcut_definition;
 protected pointcut writeMethodSharedLock() :
 pointcut_definition;
}

Figure 16: Synopsis of the use of RW lock
Implementation of RW lock is shown in Figure 17. Lock
management functionality is implemented in class RWLock. The
appropriate lock type (i.e. Reader lock or Writer lock) is acquired
before joinpoint execution and released after execution.

public abstract aspect RWLockProtocol { // variables and pointcuts referred before
 before(Object targetObject) :
 readMethodObjectLock(targetObject) {
 RWLock lock = mapObjectCaptured2Lock(
 targetObject);
 readLockAcquire(lock);
 }
 after(Object targetObject) :
 readMethodObjectLock(targetObject) {
 RWLock lock = mapObjectCaptured2Lock(
 targetObject);
 lock.readLock().release();
 }
 before(Object targetObject) :
 writeMethodObjectLock(targetObject) {
 RWLock lock = mapObjectCaptured2Lock(
 targetObject);
 writeLockAcquire(lock);
 }
 after(Object targetObject) :
 writeMethodObjectLock(targetObject) {
 RWLock lock = mapObjectCaptured2Lock(
 targetObject);
 lock.writeLock().release();
 }
 //other advice
}

Figure 17: AO reusable implementation of RW lock

2.7.1 Annotations
@Reader and @Writer can be used to annotate reader and writer
methods. Shared RW locks are specified with the id attributed, in
a way similar to the synchronised mechanism.

2.8 Scheduler
Synchronisation of Java is inflexible due to its implicitness. Each
monitor associated to an object restricts scheduling of threads in
waiting state to monitor implementation. Scheduler (Figure 18)
allows specification of a scheduling order. Each thread attempting
to execute a scheduled method blocks until the mechanism wakes
it. By default, scheduling order is FIFO. An order can be specified
or other scheduling policy can be implemented (e.g. based on
state) by redefining method selectRunningThread. Pointcut
scheduledMethodExecution specifies joinpoints where scheduler
synchronisation must apply (Figure 19).

public aspect aspect_name extends SchedulerProtocol{
 protected pointcut
 scheduledMethodExecution(Object targetObject) :
 pointcut_definition;
 protected int selectRunningThread (ArrayList th){
 return <next element position>;
 }
}

Figure 18: Synopsis of the use of Scheduler

public abstract aspect SchedulerProtocol {
 //variables and pointcuts referred before
 Object around(Object targetObject) :
 scheduledMethodExecution(targetObject) {
 //...
 try{
 enter(thisJoinPoint);
 return (proceed(targetObject));
 } catch(InterruptedException e) {
 //exception handler logic
 } finally{
 done(thisJoinPoint, targetObject);
 }
 }
 public void enter(String textJoinPoint) /*...*/ {
 Thread thisThread = Thread.currentThread();
 mapJoinPoint2ThreadSet(/*...*/);
 synchronized(thisThread){
 while(thisThread != runningThread)
 thisThread.wait();
 }
 removeRequest(textJoinPoint);
 }
 public synchronized void
 done(String textJoinPoint, Object targetObject) {
 //...
 ArrayList<Thread> arr =
 waitingThreads.get(textJoinPoint);
 if(arr.size()==0) runningThread = null;
 else { //else determines next request
 runningThread= arr.get(selectRunningThread(
 arr, targetObject));
 synchronized(runningThread) {
 runningThread.notifyAll();
 }
 }
 }
 // Returns the position of next running thread
 protected int selectRunningThread(parameters)
 //thread execution order logic
 }
 //definition of other methods and advices
}

Figure 19: AO reusable implementation of Scheduler

Method selectRunningThread gets the reference for the Thread
queue and the reference of the intercepted object as parameters.
Like other synchronisation mechanisms previously presented,
each Scheduler instance can be used to synchronise accesses to
joinpoints from many classes using a single lock.

2.8.1 Annotations
Scheduler can be applied with annotations, but only FIFO and
LIFO scheduling orders are allowed. More application-specific
situations require the redefinition of selectRunningThread.

3. ILLUSTRATIVE EXAMPLES
This section illustrates the usage of several mechanisms presented
in previous section.

3.1 Water Tank
WaterTank[17] illustrates the use of Active Object, RW lock and
Waiting Guards. It shows how to apply several refinements of the
same aspect to a particular tank instance, as well as applying
reuses of different aspects. This subject is further discussed in
section 4.1.
Instances of WaterTank (Figure 20) have a preset capacity and
volume, as well as public operations addWater and removeWater.
WaterTank methods can be classified as readers or writers. RW
Lock is plugged to WaterTank by way of aspect
RWLockWaterTank, which subclasses RWLockProtocol (Figure
21). Plugging the aspect allows simultaneous reads (e.g., get*
calls), but just one writer (either addWater or removeWater).

public class WaterTank {
 private float capacity, currentVolume;
 //constructors
 public void addWater(float amount) {
 //add the water to tank
 }
 public void removeWater(float amount) {
 //remove the water from the tank
 }
 //getter/setter methods
}

Figure 20: WaterTank class
public aspect RWLockWaterTank
extends RWLockProtocol {
 protected pointcut readMethodObjectLock(/*...*/):
 execution(* *.get*(..)) &&
 this(targetObject);
 protected pointcut writeMethodObjectLock(/*..*/):
 (execution(* *.addWater(..)) ||
 execution(* *.removeWater(..))) &&
 this(targetObject);
}

Figure 21: Water tank with RW lock
Aspects OverFlowWaitingGuard and UnderFlowWaitingGuard
are used to avoid WaterTank overflow or underflow. The aspects
ensure that threads executing methods that lead to an invalid state
are blocked until a state change enables each blocked thread to
re-evaluate its condition. The former is shown in Figure 22; the
latter is similar. The aspects reuse waiting guards logic
implemented in WaitingGuardsProtocol. Both aspects rely on
parameter amount used by modifiers addWater and removeWater
and on getters getCurrentVolume and getCapacity.
A second implementation of WaterTank illustrates the use of
active objects. Each instance of WaterTank class is an active

object through the inclusion of a concrete aspect that subclasses
ActiveObjectProtocol (Figure 23). Each class instance which
implements interface ActiveObject is intercepted by the aspect
ActiveObjectProtocol and all the inherited structure is created per
each object. Clients of that object are oblivious of their
participation in the active object role.

public aspect OverFlowWaitingGuard
extends WaitingGuardsProtocol {
 protected pointcut blockingOperation(/*...*/):
 call(* WaterTank.addWater(..)) &&
 target(targetObject);

 protected pointcut deblockingOperation(/*...*/):
 call(* WaterTank.removeWater(..)) &&
 target(targetObject);

 protected boolean preCondition(arguments) {
 WaterTank wt = (WaterTank) targetObject;
 Float amount = (Float) args[0];
 return (wt.getCurrentVolume() + amount) <=
 wt.getCapacity();
 }
}

Figure 22: Water tank overflow waiting guard

public aspect ActiveObject
extends ActiveObjectProtocol {
 declare parents :
 WaterTank implements ActiveObject;
}

Figure 23: Water tank enhancement with Active Object
behaviour

3.2 Fibonacci
The well-know recursive Fibonacci function illustrates the use of
future calls to introduce concurrency into fork/join applications.
Figure 24 presents a Java implementation of a sequential
Fibonacci class. Figure 25 presents the concrete future aspect for
Fibonacci. It includes the conditional pointcut designator if, to
limit the number of parallel calls.

public class Fibonacci {
 public long value;
 Fibonacci(long val) { value = val; }
 public Long compute() {
 if (value <=1) return(value);
 else {
 Fibonacci f1 = new Fibonacci(value-1);
 Fibonacci f2 = new Fibonacci(value-2);
 Long r1 = f1.compute();
 Long r2 = f2.compute();
 return (r1+r2);
 }
 }
 public static void main(String args[]) {
 Fibonacci fibo = new Fibonacci(12);
 Long result = fibo.compute();
 System.out.println("Fibonacci result :" +
 result.longValue());
 }
}

Figure 24: A Java implementation of Fibonacci

3.3 Particle applet
Particle applet [17] is a toy example based on movable bodies
controlled by threads that randomly change their locations. Class
Particle (Figure 26) maintains the state of each particle (fields x
and y) and provides managing behaviour. Class ParticleApplet

(Figure 27) shows the movement of particles inside an applet
viewer: a set of squares, each one representing one particle of the
set. Class ParticleCanvas contains references to all particles.
Whenever method paint is invoked, it calls draw on every
particle.

public aspect FutureFibonacci
extends FutureReflectProtocol {
 protected pointcut futureMethodExecution (
 Object servant) :
 call(Long Fibonacci.compute()) &&
 if(((Fibonacci) servant).value>8) &&
 target(servant);
 protected pointcut useOfFuture(Object servant) :
 call(* Long.longValue()) &&
 target(servant);
}

Figure 25: Implementation of Fibonacci with futures

public class Particle {
 //fields x and y, constructors

 public synchronized void move() {
 x += rng.nextInt(10) - 5;
 y += rng.nextInt(20) - 10;
 }
 public void draw(Graphics g){ draw rectangle }
}

Figure 26: Particle class

public class ParticleApplet extends Applet {
 // null when not running
 protected Thread[] threads = null;

 //...
 protected Thread makeThread(final Particle p) {
 //utility
 Runnable runloop = new Runnable() {
 public void run() {
 //...
 for(;;) {
 p.move();
 canvas.repaint();
 //...
 }
 ...// exception handling
 }};
 return new Thread(runloop);
 }
 public synchronized void start() {
 int n = 10; // just for demo
 if (threads == null) {
 Particle[] particles = new Particle[n];
 for (int i = 0; i < n; ++i)
 particles[i] = new Particle(50, 50);
 canvas.setParticles(particles);
 threads = new Thread[n];
 for (int i = 0; i < n; ++i) {
 threads[i] = makeThread(particles[i]);
 threads[i].start();
 }
 }
 }
 public synchronized void stop() {
 if (threads != null) {
 for (int i = 0; i < threads.length; ++i)
 threads[i].interrupt();
 threads = null;
 }
 }
}

Figure 27: Particle Applet

In its original form [17], Particle contains concurrency code
unrelated to the core logic (presented shaded). We can remove the
various occurrences of the synchronized keyword by reusing
aspect Synchronisation (Figure 28) and localise thread
management (including spawning) in OnewayProtocol (Figure
29). onewayMethodExecution requires extracting method
makeThread to moveParticle (Figure 31). Pointcut interruptAll is
defined to interrupt all spawned threads when method stop is
executed.

public aspect Synchronisation
extends SynchroniseProtocol {
 protected pointcut synchronisedUsingCapturedLock(
 Object capturedLock):
 (execution(* ParticleApplet.start(..)) ||
 execution(* Particle.move(..))) &&
 this(capturedLock);
}

Figure 28: Synchronisation particles aspect

public aspect Oneway extends OnewayProtocol{
 //...
 protected pointcut onewayMethodExecution() :
 execution(* ParticleApplet.moveParticle(..));
 protected pointcut interruptAll() :
 execution(* ParticleApplet.stop(..));
}

Figure 29: Oneway particles aspect
To implement a step-wise movement among particles a barrier
can be introduced after each movement (see Figure 30). Threads
are unblocked when the last thread reaches the intended joinpoint.

public aspect Barrier extends BarrierProtocol{
 //...
 protected pointcut barrierAfterExecution() :
 execution(* Particle.move());
 protected int getNumberThreads(){ return 10; }
 protected String getThreadGroupName() {
 return "ParticleMover";
 }
}

Figure 30: Example of the use of Barrier
This application was selected for its intrinsically concurrent
behaviour. There are situations where sequential code alone does
not make sense by itself. For instance, if we move elsewhere the
concurrency code shown in Figure 27, method makeThread does
not make sense unless the aspect that intercepts the method is
taken into consideration as well. If we use annotations to tag that
method, we can modularise concurrency code. Figure 31 shows
method makeThread devoid of concurrency (the method name
was changed due to semantics). By tagging the method with
annotation @Oneway, the aspect will intercept it and create a new
thread per each method invocation, thus avoiding the need to
define pointcut onewayMethodExecution. The annotation makes it
clear that the method will be executed asynchronously in another
thread. A similar situation occurs in method stop, since it
becomes empty when we remove concurrency-related code.

@Oneway
protected void moveParticle(final Particle p) {
 for(;;) {
 p.move();
 canvas.repaint();
 }
}

Figure 31: Use of annotations to represent the intention of a
given method and to simplify quantification by aspects

4. DISCUSSION
This section discusses benefits, limitations and performance trade-
offs of using AOP-based implementations to develop concurrent
applications.

4.1 Reusability
Table 1 presents a summary of presented mechanisms, referring to
the granularity of the quantification used, the possible use of
annotations, composition transparency [10] and the possibility to
intercept multiple participant classes with a single aspect instance.
All mechanisms except Active Object support method-level
quantification. Active Object is restricted to class-level
quantification as it represents a class role with an associated
behaviour. Field-level quantification can be used whenever we
want to bind some implementation mechanism to the access to a
field, e.g. Scheduler, Synchronisation and Barrier.
Table 1. Analysis of mechanisms/patterns using joinpoint
granularity (method, field and class levels), quantification of
annotations (QA), composition transparency (CT) and
multiple participant classes interception (MPC) criteria

O
ne

-w
ay

Fu
tu

re
s

B
ar

ri
er

A
ct

iv
e

O
bj

ec
t

Sy
nc

hr
on

is
at

io
n

W
ai

tin
g

gu
ar

ds

R
W

 lo
ck

Sc
he

du
le

r

Class -- -- -- X -- -- -- --

Method X X X -- X X X X

G
ra

nu
-

la
ri

ty

Field - -- X -- X -- -- X

QA X -- X X X -- X X*

CT -- -- X -- X X X X

A
na

lis
ys

C

ri
te

ri
a

MPC -- -- X -- X X X X

 * Possible but with restrictions

Some problems may require multiple instances of a mechanism or
pattern capturing the same joinpoints. Such situations do not
cause problems when aspect instances do not interfere with each
other. The implementations presented here enable composition
transparency whenever compositions are valid in equivalent Java
implementations. However, discussion of issues related to
composition of mechanisms is out of the scope of this paper.
Barrier, Synchronisation, RW lock and Scheduler are able to
include instances of multiple, type-unrelated classes in the context
of a single mechanism. This can be useful in many situations, e.g.
creating locks involving many classes or implementing a barrier
with multiple, optional synchronisation points. In many situations,
waiting guards depend on context in order to validate a
precondition. In such situations, it may not be straightforward to
define a precondition that uses state from multiple instances of
various unrelated classes. Even when possible, handling multiple
instances of multiple classes can be tricky, involving
identification of intercepted objects according to their type and
using different code to access their state.

4.1.1 Use of Annotations
The use of annotations can be useful and sometimes essential in
situations where concurrency is intrinsic to the situation at hand.

In that case, if we modularise concurrency the functional code
may be misunderstood. Therefore, annotations have two basic
roles: describe the concurrent behaviour of a method and provide
a hook for aspects to compose. By using annotations as attributes
describing some property or some role of an element (i.e. class,
method or class fields), aspects become more independent from
element syntax. Consequently, changes on class names, field
names or method signatures do not cause changes on aspects that
intercept such properties.
Some pointcuts require the implementation of methods (e.g.
precondition method from waiting guards). Those mechanisms
cannot be fully implemented with annotations, as aspect
concretisation entails more than simply intercepting annotated
elements. Element-value pairs can be used with annotations to
define configuration values. Such values are typically returned by
anchor methods implemented in the concrete aspect, e.g. method
getNumberThreads implemented in Barrier passes to the aspect
the number of threads that must synchronise at a given point.
Such information can be defined at annotation level.
Though annotations reduce aspect decoupling from intercepted
classes, they suffer from non-locality, which is one of the
problems that aspects are supposed to solve. Thus, capture of
what methods are consumers of the implemented concern is
explicit but scattered across multiple modules. This problem is
analysed in [15].

4.1.2 Known limitations
Most limitations of our collection relate to limitations of AspectJ
in obtaining local joinpoint context information. This is partly due
to the fact that abstract pointcuts typically preset the context
information that is captured. This can be a problem for aspects
that manage multiple instances of the mechanism they implement,
because it can be tricky to distinguish between instances. Several
of the implementations overcome the problem by resorting to
reflection to obtain the needed information. This solution yields
maximum reusability but pays a price in performance (see section
4.2). In cases in which performance degradation is not acceptable,
the alternative is to define a separate concrete aspect for each
instance of the mechanism. The latter solution yields better
performance at the expense of reusability.
Reusable aspects are global entities that cannot distinguish among
specific class instances. For instance, it is not possible to apply a
barrier to specific threads. We partially overcame this limitation
by enabling a barrier to apply to a specific thread group. To do
that, each thread spawned by one-way mechanism can be
associated to a specific thread group.
Futures can only be applied to methods with non-primitive return
types. This is required to allow the aspect to return a fake object
instead of a real one. Furthermore, it intercepts all accesses,
defined in pointcut useOfFuture, not just accesses to instances
returned by future calls. This is required to verify if the value is a
future value and may have an impact on performance. However, it
can be minimised by limiting the scope of the pointcut.

4.2 Performance
We classify overheads in our implementation into three classes:

1. retrieve of joinpoint context;
2. management of global joinpoint history;
3. object and aspect overheads.

Some of reusable aspects must be able to capture specific
joinpoint context information (e.g., the reusable barrier can be
used to simultaneously manage several barriers). Joinpoint
context can be retrieved by using thisJoinPoint* values from the
AspectJ API and Thread.currentThread, or can be passed
explicitly in pointcut designators this or target. The aspect must
manage history of each joinpoint context, maintaining data
structures for each joinpoint context. This can be performed
through a collection that associates each joinpoint context to
particular data structures. Moving code to an aspect also
introduces overheads related to aspect instantiation and
management, additional objects and method calls. This is a cost
due to higher modularisation.
To measure the impact of these overheads we updated the Java
Grande Forum (JGF) multithreaded benchmarks [28]. These
provide low-level benchmarks to measure the overhead of
barriers, synchronised methods and fork/join of threads, using
concurrent programming Java mechanisms (CPJ). We developed
similar benchmarks for each pattern/mechanism presented in the
paper and not included in the original JGF benchmark, and for the
AO versions using our collection. Thread spawning benchmarks
(e.g., Oneway, Futures and Active Objects) perform a short
non-trivial calculation on a separate thread. Synchronisation
benchmarks spawn several threads accessing a single shared
counter, which implements the benchmarked synchronisation
policy. We followed the JGF benchmark style as close as
possible, even if sometimes it was not the most natural AO way.
Table 2 presents the overheard percentage, calculated through the
formula (CPJ–AOP)/CPJ. CPJ is concurrent Java style
implementations and AOP our AO implementations. We collected
results using 1, 4, 16 and 64 threads. Presented values are median
of 5 executions and were collected on two unloaded machines,
both with Sun JDK 1.5.0_3 and AJDT 1.3.0: a AMD Athlon XP
1800+, 512 MB RAM DDR 266, running Windows XP, and a
Intel Dual Xeon 3.2GHz (with Hyper-thread enabled), 1MB L2, 1
GB RAM DDR2 400, running CentOS 4.1. For reference, we
provide the CPJ number of operations per second using 4 threads
on both machines. Table 3 presents the relative cost, in percentage
of the total cost, for each implementation. The results were
obtained by developing specialised aspects for each benchmark,
removing each cost component, and represent the average on
these two machines (measurements among machines are close
enough to just be relevant to present average values).

Table 2. Overhead of reusable AO implementations relative to
CPJ implementations, using 1, 4, 16 and 64 threads, on an
Athlon XP and on a Dual Xeon.

Athlon XP Dual Xeon Operations /s
1 4 16 64 1 4 16 64 XP Xeon

One-way 7 20 17 12 15 15 12 10 6K 12K
Futures 20 31 28 29 13 12 6 4 6K 12K
Barrier 93 45 39 41 88 24 24 27 200K 100K

Active Object 64 44 46 43 9 6 2 6 100K 100K
Synchronisation 2 17 6 13 9 9 8 1 600K 2M
Waiting Guards 19 26 16 18 31 47 44 47 400K 700K
Readers/Writers 0 36 33 31 4 33 29 29 1M 300K

Scheduler 78 63 61 55 8 13 13 15 100K 70K

The implementation of Barrier, Waitings guards and Scheduler
use thisJoinPoint* variables to retrieve jointpoint context
information. In these implementations, context retrieval
introduces a significant part of overheads (see Table 3). Barrier
execution with a single thread betrays an unusually high overhead
because the thread never blocks in the barrier. Waiting guards
also have significant object/aspect overheads, since the AO
version introduces additional locks and notifications. We can say
that this cost is due to higher modularity and not a cost of moving
to reusable implementations.
One-way uses Thread.currentThread to retrieve the running
thread and a Hashmap of Hashmaps to maintain relationships
among creator and created threads. These are relatively low-cost
functions when compared to thread management cost. Futures
have higher overheads: they rely on reflection to identify and
instantiate method return values (joinpoint context cost) and use a
Hashmap to manage futures.

Table 3. Relative cost, in percentage of total cost, in AspectJ
implementations.

O
ne

-w
ay

Fu
tu

re
s

B
ar

ri
er

A
ct

iv
e

O
bj

ec
t

Sy
nc

hr
on

is
e

W
ai

tin
g

G
ua

rd
s

R
ea

de
rs

/W
ri

te
rs

Sc
he

du
le

r

joinpoint Context 8 48 83 -- -- 40 -- 88

Global Execution History 27 14 47 -- -- 92 9

Aspect/Object Overheads 65
52*

3 53 100 60 8 3

* It was not possible to separately measure global execution history and
aspect/object overheads

Active object requires a global history to associate each
intercepted object to the corresponding scheduler (described as
part of the active object pattern). As the pattern is applied to the
object (captured with pointcut designator target) it does not need
joinpoint-specific information. Readers/Writers uses a
WeakHashMap to associate each object to a RW lock, which
accounts for most of overheads on these machines. We did not
used pertarget aspects in Readers/Writers because the AJDT
pertarget implementation is not thread safe. Synchronisation does
not require context information and history as the aspect uses the
target object mutex and monitor, which is a pointcut parameter.
It should be noted that the above are worst-case scenarios (i.e.,
most real cases are likely to yield better performance) and that no
attempts were yet made to optimise the implementations
presented.
Access to the joinpoint history must be synchronised (this
overhead was also included in global history execution overhead),
which seems to be the main constraint to scalability. Joinpoint
context and execution history costs can be reduced by creating
case-specific aspects for each context, or whenever the
mechanism applies to a single object, pertarget/perthis can be
applied to create an aspect instance per each intercepted object.
However, this is not feasible for most of these implementations.
As an example, the barrier implementation would require a
perjoinpoint association (not currently supported in AspectJ).

In all benchmarks, AO implementations enable unpluggability of
concurrency mechanisms. This helps to validate the benchmark
code itself, by comparing execution times with and without
concurrency, ensuring that they are measuring the concurrency
mechanisms overhead.

4.3 High-level OO concurrent approaches
Our collection provides an AO approach to develop concurrent
applications. Use of this collection combined with plain Java
(without Java concurrency constructs) is a replacement for a
high-level OO concurrent programming language. As an example,
ABCL [30] provides active objects, one-way calls and futures.
These high-level abstractions for concurrency can be replaced by
our equivalent AO implementations. Even express messages can
be implemented using the scheduler pattern to provide higher
priority to specific message types.
Our approach is to treat Java as a core language and concurrency
issues as additional language features. This approach has two
main benefits. First, traditional support to concurrency features
degrades performance even when the features are not used, e.g.,
in Java, each object implements a monitor even when
concurrency features are not used in the program. A similar
benefit was observed in middleware systems, where a
performance improvement was attained by extracting non-core
features to aspects [31]. Second, treating concurrency issues as
additional features – modelled by aspects – helps to develop
concurrent applications where concurrency issues are more
modular and can be unplugged. This approach eases application
development, since the concurrency can be added in a later stage
of development and can be unplugged for debugging purposes.
Implementing equivalent high-level concurrency constructs using
traditional OO approaches requires a significant amount of effort.
One example is the transparent implementation of futures (e.g.,
without following a library approach of Java 5), in a similar way
to several high-level OO concurrent languages. Traditional
approaches require analysis and transformation of base code,
which entails parsing of method calls, return values and
consequent use of these return values. An AO implementation
significantly reduces implementation effort. Furthermore, the
programmer can use this mechanism as almost if it were built in
the core language.

5. RELATED WORK
In [10], Hannemann and Kiczales present implementations in Java
and AspectJ of the 23 Gang-of-Four patterns and provide an
analysis. In their concluding remarks, they mention several
directions for further experimentation, including applying AspectJ
to more patterns. In this paper, we provide a contribution in that
direction.
Some of concurrency mechanisms presented here were previously
implemented with aspects. JBoss AOP [2] and AspectJ 5
Developer’s Notebook [1] use the @Oneway annotation in void
methods to specify execution in separate threads. However,
additional thread functionality such as join, interrupt, sleep and
definition of some parameters (e.g. thread group) is not
implemented. An aspect-based implementation of Future is
presented in [3] that modularises thread spawning code within an
aspect. However, management of futures must be written in the
classes that use them. AO implementations of RW lock are

presented in [7][16]. These implementations only support a lock
per object and do not support annotations. Our work provides a
collection including the most well known mechanisms,
modularises the implementation of such mechanisms. In addition,
we support both annotation and traditional model whenever
possible and provide several parameters to configure each
mechanism (e.g. specify the thread group in Barrier and Oneway).
OpenMP [4] model uses annotations to express concurrency
issues, in a way similar to our annotations. Both approaches
support the development of concurrent applications where
concurrency is specified through code annotations that can be
ignored when concurrency is unplugged. As an example,
OpenMP’s parallel for annotations resemble @Oneway
annotations and OpenMP’s critical annotations are similar to
@Synchronised annotations. Our annotations are OO based,
providing less flexibility and we do not provide some features of
OpenMP, such as loop scheduling. On the other hand, we provide
a more high-level way to structure applications, by leveraging OO
annotations. In addition, we include high level mechanisms not
present in OpenMP, namely futures and RW locks.
In [6], Bergmans extends the Composition Filters (CF) model
specifically to deal with concurrency and synchronisation issues.
Bergmans introduces the wait filter, which either accepts a
message and forwards it to the next filter or stores it in a queue
where it remains blocked until the message can be accepted (they
work like a waiting guard for methods). Wait filters are specified
at the interface level and implementations of core logic are
oblivious to them. The CF model with wait filters achieves a
modularisation level for the concurrency concern similar to that of
our collection. Synchronisation granularity is limited to that of
messages and is therefore more limited. On the other hand, it
seems to be more expressive, as it allows composition of
synchronisation constraints. In the general case, that is not the
case with the aspects presented in this paper.
Lopes proposes the use of aspect-specific languages to deal with
issues related to thread synchronisation and application-level data
transfers over remote method invocations [19]. Use of specialised
languages has the advantage of minimising the gap between the
intentions of the programmer and the representation in source
code of those intentions. However, it also requires a significant
upfront investment in designing and implementing the aspect-
specific language, as well as developing a specialised weaver for
the aspect language. By Lopes’ own admission, the approach is
not scalable [18]. By contrast, our approach leverages the
capabilities of a relatively mature AOP general-purpose language,
thus avoiding that particular disadvantage.
Reflective systems (or meta-level architectures) allow the
programmer to change the system behaviour by providing access
to the meta-architecture. Examples of such concurrent systems are
ABCL/R3 [21] and MPC++ [12]. In [20], several parallel
constructors were implemented at a meta-level, using ABCL/R3.
These included object replication, pre-fetch and method
scheduling. Object replication and pre-fetch rely on annotations in
the base program, similar to AspectJ annotations. The other
mechanisms are completely and transparently implemented at
meta-level. Reflective systems were the roots of AOP; however,
instead of using run-time reification, AO languages perform
compile-time weaving, which lead to higher efficiency. AspectJ

does not seem to allow the same flexibility as meta-level
approaches to change the system behaviour.
In [11], Harbulot and Gurd use AspectJ in an attempt to separate
the core functionality from parallelisation issues. Several
experiments were made, on the basis of various parallel
benchmarks, to move thread-related code and message-passing
code into aspects. Harbulot and Gurd conclude that most of
parallel applications require refactorings to take advantage of AO
approaches, as parallel code is not generally developed in an OO
manner. Harbulot and Gurd place all code related to concurrency
issues in a single aspect, without further structuring. Our work
achieves a similar goal through a collection of aspects dealing
with similar issues, which lead to a higher level of modularity and
reuse.

6. FUTURE WORK
An obvious development of our work is the update of our
collection to leverage the new Java 5 concurrency mechanisms,
providing optimised implementations and additional mechanisms,
such as executors.
We intend to test this collection using concurrent applications of
non-trivial dimensions. Such experiments are expected to provide
directions for further improvements and hints on how to refactor
current concurrent applications to use this type of reusable
libraries. We also plan to test how effectively the collection
addresses the inheritance anomaly problem [22].
A longer-term goal includes finding new ways to increase context
information available to abstract pointcuts and to overcome
limitations of our collection.

7. CONCLUSION
This paper presents a collection of AO implementations of several
of the most well known high-level concurrency mechanisms and
patterns, namely one-way calls, futures, waiting guards,
readers/writers, barriers and active objects. Use of AspectJ
enables the development of reusable implementations of the
aforementioned mechanisms. In the cases when it makes sense to
(un)plug the mechanism, the implementations enable such
unpluggability and do not introduce additional overhead when
aspects are not included in the build. Moving concurrency code to
aspects can contribute to making the core logic of applications
more understandable.
AspectJ has limitations in obtaining local joinpoint context
information, partly due to the fact that abstract pointcuts typically
preset the context information that is captured. We identify this as
the main restriction imposed by AspectJ to build a collection of
reusable aspect for concurrent programming.
Most of the implementations seem to benefit from the use of
annotations. Annotations make the intentions of the programmer
more explicit and have the potential to make the code base more
amenable to quantification by aspects.

ACKNOWLEDGEMENTS
We thank Hidehiko Masuhara for numerous suggestions and
feedback. Three anonymous referees made valuable suggestions
that helped to improve the paper. This work was partially
supported by PPC-VM project POSI/CHS/47158/2002, funded by
Portuguese Fundação para a Ciência e Tecnologia (FCT) and by

European funds (FEDER). Miguel Monteiro is partially supported
by FCT under project SOFTAS (POSI/EIA/60189/2004).

REFERENCES
[1] The AspectJ 5 Development Kit Developer's Notebook,

http://eclipse.org/aspectj/doc/next/adk15notebook/
[2] JBoss AOP web site. http://www.jboss.org/products/aop.
[3] Colyer A., Making concurrency a little bit easier, blog entry,

January 2005, www.aspectprogrammer.org/blogs/adrian/
2005/01/making_concurre.html

[4] OpenMP architecture review board, OpenMP Application
Program Interface, Version 2.5, May 2005,
www.openmp.org

[5] Andrews, G., Foundations of Multithreaded, Parallel, and
Distributed Programming, Addison Wesley, 2000.

[6] Bergmans, L. M. J., Composing Concurrent Objects:
Applying Composition Filters for the Development and
Reuse of Concurrent Object-Oriented Programs, Ph.D.
thesis, University of Twente, Netherlands, June 1994.

[7] Colyer A., Clement A., Harley G., Webster M., Eclipse
AspectJ: Aspect-Oriented Programming with AspectJ and
the Eclipse AspectJ Development Tools, Addison Wesley
2004.

[8] Grand, M., Patterns in Java: A Catalog of Reusable Design
Patterns Illustrated with UML, 2nd Edition, Wiley, 1998.

[9] Hanenberg, S., Schmidmeier, A., Unland, R., AspectJ Idioms
for Aspect-Oriented Software Construction, 8th EuroPLoP,
Irsee, Germany, June 2003.

[10] Hannemann, J., Kiczales, G., Design Pattern implementation
in Java and in AspectJ, OOPSLA 2002, Seattle, USA,
November 2002.

[11] Harbulot, B., Gurd, J., Using AspectJ to Separate Concerns
in Parallel Scientific Java Code, AOSD 2004, Lancaster, UK,
March 2004.

[12] Ishikawa, Y., Hori, A., Sato, M., Matsuda, M., Nolte J.,
Tezuka, H., Konaka, H., Maeda, M., Kubota, K., Design and
Implementation of Metalevel Architecture in C++ - MPC++
Approach, Workshop on Reflection and Metalevel
Architecture (Reflection'96), San Francisco, CA, April 1996.

[13] Kiczales G., Hilsdale E., Hugunin J., Kersten M., Palm J.,
Griswold W. G., An Overview of AspectJ. ECOOP 2001,
Budapest, Hungary, Springer Verlag LNCS vol. 2072, pp.
327-353, June 2001.

[14] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes,
C. V., Loingtier, J.-M., Irwin, J. Aspect Oriented
Programming, ECOOP’97, Jyväskylä, Finnland, June 1997.

[15] Kiczales, G., Mezini, M., Separation of Concerns with
Procedures, Annotations, Advice and Pointcuts, ECOOP’05,
Glasgow, UK, July 2005.

[16] Laddad, R., AspectJ in Action – Practical Aspect-Oriented
Programming, Manning 2003.

[17] Lea, D., Concurrent Programming in Java, Second edition,
Addison-Wesley, 1999.

[18] Lopes, C. V., AOP: A Historical Perspective (What’s in a
Name?). In Aspect-Oriented Software Development, pages
97–122. Addison-Wesley, 2005.

[19] Lopes C. V., D: A Language Framework for Distributed
Computing, Ph.D. thesis, College of Computer Science,
Northeastern University, Boston, USA, November 1997.

[20] Masuhara, H., Matsuoka, S., Yonezawa, A., Implementing
Parallel Language Constructors Using a Reflexive Object
Oriented Language, Workshop on Reflection and Metalevel
Architecture (Reflection'96), San Francisco, USA, April
1996.

[21] Masuhara, H., Yonezawa, A., Design and Partial Evaluation
of Meta-Objects for a Concurrent Reflective Language,
ECOOP’98, Brussels, July 1998.

[22] Matsuoka S., Yonezawa A., Analysis of Inheritance
Anomaly in Object-Oriented Concurrent Programming
Languages. In Research Directions in Concurrent Object-
Oriented Programming (Agha G., Wegner P., et al., editors),
pp. 107-150, MIT press, 1993.

[23] McHale C., Synchronisation in Concurrent, Object-oriented
Languages: Expressive Power, Genericity and Inheritance.
Ph.D. thesis, Department of Computer Science, Trinity
College, Dublin, Ireland, October 1994.

[24] Nordberg III, M. E., Aspect-Oriented Dependency
Management, In Aspect-Oriented Software Development,
pages 557–584. Addison-Wesley, 2005.

[25] Oaks, S., Wong, H., Java Threads, 3rd edition, O’Reilly 2004.
[26] Silva A. R., Concurrent Object-Oriented Programming:

Separation and Composition of Concerns using Design
Patterns, Pattern Languages, and Object-Oriented
Frameworks, Ph.D. thesis, Technical University of Lisbon,
March 1999.

[27] Schmidt, D. C., Stal, M., Rohnert, H., Buschmann, F. (eds),
Pattern-Oriented Software Architecture: Patterns for
Concurrent and Networked Objects, Wiley & Sons 2000.

[28] Smith, A., Bull, J., Obdrzálek, J. A Parallel Java Grande
Benchmark Suite, Supercomputing 2001, Denver, November
2001.

[29] Yonezawa, A. Tokoro, M. (ed). Object-Oriented Concurrent
Programming, MIT Press, 1987.

[30] Yonezawa. A., ABCL: an Object-Oriented Concurrent
System, MIT Press, 1990.

[31] Zhang, C., Jacobsen, H., Resolving Feature Convolution in
Middleware Systems, OOPSLA’04, Vancouver, Canada,
October 2004.

