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Abstract. Estimating the application performance in distributed scenarios is
challenging due to numerous variables and influences. Combining Artificial Intel-
ligence (AI) with advanced monitoring methods offers a promising approach for
predicting application quality. State-of-the-art solutions leverage robust monitor-
ing and AI algorithms, such as Deep Neural Networks (DNNs), to detect tempo-
ral relationships and improve estimation accuracy. However, these methods often
require significant computational resources and impose overheads due to the fine-
grained monitoring requirements. This paper proposes an alternative hypothesis:
effective insight into the application’s behavior and user perception does not rely
solely on highly granular metrics. Instead, lightweight AI algorithms combined
with generic infrastructure metrics–such as computing, networking, storage, and
operating system variables–can yield valuable patterns. Our method achieved
lower Mean Absolute Error (MAE) and Mean Squared Error (MSE) in forecast-
ing write-and-read operation latencies in a database cluster, demonstrating its
effectiveness and efficiency.

1 Introduction

Modern applications are seamlessly deployed on complex infrastructure to achieve high
availability, performance, and user satisfaction [1]. To evolve these computing environ-
ments and the underlying network infrastructure to satisfy Service-Level Agreements
(SLAs), many paradigms have been proposed, such as edge computing, containeriza-
tion, and network slicing [2,3]. In these computing environments, there are different
challenges, such as long queuing time, resource competition, resource idle, and complex
management and monitoring [4] while Service-Level Agreement (SLA) satisfaction is
a business differentiator.

To cope with SLA requirements, Artificial Intelligence (AI) techniques have been
employed in different paradigms to support the management and orchestration of
applications in high-performance computing infrastructures and have been effective in
addressing many challenges [5,6]. Furthermore, production environments are dynamic,

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
L. Barolli (Ed.): AINA 2025, LNDECT 248, pp. 89–100, 2025.
https://doi.org/10.1007/978-3-031-87772-8_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-87772-8_8&domain=pdf
https://doi.org/10.1007/978-3-031-87772-8_8


90 M. V. dos Reis et al.

requiring an efficient, low-overhead monitoring method capable of correlating applica-
tion performance with computing resources using generic infrastructure metrics [7].

In the literature, some approaches employ sophisticated Machine Learning (ML)
algorithms, such as those based on Deep Neural Networks (DNNs), to forecast the
performance of network-based applications despite their high computational require-
ments [8]. The trade-off between high granularity and good performance versus low
granularity and low resource consumption. Consequently, there is an opportunity to
investigate low-granularity methods that offer satisfactory performance without com-
promising the ability to estimate the impact of external variables on application perfor-
mance.

This paper presents an approach based on cross-domain metrics union, from com-
puting, network, and operating system metrics, to estimate application performance in
container-based environments. Through a distributed architecture that identifies pat-
terns in resource usage and relates them to application behavior, we provide (1) a non-
intrusive method to estimate performance using generic infrastructure monitoring data
and (2) validate the model in real-world scenarios, showing its effectiveness in predict-
ing resource usage.

The remainder of this paper is organized as follows: Sect. 2 presents the approaches
correlated with the proposal, while Sect. 3 presents the aggregation method of metrics
between domains. Section 4 presents our proposal’s main findings, insights, and future
work and conclusions in Sect. 5.

2 Related Work

Many approaches in the literature can estimate the performance of applications using AI
in different domains [9], such as cloud-native or container-based approaches. Effective
forecasting depends on the data’s quality, detail, and temporal relationship. Achieving
this requires sophisticated monitoring approaches that can add more overhead to the
cloud infrastructure [10]. Our contribution lies in using generic monitoring metrics to
estimate the application performance in container-based environments accurately.

Tam et al. [11] proposed the PERT-GNN, a transformer based on Graph Neural Net-
works (GNN) and inspired by a statistical tool for project management called Program
Evaluation and Review Technique (PERT). PERT-GNN is a regression-based model
for accurately predicting latency in containerized applications. It was evaluated using
datasets from DeathStarBench and Alibaba production clusters. This method involves
creating PERT graphs from microservice traces, training the PERT-GNN model, and
benchmarking it against existing methods. The results show that PERT-GNN outper-
forms the other approaches, with a Mean Absolute Percentage Error (MAPE) below
12%, demonstrating its latency prediction effectiveness.

Wang et al. [12] introduced a load prediction-driven scheduling strategy for con-
tainer cloud environments using a CNN-BiGRU-Attention model for workload fore-
casting. The model predicts continuous load values using the cluster-trace-v2018
dataset, which includes data from 4000 machines over eight days. Evaluation metrics
such as Mean Absolute Error (MAE), MAPE, and Root Mean Square Error (RMSE)
show that the model significantly enhances prediction accuracy and efficiency in con-
tainer cloud environments.
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Al Qassem et al. [13] proposed a proactive autoscaling method using a Random
Forest model to predict CPU and memory utilization. The model forecasts continuous
resource usage values with the fastStorage dataset, containing traces from 1,250 Virtual
Machines (VMs). Evaluation using metrics such as MAE, RMSE, and R2 demonstrates
that the model improves resource allocation efficiency and reduces latency in container-
ized microservice environments.

Wang et al. [14] proposed a latency prediction method using GNN and Profile
Engine, focusing on resource utilization estimation. The dataset includes DeathStar-
Bench and HPC-AI500. Evaluation using MAPE shows that the system significantly
improves resource estimation accuracy and efficiency in microservice environments.

Taha et al. [15] presented a proactive auto-scaling system using a hybrid MLP-
LSTMmodel to predict resource demands for Service Function Chains (SFCs) in cloud
environments. The system forecasts CPU, memory, and bandwidth utilization for Vir-
tual Network Functions (VNFs) using the Clearwater IMS and Web SFC datasets.
Evaluated with MAE, MSE, and RMSE metrics, the MLP-LSTM model outperforms
others in prediction accuracy and adaptability, reducing under-provisioning and over-
provisioning in dynamic cloud environments.

Mondal et al. [16] proposed a proactive scaling scheme for Kubernetes using a
Gated Recurrent Unit (GRU) model to predict system load and optimize resource allo-
cation. The model forecasts future CPU usage using the Google-cluster-data-2011-
2 dataset. The evaluation shows that the GRU-based autoscal Table 1 outlines the
approaches in container-based environments and resource efficiency.

Silva et al. [17] presented an online machine learning-based auto-scaling subsys-
tem for edge computing, combining reactive and proactive strategies via the MAPE-K
loop. The method predicts workload for elastic resource allocation using regression,
with datasets including the Madrid Traffic Dataset and synthetic data from TimeSynth.
Experiments in a hierarchical edge environment for video analytics show reduced SLA
violations, minimized waste, and improved provisioning accuracy compared to baseline
methods.

Table 1 outlines the approaches in container-based environments. Each column pro-
vides specific insights: Method describes the prediction techniques used; Task indicates
whether it’s regression or classification; Dataset identifies the data sets employed; Eval-
uation Metrics highlight performance measures like MAE, Mean Squared Error (MSE),
and MAPE; Data Source reveals the origin of data, such as real-time monitoring or
ElasticSearch; and Data Granularity offers a qualitative assessment of data detail rich-
ness, categorized as high, medium, or low. Data granularity is a qualitative metric that
indicates the level of detail of a dataset. A high granularity reflects fine-grained data
from sophisticated platforms and data pipelining. Medium granularity balances detail,
whereas low granularity uses generalized data, offering broader overviews but eventu-
ally less precision.

Unlike the studies mentioned above, which depend on fine-grained monitoring and
resource-intensive AI models [11,14,16], our approach focuses on efficiency using
generic infrastructure metric aggregation. Although the existing methods achieve high
accuracy, they may incur significant overhead. By contrast, our approach achieves accu-
rate latency predictions with reduced data and computational demands using basic
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Table 1. Short state-of-the-art comparison.

Approach Method Dataset
Evaluation

Metrics

Data

Source

Data

Granularity

Tam et al. [11]
GNN using PERT to predict

end-to-end latency in microservices.

Benchmarks, and

large-scale Alibaba traces.
MAE, MAPE

Distributed monitoring

tools such as Jaeger, and

Prometheus.

High

Wang et al. [12]
CNN-BiGRU-Attention

model for load prediction.
cluster-trace-v2018 MAE, MAPE, RMSE

Real-time

monitoring.
High

Al Qassem et al. [13]

Random Forest model

for predicting CPU

and memory utilization.

fastStorage

dataset
MAE, RMSE, R

Real-time

monitoring.
High

Wang et al. [14]

Latency prediction

using GNN and RNN-based

resource estimation system.

DeathStarBench, and

HPC-AI500.
MAPE

Real-time monitoring

with Prometheus

and Jaeger.

Low

Taha et al. [15]

Latency and resource demand

prediction using hybrid

MLP-LSTM with online

learning and error correction.

Clearwater IMS,

and Web SFC.
MAE, MSE, RMSE

Monitoring data

via Grafana.
Medium

Mondal et al. [16]
GRU model for

latency prediction.
Google-cluster-data-2011-2

MSE, RMSE,

MAE, R

Monitoring data

from Google Cluster.
Medium

Silva et al. [17]

Online ML for latency prediction

and container adjustment based

on workload changes.

Real and synthetic data

from a video analytics

application.

R, MAE, MSE,

QoS degradation,

SLA violations,

Elasticity Speedup.

Real-time

monitoring.
High

Ding et al. [18]

MECE model for latency

prediction using resource

and management cost data.

JPetStore-6,

and SpringBlog.
MAE, RMSE

Real monitoring

data using

Prometheus and

JMX Exporter.

Medium

Ours
Generic Monitoring Metrics

feeding basic ML algorithms.
Generated by ourselves

MAE, MSE,

and MAPE
NetData Low

ML algorithms, offering a more resource-efficient solution for container-based envi-
ronments.

3 Proposed Method

Our method consists of joining generic metrics from a monitoring platform (NetData)
to fit and generalize application latency forecasting. Figure 1 presents a diagram of the
method used in this study and details the main steps of the developed process.

Fig. 1. Proposed Aggregation and Evaluation Method.
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1 First Phase: we generated a workload (with cassandra-stress) for 60min.
This load was generated separately for Write and Read operations, with an average
arrival rate of λ = 25 clients per minute, modeled by a Poisson distribution defined
by the probability function in Eq. 1. We modeled this synthetic workload generation
with sinusoidal behavior to approximate real scenarios where there are workloads with
seasonal behavior.

P(X = k) =
λ ke−λ

k!
, (1)

where k represents the number of events and instantiations of clients constantly per-
formingWrite or Read operations at a fixed interval. Additionally, the arrival rate varied
sinusoidally over time, with amplitudes A= 20 and P= 10 min, as described by Eq. 2.

λ (t) = λ0+A · sin
(
2π
P
t

)
(2)

Here, λ0 = 25 represents the average arrival level, and t is the time in min. The
execution logs were stored in a file with a timestamp to link with generic monitoring
metrics. The operations were distributed across multiple Cassandra instances deployed
as pods in the Kubernetes environment. The pods were responsible for handling read
and write tasks simultaneously. This approach used Kubernetes scalability and resource
management to orchestrate operations efficiently. Each pod operated in isolation but
collaboratively, allowing a detailed collection of read and write latencies in a dis-
tributed manner. This architecture made monitoring the load’s impact on the system
performance easier, ensuring greater flexibility and adaptability in execution and data
collection.

2 Second Phase: Using the NetData system, read and write data were collected
separately to obtain detailed metrics (Comma-Separated Values (CSV)) of computa-
tional resource usage during specific execution moments. This process enabled the cre-
ation of a representative dataset that correlates system performance with computational
resource consumption at different execution times. Our cross-domain metric-joining
criteria are based on timestamps, where each monitored domain—such as compute,
network, or operating system–has a timestamp for its records. We then performed an
inner join to build the feature set.

3 Third Phase: for data aggregation and analysis, the previously generated fea-
ture set, which initially contained more than 130 labels (resulting from metric-joining),
was further enriched by incorporating application latency timestamps collected dur-
ing the workload generation phase. We then applied Principal Component Analysis
(PCA) to reduce the dataset’s dimensionality and optimize the analysis. The evaluation
of the principal components determined that the most relevant features were associated
with the variables net enp7s0 and netpackets. Based on these results, the dataset
was reduced to 16 features, preserving the most significant information for the study’s
objectives.

4 Fourth Phase: using the reduced dataset, we evaluated four lightweight
machine learning algorithms: K-Nearest Neighbors (KNN), Support Vector Machine
(SVM), Random Forest (RF), Decision Tree (DT) and Long Short-Term Memory
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(LSTM). The Grid Search technique was applied to each model to optimize the hyper-
parameters and obtain the best performance in previously defined metrics.

4 Evaluation and Discussion

In an hour-sized generated dataset, we performed a PCA analysis, as shown in Fig. 2,
using the most relevant features and optimized parameters, we proceed with training of
the basic ML algorithms (such as RF, KNN, DT, and SVM) to assess their ability to
predict the application latency in container-based environments.

Fig. 2. Our evaluation workflow.

Table 2 highlights the hyperparameters tested for each model.

Table 2. Tested hyperparameters for each model – best ones highlighted.

ModelHyperparameter Search Space

RF No. EstimatorsMax Depth Min Samples SplitMin Samples Leaf Max Features Bootstrap

[50, 100, 200] [None, 10, 20, 30] [2, 5, 10] [1, 2, 4] [auto, sqrt, log2] [True, False]

KNN No. Neighbors Weights Metric

[3, 5, 7, 10] [uniform, distance] [euclidian, manhattan]

SVM l Kernel Gamma

[0.1, 1, 10] [linear, poly, rbf, sigmoid] [scale, auto]

DT Max Depth Min Samples Split Min Samples Leaf

[None, 10, 20, 30] [2, 5, 10] [1, 2, 4]

We empirically defined the parameters for LSTM considering training with 50
epochs, the ReLU activation function, Adam optimizer with a learning rate of 0.001,
and a loss function set to MSE. LSTM was evaluated merely as a baseline for our
cross-domain metric aggregation. Our evaluation focuses on lightweight ML algorithms
applied to a generic monitoring dataset of container-based infrastructure.

The performance of the forecasting algorithms was evaluated using the MAE, MSE,
MAPE, and the Coefficient of Determination (R2) metrics. The MAE measures the
average magnitude of the errors and is given by:
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MAE=
1
n

n

∑
i=1

|yi− ŷi|,

where yi and ŷi are the observed and predicted values, respectively, and n is the total
number of observations. The MSE penalizes larger errors and is expressed as:

MSE=
1
n

n

∑
i=1

(yi− ŷi)2.

The MAPE evaluates the relative prediction accuracy as a percentage:

MAPE=
100
n

n

∑
i=1

∣∣∣∣yi− ŷi
yi

∣∣∣∣ .
Finally, the R2 metric assesses the proportion of variance explained by the model:

R2 = 1− ∑n
i=1(yi− ŷi)2

∑n
i=1(yi− ȳ)2

,

where ȳ is the mean of the observed values. These metrics provide comprehensive
insights into the accuracy and reliability of the forecasting models.

Subsequently, we conducted training and testing on the data in proportion (80–
20%). Table 3 compares the different ML models for Write and Read operations. The
metrics analyzed include MSE, the coefficient of determination (R2 Score), MAE, and
MAPE. These metrics provide a comprehensive view of model accuracy, error distribu-
tion, and predictive reliability.

Table 3.Model Comparison Based on Different Metrics (Write and Read).

Metric RF KNN SVM DT LSTM

Write MSE 0.0042 0.0045 0.0044 0.0051 0.0046

Read MSE 0.0198 0.0216 0.0193 0.0241 0.0196

Write R2 Score 0.4038 0.3642 0.3749 0.2840 0.3442

Read R2 Score −0.0258−0.1214−0.0001−0.2518−0.0172

Write MAE 0.0466 0.0477 0.0478 0.0517 0.0492

Read MAE 0.1123 0.1164 0.1111 0.1227 0.1125

Write MAPE 25.60% 25.21% 26.98% 27.59% 25.50%

Read MAPE 33.97% 34.74% 33.48% 36.33% 34.83%

In our experimental scenario, RF performed better in forecasting write data, pre-
senting the lowest MSE (0.0042) and MAE (0.0466), in addition to a high R2 (0.4038).
These data indicate that the RF model captured the relationships in the write data, pro-
viding consistent predictions while requiring low computational resources and training
time. For Read operations, performance was more challenging for all models, but SVM
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had a lower MSE (0.0193) and MAE closer to ideal (0.1111), although R2 was still
close to zero.

The data distribution graph illustrated in Fig. 3(a) and 3(b) demonstrates how the
data are distributed among the different features of our dataset, highlighting load pat-
terns and efficiency in resource management. This indicates that there may be a pattern
related to the amount of resources requested using network resources.

daeR)b(etirW)a(

Fig. 3. Analysis of the quality of the dataset generated in our experimental scenario.

Figure 4(a) and 4(b) show the most important features of the solution. The graph
indicates that even the most important features still have low values, but the models use
a combination of information between the features to recognize the values.

daeR)b(etirW)a(

Fig. 4. Feature importance.

Figure 5(a) and 5(b) illustrate the parity curves for the written data, demonstrating
the relationship between the actual and predicted values. This graph represents the ideal
parity line, and the points that align with it indicate perfectly accurate predictions. The
difference between the Write and Read data is notable because the write data are more
reliable.
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daeR)b(etirW)a(

Fig. 5. Parity Curve.

In Fig. 6(a) and 6(b), we can observe the presence of patterns observed by the model
and compare them with their real values. The writing data demonstrated a pattern that
the model could understand and follow. The Reading model demonstrated values with
a low relationship compared to the reading data.

The Residual Histograms, as shown in Fig. 7(a) and 7(b), show the number of resid-
uals in specific sections. This allowed us to identify values with the most significant dis-
parity in the dataset. As observed in the previous graphs, the writing data demonstrated
fewer residuals than the reading data, which showed greater consistency in writing data
for regression analyses.

daeR)b(etirW)a(

Fig. 6. Residual Graph.

Figure 8(a) and 8(b) show the relationship between the actual (actual) and Pre-
dicted Values (predicted values) for the writing and reading processes, respectively.
Both graphs show that the model is functional, but there is room for improvement in
reducing dispersion, especially when reading data.

The results demonstrate the model’s effectiveness in predicting and analyzing data,
with write values demonstrating superior performance in regression models compared
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daeR)b(etirW)a(

Fig. 7. Residual Histogram.

daeR)b(etirW)a(

Fig. 8. Scatter Plot.

with read values. Despite the good overall performance, aspects that can be improved to
increase prediction accuracy have been identified, particularly in read data. Thus, this
study validates a cross-domain metric aggregation approach for inferring application
performance in container-based scenarios.

5 Concluding Remarks

This study explored and evaluated the suitability of cross-domain metric aggregation to
estimate network application performance in production-ready networks. Using data on
network usage and resource allocation, the proposed method demonstrated its ability
to provide accurate estimates of computational resource consumption. State-of-the-art
solutions are moving towards feeding complex and computation-intensive ML algo-
rithms with data from highly granular monitoring architectures without considering the
potential to extract patterns from generic infrastructure metrics.

Alternatively, our method indicates that although it is a computationally feasible
approach, employing basic ML algorithms can yield interesting results. Furthermore,
it can enrich the management and orchestration platforms for complex infrastructure.
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Unlike traditional methods focusing exclusively on specific application domains and
algorithms, such as DNNs, the methodology based on multi-domain metric aggregation
with basic ML algorithms ensures adaptability and consistency in different standard
application environments. Future work will explore the framework and combine other
metrics, explore monitoring mechanisms with shorter time intervals, and evaluate their
impact on evaluation performance.
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