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Abstract

A two-step hardware/software partition methodology
was developed. It departs from an initial partition so-
lution based on the cluster growth algorithm and itera-
tively leads the designer to an improved solution, using
the tabu search algorithm. A PCI-based recon�gurable
architecture, EDgAR-2, was also developed, with an
hybrid approach using both data path oriented devices
(FPGAs) and control oriented ones (CPLDs). Two
basic criteria were followed to evaluate the partition
methodology in the design of embedded systems, target-
ing such hybrid recon�gurable architecture: the quality
of the generated partition solutions and the accuracy of
the estimates. Two data �ow dominated case studies
were selected: the cryptography algorithm DES and an
image convolution with Sobel �lter. The obtained re-
sults show that accurate estimates lead to high quality
partition solutions.

Keywords: Partition methodology, PSM meta-
model, tabu search, metrics estimation, evaluation

1 Introduction

This communication describes an automatic partition
methodology oriented to develop data �ow dominated,
medium complexity and real time embedded systems,
where a computer and an EDgAR-2 platform [1] form
the recon�gurable architecture to be used in systems
implementation. The partition task, implemented in
the parT iTool tool, is part of a development method-
ology that covers all phases of systems development.

Partitioning is an NP-complete optimization problem
that assigns system objects to the target architecture
components and de�nes its startup time, to achieve
the designer goals, quanti�ed by a cost function. To
reach this goal, the set of objects on the system de-
scription must be divided into a series of disjunct sub-
sets that will be assigned to the di�erent components
of the target architecture. In the present work, the
objects represent program-states or variables from the
system PSM model. The present approach performs a
functional, inter-component and automatic partition.

When compared to the methodology followed by the
MOOSE approach [2], the proposed methodology has

some advantages: (i) the state transition diagrams
(STD) are replaced by PSM1 models [3], which allow
adequate handling of the system objects concurrency,
(ii) implementations follow an iterative approach, re-
placing the traditional cascade design �ow and (iii) the
partition is automatically performed, without requir-
ing additional expertise from a codesign professional.

To evaluate this partition methodology, parTiTool ca-
pabilities were compared to other approaches, follow-
ing the structure introduced in [4]. Here, two sets
of features are grouped for comparison purposes: the
modelling support and the implementation support.
The �rst identi�es 3 axis: the application domain, the
type of validation and the modelling style. Figure 1
shows where parTiTool �ts in the graph and how it
relates to other approaches. The proposed approach
is part of a development methodology that uses het-
erogeneous modelling. It can be applied to data and
control systems, but it is oriented to data �ow domi-
nated systems. In the present stage of the evolution,
it does not allow co-veri�cation.

Chinook

Mickey

Tosca

homogeneous

co
nt

ro
l

co-verification

Type of

Validation

Polis

heterogeneous

Ptolemy

COOLda
ta

da
ta

+c
on

tro
l

Domain Cosmos, Cosyma

Lycos, Vulcan

SpecSyn

Castle

CoWare

parTiTool

Application

simulation

Style

Modelling

Figure 1: Categorization of approaches by modelling
support.

To compare the support available to implement the
systems with multiple components, �gure 2 also uses
3 axis: the support to synthesize the interface be-
tween components, the supported target architecture
and the automation degree of the partition process. A
reasonable number of approaches (Chinook [5], Cos-
mos [6], CoWare [7] or Polis [8]) does not execute parti-
tion automatically. None of the approaches completely
supports the automatic partition and the synthesis of
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interfaces. In the proposed approach the partition
process is automatic and the information required to
synthesize the interface between components can be
extracted from the detailed model used to estimate
communication metrics.
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Figure 2: Categorization of approaches by implemen-
tation support.

The communication is organized in 6 sections. Sec-
tion 2 summarizes the partition methodology under
evaluation, describing the modelling that is relevant to
the partition process, the creation and improvement of
partition solutions with cluster growth and tabu search
algorithms and the estimation of the metrics required
by the evaluation functions. Section 3 introduces the
target architecture. Section 4 presents two case stud-
ies used to evaluate the methodology and the results
obtained with this evaluation are summarized in sec-
tion 5. Finally, section 6 points out some conclusion
remarks and directions for future work.

2 Partition methodology

The main modules of the partition methodology [9]
[10] are identi�ed in �gure 3 and presented next: the
partition algorithms, the evaluation functions and the
metrics estimators.
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Figure 3: Structure of the partition methodology.

2.1 System modelling

In related approaches, the uncommitted systems are
commonly modelled with meta-models such as CDFG,
DFG, FSM, Petri net, CSP, an extended version of a
previous meta-model, or a combination of these meta-
models [11, 12, 13, 14, 2]. The PSM meta-model, cho-
sen to describe the systems at the partition process
interface, combines an HLL/HDL meta-model with
HCFSM2 [3]. A PSM model is described by a hier-
archical set of program-states, where a program-state
represents a computation unit, that at a given time can
be active or inactive. A PSM model may include com-
posite or leaf program-states. A composite program-
state is de�ned by a set of concurrent or sequential
program-substates, and a leaf program-state is de�ned
by a block of code on the given programming language.
The VHDL language was selected to describe the vari-
ables and the leaf program-states.

To describe systems during the partition process it
was developed a CFG type meta-model: the PSM �ow
graph, or simply PSMfg. A PSMfg model is an acyclic,
directed and polar graph. The PSMfg meta-model rep-
resents the semantic of PSM and all the information
needed by the partition process, such as the metrics
estimates and the assignment of objects to partitions.
To control the granularity of the objects handled dur-
ing the partition process, a PSMfg graph is able to
represent the program-states structure. The compu-
tational support needed on PSMfg graphs edition and
partition comes from the LEDA3 library [15].

2.2 System partitioning

In the present work, partitioning is a two-step process:
(i) create an initial partition solution with the cluster
growth (CG) constructive algorithm and (ii) succes-
sively improve it with an iterative partition algorithm,
such as tabu search (TS) or simulated annealing (SA).

At each iteration of the constructive process with the
CG algorithm, the assignment of objects to partitions
is guided by a function that measures the closeness
among the object to assign and the previously assigned
objects. On the de�nition of closeness it is consid-
ered the communication intensity between variables
and program-states, the program-states computation
time and the area occupied by variables and program-
states in hardware. The used closeness function adapts
itself to the type of object (variable or program-state)
and partition (software or hardware).

The TS method, that successively improves the solu-
tion created by the CG algorithm, can be seen as an
extension of the local search strategies, where a new
solution is found on the present solution neighbour-
hood, applying a well de�ned set of rules [16] [17]. To
reduce the set of the alternatives present on the cur-
rent solution neighbourhood that will be evaluated,
it is implemented a list with candidate solutions. The
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search is further restricted by a set of forbidden (tabu)
solutions.

When compared to the algorithm discussed in [16],
the implemented tabu search algorithm [9] [10] only
searches a partial neighbourhood of the present so-
lution, has more evolution strategies to apply when
there are no eligible solutions with quality and applies
a more e�cient improvement when no single move can
further improve the cost of the present solution. The
subset of moves that de�ne the partial neighbourhood
is made up the best move for each object of the sys-
tem description. The implemented neighbourhood has
a simple structure since a complex structure would
greatly increase the computation time.

Given that the application of all tabu classi�cations
can be very restrictive to the search, a subset of clas-
si�cations was chosen that decreases the size of the
neighbourhood to be searched and it does not place
excessive restrictions to the search: (i) to classify as
being tabu the move of an object from the source par-
tition to the target partition, (ii) to classify as being
tabu all the moves with the participation of that object
and (iii) to classify as being tabu the inverse (move)
of the move that originated the present solution. The
implemented TS method includes two types of aspira-
tion criterium: (i) it is applied an aspiration criterium
by objective when the �rst alternative selects a move
with quality that is classi�ed as being tabu and (ii) it
is applied a default aspiration criterium when the third
alternative selects the �least� tabu move.

The cost function used on the iterative partition
process considers as being optimum a partition alter-
native that respects the target architecture constraints
and achieves the design requirements. To reach this
goal, the function includes penalty terms, which mea-
sure the degree the partition alternative does not re-
spect each constraint or requirement. The constraints
apply to the area of the hardware partitions data path
and to the area of the respective control unit, while
the requirement applies to the system performance.

2.3 Metrics estimation

Like the majority of the approaches, the estimation
operates over the system graph modelled with PSMfg.
It uses an hardware model with data path and control
unit and a software model that considers the code opti-
mizations as a factor obtained by simulation. The im-
plemented estimation methodology attempts to gen-
erate accurate estimates, while keeping the computa-
tion time as low as possible. To obtain accurate esti-
mates, detailed models for the resources used on the
implementations were developed, especially the hard-
ware and communication models, and the estimation
runs in two abstraction levels: system and program-
state. The incremental update of the estimates and
the estimation in two levels both help to decrease the
computation time.

At the program-state abstraction level, low level esti-
mates needed by the system level estimates are com-

puted, the computations are performed once per par-
tition session and the estimates are more accurate. At
the program-state level, estimates for metrics relative
to the system objects are computed. Examples of these
metrics are the objects computation time, the area oc-
cupied by functional units, multiplexers and variables,
the read/written variables and the program-states that
read/write variables. At the system level, higher level
estimates are obtained, the computations are repeated
on every iteration of the partition process, the esti-
mates are less accurate and, whenever it is possible,
the estimates are updated instead of redo all the com-
putations. The metrics estimated at the system level
are the system performance and the area occupied by
the data path and the control unit of the hardware
partitions.

The developed hardware model is detailed and takes
part on the computation of the system performance
and the area occupied by the hardware partitions. Ac-
cording to this model, the area of a partition includes
the area of the data path and the area of the control
unit. The data path considers the functional units, the
storage elements, the interconnection resources and
the resources of the interface with other partitions.
Apart from one constant, the area of the control unit
equals the area of the state machine associated with
the partition data path. The area of the state ma-
chine includes the state register, the output logic and
the next state logic.

3 Target architecture

The target architecture presently supported by the
partition methodology includes an EDgAR-2 recon�g-
urable platform and its host system. EDgAR-2 is built
with FPGA/CPLD devices, interfaces the host system
through PCI bus and it is fully in system program-
mable [1]. The architecture of the board is composed
of an array of 4 couples (control unit, data path), called
processor modules. The processor modules are inter-
connected in a linear way with dedicated buses, form-
ing a pipeline, and they are also connected to a di�er-
ent byte from the 32 bits PCI data bus. Each processor
module is implemented with a Xilinx 4013XL FPGA
� the data path � and a XC95108 CPLD � the control
unit.

4 Case studies

The partition methodology was validated with a de-
tailed analysis of two case studies: the application of
a Sobel �lter to an image (convolution) and the DES4
cryptography algorithm; the �rst one is oriented for
a software implementation and the latter suggests an
hardware implementation.

The application of a Sobel �lter F (with X by Y pix-
els) to an image I, runs through two steps: (i) for
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every pixel (j, i) of the original image I, which colour
is I(j, i), an area with the �lter size and centered on
pixel (j, i) is convoluted with the �lter F , generating a
new value If(j, i) for pixel (j, i) (equation 1); (ii) with
the minimum and maximum of the �ltered image If ,
m(If) and M(If) respectively, the �ltered image is
normalized to the colour range of the original image
(r(I)), generating the �ltered and normalized image
In (equation 2).

If(j, i) =

Y−1X

k=0

X−1X

l=0

I(j − bX
2
c+ l, i− bY

2
c+ k) ∗ F (l, k) (1)

In(j, i) =
r(I)

M(If)−m(If)
∗ [ If(j, i)−m(If) ] (2)

The implemented DES algorithm applies a set of trans-
formations to the input data (sample), which depend
on these data and on the secret key. This key is also
altered during the di�erent iterations of the encrypt
process. Every sample to encrypt goes through an
initial permutation IP , a set of transformations that
depend on the secret key and a �nal permutation FP ,
inverse of IP (�gure 4). The set of transformations
that depend on the secret key is de�ned by an encryp-
tion function f and a key scheduling function KS.

The function f includes the expansion E, the substi-
tution tables S-box and the permutation P . The in-
formation generated by the initial permutation IP is
split in two 32 bits halves: the least signi�cant part
(R) feeds function f and the most signi�cant part (L)
is the input for an exclusive-OR operator. At the end
of a round, the two halves of the sample to encrypt
are swapped and the round is repeated. The algo-
rithm evolves in 16 rounds, in order to �circulate� the
sample to be encrypted.
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Figure 4: Block diagram of the DES algorithm.

The key scheduling KS generates a 48 bits key for
each of the 16 rounds of the DES algorithm, through
a linear combination of the 56 bits secret key. The
KS module includes a permutation PC1, a register,
a permutation PC2 and a shift left (right) operator,
applied on the encrypt (decrypt) process.

The dimension of the partition problem associated
with both examples and the parameters used on the
resolution with the tabu search algorithm are synthe-
sized on table 1. The high number of objects indicated
for both examples is a consequence of using explicit
parallelism at the system description.

Example Convolution Cryptography
dimension
No partitions 5 5
No objects 217 372
Parameter
No iterations 43400 74400
nBest 300 400
pMoves 20% 20%
nRand 4 4
TTmove 20 25
TTiMove 18 22
TTobj 15 20

nBest - Number of iterations since the best partition
solution was found.
pMoves - Percentage of objects to be moved when
the initial solution of a new search is created.
nRand - Number of searches without improving the
best partition solution in order to execute �random�
moves when creating the initial solution of the next
search.
T Tmove - Moves tabu tenure.
T TiMove - Inverse moves tabu tenure.
T Tobj - Objects tabu tenure.

Table 1: Parameters used on the partition process with
the tabu search algorithm.

5 Experimental results

The best partition solution, generated by tabu search
for the DES example, assigns program-states and vari-
ables to partitions (SW or HW1 to HW4) as it is il-
lustrated in �gure 5. The objects in the upper part of
the �gure represent PSM variables and the remaining
objects are the PSM program-states equivalents, for
rounds 1 up to 6 and for round 16.

When the automatic partition solutions are compared
with manually optimized hardware/software imple-
mentations, the measured performance of the best au-
tomatic partition solution reached 72 to 92% of the
manual implementation performance, being superior
on the cryptography example. The di�erent experi-
ments done with the mentioned examples always ended
in feasible partition solutions, e. g., solutions that re-
spect the target architecture constraints.

The accuracy of the system performance estimates
ranged from 82 to 98%, being higher on the cryptog-
raphy example due to its lower complexity. A �delity
ranging from 83 to 100%, almost coincident with the
accuracy range, suggests that the computed estimates
are reliable. The accuracy of the estimates for the area
occupied by the hardware partitions data path was 92
to 99%, being identical on both examples. The accu-
racy of the estimates for the area occupied by the hard-
ware partitions control unit ranged from 89 to 96%,
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Figure 5: PSMfg model illustrating the best partition solution from the TS algorithm.

with very close results on both examples. The ob-
tained results show that the control unit area depends
mainly on the state register area, that in turn is pro-
portional to the number of states. For the whole set of
metrics and examples, the accuracy and �delity of the
estimates were always above 82%, a very rewarding
result (table 2).

The time complexity O(nObj), expected for the tabu
search algorithm, was experimentally proved. Since
the computation time varies linearly with the number

of objects on the system description, on large sized
systems the time required to �nd the best partition
solution is high. However, in the majority of cases,
the �rst searches of the partition process generate a
solution with quality.

The automatic synthesis of the interface between par-
titions is a straightforward implementation that uses
the data from the estimation of the area occupied by
the resources of the interface between partitions and
the communication time between partitions.



Metric Convolution Cryptography
(%) (%)

automatic vs
manual solution 72 80-92
performance
accuracy of
performance 82-83 97-98
estimates
�delity of
performance 83 100
estimates
accuracy of
areaHW(DP) 98 92-99
estimates
accuracy of
areaHW(CU) 91 89-96
estimates

Table 2: Results obtained with the partition process.

6 Conclusions and future work

The obtained results show that the best automatic so-
lution from the TS algorithm achieves 72 to 92% of
the manual partition solution performance. This is
an interesting result limited by (i) the optimizations
introduced on the manual solution implementation,
(ii) the simple software estimation model and (iii) the
�ne granularity used with the objects. The di�erent
experiments always ended on feasible partition solu-
tions, which proves that the partition process is ade-
quately controlled by the evaluation functions.

The accuracy of the performance estimates, the area
of the data path and the area of the control unit es-
timates, was high. Measuring the data path (control
unit) area with CLBs (products) leads to a better ac-
curacy. The estimates accuracy obtained with both
examples, DES and convolution, was very close. This
consistence on the accuracy suggests a reliable esti-
mation. For all metrics and examples, the accuracy
and �delity of the estimates was always above 82%,
an interesting result that in many cases overcomes the
published results.

The time complexity O(n), foreseen for the imple-
mented TS algorithm, was con�rmed on the experi-
ments performed with parT iTool. The time necessary
to compute the best partition solution is high, but in
most cases 10% of this time is su�cient to �nd a so-
lution that achieves a performance close to 90% of the
best solution.

Some directions are being considered for future work:
(i) replace the PSM by UML Statecharts in order to
integrate the partition methodology on a broader em-
bedded systems devellopment framework; (ii) evaluate
the methodology with di�erentiated and more complex
systems; (iii) implement other iterative algorithms �
beyond TS and SA � where di�erent optimization
strategies may lead to better results with some exam-
ples, to increase the partition success; (iv) optimize the
system performance estimation, to improve the perfor-
mance of the partition methodology, strongly depen-
dent on the time needed to estimate this metric.
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