

MICROPROCESSADORES I

KIT 8051 – Sistema de Desenvolvimento 8051 Keil µVision 3: Depuração e Simulação II

Autores: Adriano Tavares, Jorge Cabral, José Mendes

1 Objectivo

Apresentar um guia básico de como implementar em linguagem *assembly* os fluxogramas desenvolvidos nas aulas. Neste guia, o fluxograma que soluciona o exercício do slide A4-34 será codificado para *assembly* do MCS-51 e iremos usar o Keil µVision3 para simular e depurar programas em *assembly* com mais que um ficheiro de código fonte.

1.1 Codificação do fluxograma

O fluxograma que soluciona o exercício proposto no slide A4-34 foi já discutido e apresentado nas aulas teóricas.

O fluxograma e a respectiva conversão para linguagem *assembly* são apresentados na Figura 1, que se segue:

Figura 1 – Fluxograma e respectiva codificação

Salientar apenas que o fluxograma foi codificado como sendo uma subrotina, cujo parâmetro de entrada é o registo R0 que contém o endereço da memória de dados interna onde está armazenado o dígito hexadecimal a converter e o parâmetro de saída é o registo B. A subrotina utiliza ainda o registo Acumulador como registo auxiliar.

1.2 Descrição

O ambiente µVision3 permite três formas diferentes de simulação:

a) Simulação passo-a-passo,

b) Simulação contínua com breakpoints,

1.3 Criar um projecto

Crie e "assemble" o projecto seguinte, certificando que a configuração do *debug* é idêntica à apresentada na Figura 2.

Options for Target 'Target 1'	
Device Target Output Listing C51 A51 BL51 L Use Simulator Limit Speed to Real-Time Settings	ocate BL51 Misc Debug Utilities
✓ Load Application at Startup ✓ Run to main() Initialization File:	✓ Load Application at Startup
Restore Debug Session Settings Breakpoints Toolbox Watchpoints & PA Memory Display	Restore Debug Session Settings Breakpoints Vatchpoints Memory Display
CPU DLL: Parameter: S8051.DLL	Driver DLL: Parameter: S8051.DLL
Dialog DLL: Parameter: DP51.DLL -p51	Dialog DLL: Parameter: TP51.DLL -p51
ОК Са	ncel Defaults Help

Figura 2 – Configuração de debug

Seguir os passos habituais para criação de um projecto mas agora com dois ficheiros de código: h2a.a51 e main.a51.

No ficheiro h2a.a51 está colocado o código *assembly* que implementa a subrotina que permite converter um dígito hexadecimal para ASCII. O código *assembly* presente neste ficheiro foi apresentado na Figura 1, com a excepção de algumas directivas para o *assembler* da família MCS-51. O ficheiro h2a.a51 é apresentado na Figura 3.

No ficheiro main.a51 está o código principal, onde se armazenam os valores dos dígitos hexadecimais na memória e se invoca, através de um *loop*, a subrotina implementada no ficheiro h2a.a51, guardando o resultado da conversão de dígito hexadecimal para o correspondente ASCII na memória de dados externa. O ficheiro main.a51 é apresentado na Figura 4.

🕎 Guia3 - µVision3 - [C:\Miguel\Aulas	MIEEIC\Microcontroladores\2009-10\Guias\Keil\Guia3\h2a.a51]
Eile Edit View Project Debug	Fl <u>a</u> sh Pe <u>r</u> ipherals <u>T</u> ools <u>S</u> VCS <u>W</u> indow <u>H</u> elp
🖹 🖆 🖬 🎒 🐰 🖻 🛍 🖆	요 의 幸 幸 🍐 % % 🗞 🙀 📃 📕 🖊 🔶
🏼 🏶 🕮 🥌 👗 🙀 🔏 Ta	rget 1 💽 📥 🖷 🐖
Project Workspace - ×	NAME H2 A
🕞 🔚 Target 1 🛛 🛛 🛛 🖓	2
Source Group 1	B PUBLIC INICIOH2A
P	1
	; Rotina que converte dígito hexadecimal armazenado
	; no endereço de memória apontado por RO para ASCII
0	/ INICIOH2A:
0	BA1: Bloco de atribuição 1
0	MOV A, @RO
1	CLR C
1	SUBB A, #10
1	2
1	BD1: Bloco de decisão 1
1	4 JC BA3_NAO
1	; Carry é O, logo é letra porque A>=10
1	;BA2_SIM:Bloco de atribuição 2
1	7 ADD A,#'A'
1	B MOV B, A
1	JMP FIMH2A
2	
2	;BA3_NAO:Bloco de atribuição 3
2	BA3_NAO:
2	3 ADD A,#10
2	ADD A,#'0'
2	MOV B,A
2	FIMH2A:
2	RET
2	3
2	END

Figura 3 – Ficheiro h2a.a51

Figura 4 - Ficheiro main.a51

Identifique as novidades no exemplo acima apresentado.

Observe os conteúdos da memória de programa, estabeleça as ligações entre os locais dos códigos.

Use a janela de *disassembly*.

Efectue a depuração passo a passo;

Esteja atento às alterações da memória de dados, interna e externa do microcontrolador.

3	•	Address: x:00h																											
		X:0x000000:	00	00	00	00	00	00	00	00	35	38	41	45	37	00	00	00	00	00	00	00	00	00	00	00	00	00	
		X:0x00001A:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
Ш		X:0x000034:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
		X:0x00004E:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
		<u>X:0x000068:</u>	00	00	00	00	00	00	00	00	00	QO	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	-
Ż	B K A ▶ N Memory #1 A Memory #2 A Memory #3 A Memory #4 /																												

Figura 5 – Janela de memória

Qual o objectivo deste programa desenvolvido em 2 módulos?

Repare que pode extrair algumas informações úteis consultando o ficheiro '.lst'. Por exemplo, passe para o modo de edição e seleccione 'File/Open' e abra os ficheiros com extensão '.lst'.

Consulte ainda o ficheiro com extensão '.M51'.

Que informação tem disponível?

