Processamento de Linguagens I LESI + LMCC (3º ano)

4ª Ficha Prática

Ano Lectivo de 01/02

1 Objectivos

Este ficha prática contém exercícios para serem resolvidos nas aulas teórico-práticas com vista a sedimentar os conhecimentos relativos a:

- Especificação de gramáticas concretas;
- Verificação da condição LL(1);
- Derivação da correspondente gramática abstracta.

2 Enunciados

Mensagens de Email

Especifique através de uma gramática uma mensagem de email atendendo aos seguintes elementos:

- uma mensagem tem um cabeçalho, um corpo e anexos;
- no cabeçalho é indicada a data e a hora do envio da mensagem, a lista de destinatários a
 quem se destina, a lista de pessoas a quem se quer dar conhecimento e o assunto abordado
 na mensagem;
- o corpo é constituído por um ou mais parágrafos de texto;
- cada um dos anexos é constituído por uma referência a um ficheiro externo.

Depois de especificar a gramática concreta realize cada um dos seguintes pontos:

- 1. Verifique se a gramática que acabou de escrever é LL(1). Se não for, transforme-a numa que o seja.
- 2. Derive a respectiva gramática abstracta.
- 3. Usando as regras apresentadas nas aulas teóricas, derive as estruturas de dados em C e as respectivas funções de construção: mailABS.h e mailABS.c.
- 4. Construa o analisador léxico em lex e o analisador sintático usando metodologia "recursivo descendente".
- 5. Acrescente ao parser desenvolvido as acções semânticas para a construção da representação abstracta.
- 6. Desenvolva uma função semântica em C que realiza uma travessia à representação abstracta e mostra a mensagem de email devidamente formatada (o formato fica ao seu critério).

2.0.1 Provas de Orientação

A Orientação, na sua variante pedestre, é um desporto com grande desenvolvimento em Portugal. Basicamente, um atleta recebe um mapa que tem um percurso desenhado; nesse percurso, há uma série de *pontos quentes* assinalados que o atleta terá que *visitar* pela ordem em que estes aparecem. A gramática seguinte surgiu na tentativa de especificar a lista de percursos que compõem a prova (um por escalão etário).

O seu vocabulário é T = { PROVA, FIM, PONTOS, FPONTOS, ";", "(", ",", ")", PERCURSOS, FPERCURSOS, ":", ".", id, int } (id é uma ou mais letras maiúsculas ou minúsculas, int é uma sequência de dígitos) e N = { OProva, ListaPontos, Pontos, Ponto, IdPonto, CoordX, CoordY, ListaPercursos, Percursos, Percurso, IdPercurso, ListaRefs }, o axioma é OProva e contém um conjunto de produções que se mostra abaixo:

OProva	\longrightarrow	$PROVA\ ListaPontos\ ListaPercursos\ FIM$	(1)
Lista Pontos	\longrightarrow	$PONTOS\ Pontos\ FPONTOS$	(2)
Pontos	\rightarrow	Pontos';' Ponto	(3)
Pontos	\rightarrow	Ponto	(4)
Ponto	\rightarrow	'(' IdPonto ',' CoordX ',' CoordY ')'	(5)
IdPonto	\rightarrow	id	(6)
CoordX	\longrightarrow	int	(7)
CoordY	\longrightarrow	int	(8)
Lista Percursos	\rightarrow	$PERCURSOS\ Percursos\ FPERCURSOS$	(9)
Percursos	\rightarrow	Percursos ';' Percurso	(10)
Percursos	\rightarrow	Percurso	(11)
Percurso	\rightarrow	IdPercurso':' escalao':' ListaRefs'.'	(12)
Id Percurso	\rightarrow	id	(13)
ListaRefs	\rightarrow	ListaRefs',' IdPonto	(14)
ListaRefs	\rightarrow	IdPonto	(15)

A distância entre dois pontos pode ser calculada pela fórmula:

$$dist = \sqrt{|y2 - y1|^2 + |x2 - x1|^2}$$

- 1. Verifique se a gramática apresentada é LL(1). Se não for, transforme-a numa que o seja.
- 2. Derive a respectiva gramática abstracta.
- 3. Usando as regras apresentadas nas aulas teóricas, derive as estruturas de dados em C e as respectivas funções de construção: oriABS.h e oriABS.c.
- 4. Construa o analisador léxico em lex e o analisador sintático usando metodologia "recursivo descendente".
- 5. Acrescente ao parser desenvolvido as acções semânticas para a construção da representação abstracta
- 6. Desenvolva uma função semântica em C (ficheiros: oriSEM.h e oriSEM.c) que realiza uma travessia à representação abstracta e que produz uma lista com a seguinte estrutura:

IdPercurso:Distancia