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Abstract : The present work was performed in the context of the CYCLOPS project, which 
aimed to exploit the Grid capabilities for Global Monitoring for Environment and Security 
(GMES) applications. The scenario exploited in the present work was the existence of remote 
wireless sensor networks, which could monitor and transmit real-time data from remote places, 
in order to prevent or react more accurately to situations of natural disasters. Considering a 
Wireless Sensor Network (WSN) as an instrument, we used the DORII middleware to integrate 
this instrument with gLite-based Grid computing and storage, allowing an effective and user 
friendly access to the instrument, as it is required by Civil Protection applications. The 
mentioned goal was achieved by (i) implementing an Instrument Element and several 
Instrument Managers, which virtualize the WSN; (ii) developing a Custom Java Interface to 
connect the Instrument Managers with sensors, performing the translation of the 
commands/data exchanged between them; (iii) implementing additional modules to permit a 
long duration (or offline) monitoring, saving the observed data in a database; (iv) implementing 
a Sensor Observation Service, following the OGC standards, providing the users with access 
to the database. 
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1 Introduction 
 
Civil Protection (CP) applications require the access to acquisition systems (single sensors, sensors networks 
and airborne and satellite-based remote sensing systems). These applications need to read data from different 
systems, and also to control the data acquisition to be able to adopt the best strategy for monitoring events. 
For example a CP application for Flash Flood management could provide access to data from different 
sensors like weather radars and satellites, and could provide also the possibility of modifying the sampling 
time of a rain gauges network depending on the characteristics of the observed phenomenon. 

A complete suite of services for integrating sensors in an e-infrastructure should include: (i) discovery of 
sensor systems basing on the user’s needs, (ii) description of a sensor’s capabilities and quality of 
measurements, (iii) access to sensor parameters, (iv) access to observations and coverages, (v) planning of 
sensors observations and (vi) notification of alerts from sensors. One important point is that not all of the 
sensors are accessible using the same technologies, and this architectural heterogeneity cannot be reduced. In 
fact, data acquisition systems are managed by different organizations and they are often part of existing data 
sharing systems based on several technologies (Web, Grid, proprietary or legacy technologies). Even if many 
initiatives are putting efforts in an architectural harmonization, it should be considered that at least in the next 
years, many acquisition systems will be accessible only using different technologies and systems. In particular 
concerning the CYCLOPS project [1], it is possible that some sensors are integrated in the Grid as Instrument 
Element, while others are not. 

The work presented in this paper was performed in the context of the CYCLOPS project, with the goal of 
joining Grid and Global Monitoring for Environment and Security (GMES) communities, in order to fully 
exploit the Grid capabilities for GMES applications.  One of the GMES scenarios is the existence of Remote 
Wireless Sensor Networks (RWSN), which could monitor and transmit real-time data from those remote 
places, like temperature, humidity or wind speed, in order to prevent or react more accurately to situations of 
natural disasters like floods, fires or earthquakes.  

After evaluating several alternatives, we decided to use the DORII middleware, the successor of the 
GRIDCC project, to control, monitor and collect data from a RWSN. DORII provides a well-proven 
technology that can be deployed on top of existing Grid middleware, extending the grid e-infrastructure to the 
control and monitoring of remote instrumentation. EGEE gLite is the reference Grid middleware, both for 



 

DORII and the CYCLOPS projects, and the EGEE e-infrastructure is the natural framework in which to 
deploy and integrate the instrument with Grid technology. The core and novel element of the DORII 
middleware [2] is the Instrument Element (IE), functioning as a Web service interface to integrate 
instruments and sensors into the Grid. The second key component is the Virtual Control Room (VCR) that 
has been introduced to provide remote users with a virtual area from where they can control and monitor the 
instrumentation, and where they can collaborate with each others, even if located in different physical places. 
The third main component is the Execution Service, which provides a workflow engine able to handle BPEL 
workflows interacting both with the new features of DORII and with traditional computational and storage 
Grid services. 

The paper is organized in the following manner. Section 2 presents the related approaches. Section 3 
describes the Imote2-based WSN instrument, used as a case study to integrate sensors into the Grid, and the 
idea of extending this instrument with emulated sensors. Section 4 details a prototype, based on the DORII 
middleware, developed to integrate a WSN instrument into the Grid. Section 5 introduces a second version of 
the prototype, developed to overcome some limitations of the DORII version, which is based on the OGC 
standards. Finally, section 6 presents some conclusions and the future work. 
 
2 Related Work 
 
The DORII project [2] aims to deploy an e-Infrastructure for new scientific communities, in one hand ICT 
technology is still not present at the appropriate level today, in other hand it is required to improve the 
communities’ daily work. The main focus of the DORII project is on groups of scientific users with 
experimental equipment and instrumentation that are currently not or only partially integrated in the European 
e-Infrastructures. At present, the following selected scientific areas are represented in the project: earthquake 
community (with various sensor networks), environmental science community, experimental science 
community (with synchrotron and free electron lasers). 

The GEO Grid [3] project integrates virtually a wide variety of data sets, such as satellite imagery, 
geological data, and ground sensed data. The integration is enabled by Grid technology, and data can be 
accessed and processed on user demand through standardized web services interfaces on basic OGSA 
services. GEO Grid is based on four layers: hardware, virtual storage, application and data services, and user 
interface. The GEO Grid project does not integrate sensors into the Grid, instead they suppose data is archived 
on a filesystem. 

The Cowbridge project [4], at Lancaster University, employs the pervasive management support (PMS) 
approach to predict and manage flooding in a river valley. The system incorporates an adaptive, resilient 
sensor network that feeds real-time sensor data to a computationally intensive flood-prediction algorithm 
running on a general-purpose computational cluster in a customized Grid middleware environment. The 
system enables real-time prediction of flooding including detailed predictions of what areas flooding will 
most likely affect. It also provides timely alerts to local stakeholders when it perceives flooding to be 
imminent. An interesting technical aspect of this system is that it supports selectively and dynamically 
assigning computation tasks to either the sensor network itself or the remote cluster. This approach is not 
concerned with wireless sensor networks (SN), only wired SNs, which raise new challenges such as power 
management, sensors discovery, communications safety, routing protocols. 

Sensors Anywhere (SANY) project [5] deals with sensor networks research for environmental 
applications, and tries to improve the interoperability of insitu sensors and sensor networks, and allowing 
quick and cost-efficient reuse of data and services from currently incompatible sources in future 
environmental risk management applications. To achieve this goal they (i) specified a standard open 
architecture for fixed and moving sensors and SNs, (ii) developed and validated re-usable data fusion and 
decision support service building blocks and a reference implementation of the architecture, (iii) tried to 
contribute to future standards applicable to GMES. All the architecture specifications conform to the OGC 
and INSPIRE standards. SANY inherits and extends the results of ORCHESTRA and SSE (Services Support 
Environment) projects. SANY shares the same goal with our project, the use of OGC/SWE standards, but it is 
not targeted to feed Grid running applications. They also do not consider the use of wireless SNs, but instead 
they deal with wired ones. 

The Open Grid Services Architecture (OGSA) [6] describes an architecture for a service-oriented Grid 
computing environment and is based on several Web-service technologies, notably WSDL and SOAP. In the 
OGC-based prototype, discussed in section 5, we defined an architecture similar to the OGSA. The Globus 
project [7] offers an open source collection of Grid services that follow OGSA architectural principles. The 



 

Globus Toolkit is an open source software toolkit used for building Grids. It also offers a development 
environment for producing new Grid services that follow OGSA principles. The Common Instrument 
Middleware Architecture (CIMA) [8], also based on the emerging OGSA, provides a framework that answers 
the need for re-usable middleware architectures, with the ability to connect instruments with minimal 
configurations. CIMA concentrates its efforts on the development of a middleware that allows a uniform 
access to different instruments, but a few words are said about integrating these instruments into the Grid. 
Another approach is SensorWeb  [9] that implements standards compliant platform and middleware to 
integrate sensor networks with emerging distributed computing platforms such as Grids. That approach uses a 
different GRID middleware, gridbus, but follows the same guidelines as CIMA. 

In [10] it is proposed a middleware, called Grid-M, to integrate WSNs and mobile devices into the Grid. 
The Grid-M middleware allows management, data communication, services directory, resources discovery 
and security, providing the developer with a set of reused and homogeneous resources. They provide an API 
to connect Java applications, running on mobile device, with Grid computing. Instead of trying to integrate 
the instruments on a gLite-based Grid middleware, which is the goal of the CYCLOPS project, they develop 
their own middleware. 

In [11] it is presented an architecture, called Scalable Proxy-based aRchItecture for seNsor Grid 
(SPRING), to combine WSNs with Grid computing. They also developed a sensor grid testbed to study the 
design issues of sensor grids and to improve the sensor grid architecture design. 
 
3 Extending an Imote2 Wireless Sensor Network with Emulated Sensors 

 
The instrument used as a case study, to integrate sensors into the Grid, is a Wireless Sensor Network (WSN) 
based on Imote2 modules [12]. A WSN can be seen as a network of small sensor devices, connected without 
wires, composed by a large number of immovable devices planted in an ad hoc manner, and used to detect 
and transmit physical characteristics of the environment, known as phenomena.  Associating an increasing 
popularity of the wireless world with the development of cheaper, smaller and embedded processors, WSNs 
have grown as an important field. The Imote2 module includes an Intel XScale 32-bit processor and a Radio 
Frequency (RF) unit based on the 802.15.4 standard (figure 1). Each Imote2 can be connected to a sensor 
board that includes a 3D accelerometer, and temperature, humidity, and light sensors. After studying the 
alternatives for sensor operating system, we selected TinyOS 1.x. 

 

Figure 1. Imote2 radio/processor module. 



 

 
The present work planned to use a network composed of a small number of real sensor modules extended 

with a larger number of emulated (simulated) modules. In the context of integrating WSNs into Grid civil 
protection applications, simulation is relevant due to the fact that (i) it can replace real sensors with a 
simulated version, which makes it easier, faster and cheaper to test applications without real hardware, (ii) it 
makes it possible to scale a real network (Imotes2) and test applications with a larger input data set, (iii) it 
aids on the choice of the best topology and localization of the network, based on type of soil and other 
geographic criteria. For these reasons, it was evaluated a large set of network simulators, such as GloMoSim, 
OPNET [13], TOSSIM [14], OMNet [15], EmStar, SensorSim [16], ns-2 [17], SENSE [18], ATEMU [19], 
SENS [20], DISENS and AVRORA [21]. The comparison of simulators focused on characteristics such as the 
scalability, the completeness, the fidelity, the GUI, the platforms where it runs and the license of utilization.  

The four key elements required for a good TinyOS simulator are: the scalability (ability to handle large 
networks), the completeness (capability of simulating complete applications), fidelity (capture the network 
behaviour with fine detail), and bridging (bridge the gap between algorithm and its implementation, allowing 
developers to test and verify the code that will run on real hardware). The selected simulator is TOSSIM, 
since it is the only one presenting these four key characteristics. 

The TOSSIM architecture is composed of five parts: the support for compiling TinyOS component 
graphs into the simulation infrastructure, a discrete event queue, a small number of re-implemented TinyOS 
hardware abstraction components, the mechanisms for extensible radio and ADC models, and the 
communication services for external programs to interact with a simulation. 

 
4 DORII-based Prototype 
 
The architecture of the prototype we propose to connect an Imote2 based WSN instrument into the Grid is 
synthesized in figure 2. The main components of this architecture are: (i) the WSN itself and its base station; 
(ii) the instrument access services host with the Custom Java Interface (CJI) and the observations database; 
(iii) the host of the Instrument Element (IE), which may contain several Instrument Managers (IMs) and 
associated custom plugins to interface with CJI; (iv) the Virtual Control Room (VCR) host that allows users 
to access the instrument. 
 

 
 

Figure 2. The architecture proposed to integrate a WSN instrument into the Grid. 



 

Each remote Imote2 module, with associated sensors, will run a customized nesC application that 
monitors temperature, light, humidity and 3D acceleration. All Imote2 nodes of the network are connected to 
an Imote2 base-station through RF. The Imote2 base-station is connected via USB to a laptop, the main task 
of the application it runs being to perform packet routing between the remote Imote2 and the laptop. The 
laptop Instrument Access Services Host (IASH) will have a Custom Java interface for sensor operations and 
TCP/IP connection to the correspondent IM. The IASH also hosts the Observations Database. The remaining 
components of the architecture are the VCR and IE hosts, which in our implementation are installed in 
different desktops, both with Grid connection. There is a single IE for the instrument (WSN), but several 
VCR users may connect to the IE at the same time. The implementation of the IM, for an Imote2 sensor, 
includes a custom interface to communicate with the CJI. The main software components of the architecture 
are presented in figure 3. 
 

 
 

Figure 3. The software components of the architecture used to integrate a WSN into the Grid. 

So, there is an Internet portal (VCR) where scientists or civil protection people may log in and see the 
available WSN, choose the one they are interested in and monitor or interact with it, using defined commands. 
The VCR allows us to save the data, share it, or send it to grid-running simulations. The WSN must be 
virtualized in order to be visible on the VCR. This virtualization is done by an Instrument Element that will 
integrate the specifications and capabilities of the WSN using one or more Instrument Managers. The IE is 
basically a container for Instrument Managers. The developed prototype uses one IM for each sensor, due to 
DORII constraints, namely regarding time management and duration of the jobs. Another particularity that 
brings complexity to this case study is that the real instrument is the single sensor, not the network. As 
consequence of the constraints imposed by the DORII middleware, our instrument must operate in one of two 
modes: real time mode or user interaction mode. When there are no users sending commands to the 
instrument, the instrument performs stand alone monitoring and the users automatically watch the real time 
observations. In this mode, the users can only handle real time observations: save, disseminate to other users 
or send to Grid application (figure 4). When the user wants to submit a command, to request data or schedule 
observations, the instrument operates in user interaction mode (figure 5). 

The last block of the system includes the real WSN and its connection to the IE. A Custom Java Interface 
(CJI) has been developed to perform the translation of the commands and data between the IM and the 
sensors and to manage the connection itself using TCP/IP. The CJI gains some major features in the 
prototype, because it is necessary to guarantee long-time jobs (sensor monitoring), including when users are 
offline, save the results in a file, and signal the jobs that are complete. It was decided to adopt a database 
format in agreement with the OGC Sensor Observation Service (SOS) standard. The CJI also receives the user 
requests and processes them into multiple single sensor readings, marking those readings with a tag that will 
identify the user and job to which they belong. 

The Virtual Control Room (VCR) provides the user with several commands to interact with the sensors, 
and show the state of some defined attributes and parameters. This state is updated every 5 seconds by the 
VCR from the Instrument Manager. The available attributes are temperature, humidity, light, accelerometer, 
battery level, flag JobsDone, File URL. The parameters are the ID, latitude, and longitude. Finally, the 
available commands are Get(<temperature|humidity|light|accelerometer>,each_time,during_time,job_name), 
and GetJob(job_name). When a job is complete, the flag JobsDone is updated with its identification, so the 
user who ordered the job knows that the associated file is ready. 



 

 

 
 

Figure 4. Real time mode timing. 
 

The IM is an object that virtualizes an instrument (an Imote2 node), and performs the required translation 
between the instrument and the user-VCR, in order to operate and monitor the sensors. The IM has a cache, 
where the values for the VCR attributes and parameters are kept, which is automatically updated every 20 
milliseconds with values from the instrument. The CJI implements another cache that it used to answer the 
IM, therefore avoiding unnecessary and possibly problematic interactions with the sensors, due to energy and 
bandwidth management issues. The CJI has several components in order to manage the system needs: 

 A TCP server to manage the connection to the IM; 
 A command block to parse the commands and redirect them to the adequate recipient; 
 A scheduler to split a periodic job into several unique requests and insert them in a job schedule table; 
 A processor of requests coming from the table and save the results in a database; 
 A cache to keep the sensor values and update them when their lifetime ends; 
 A historical module to keep a complete log of all the attributes in the database. 

 
The CJI has two logging modes: “history on” and “history off”. The “history off” mode only saves the 

results from the user requests on the database, while the “history on” mode saves all the readings made by the 
sensors, according to the lifetime of each attribute. The attribute lifetime, the logging mode and the battery 
management are configurable and controlled by the IASH administrator using a XML configuration file. 
 
 



 

 
 

Figure 5. User interaction mode timing (get commands). 
 
 
5 OGC-based Prototype 
 
To overcome some limitations of DORII instrument access, it was carried out a second version of the 
prototype: the implementation of a Web service, to access Imote2 sensors, based on the OGC standards [22].  
In the OGC Sensor Web Enablement (SWE) activity, members of the OGC are defining, testing, and 
documenting a consistent framework of open standards for exploiting Web-connected sensors and sensor 



 

systems of any type. To develop this prototype, we analyzed two relevant implementations of OGC standards: 
one from NICTA Melbourne University [23], and the other from 52º North [24]. 

The basic standards for modeling and codification of the information involved in the access to sensors are 
Observation & Measurements (O&M) and SensorML. SensorML [25] provides a functional model of the 
sensor system, rather than a detailed description of its hardware. O&M [26] defines a framework and a 
conceptual model, where the encoding is formalized as an application schema. O&M binds a result to a 
feature of interest, upon which the observation was made using a procedure to determine the value of the 
result. 

The standards that define the essential services to access the sensors data are Sensor Observation Service 
(SOS) and Sensor Planning Service (SPS). The SOS [27] provides an interface to make sensors and sensor 
data archives accessible via an interoperable Web based interface. The basic SOS allows the operations 
GetCapabilities (request a self-description of the service), DescribeSensor (request information about the 
sensor itself in a SensorML document) and GetObservation (request the sensor data, encoded in an O&M 
document). The SPS [28] is an interface to task an asset, or an asset system. The SPS allows the operations 
GetCapabilities (retrieves the metadata about the capabilities of an SPS), DescribeTasking (gets the 
information that is required to prepare a tasking request), GetFeasibility (obtains the feasibility details about a 
tasking request), Submit (submits a tasking request) and DescribeResultAccess (retrieves the information 
about where observed data can be access from). 

The proposed architecture is based on reading, controlling and analyzing data from a SN through an 
environment Grid, to support CP applications. As in the previous version of the prototype, the DORII 
middleware was also used for accessing the Grid in conjunction with the OGC standard sensor observation 
service. In this architecture, the access to a controllable database is carried out by the previously presented 
CJI. All the services of the OGC, as well as the control service CJI and the database, are available through the 
IM of the DORII whose access is done by means of the VCR. An OGC-based prototype, not fully 
implemented, is illustrated by the layered architecture included in figure 6. Service and sensor access layers 
can access the database. In this case, the CJI functionalities would be spread between the service layer 
(observations scheduling), the sensor access layer (instrument control, access and management) and the 
storage access layer (observations saving). 

 

 
 

Figure 6. The layered architecture of 2nd version of the prototype, following the OGC approach. 



 

The used database schema is based on the 52º North SOS implementation. The core tables and 
definitions are: 

 feature_of_interest, the table that stores data about the features or feature of interest. It represents the 
identifiable object(s) on which the sensor systems are making observations.  

 observation, the table that aggregates the data of an observation event like air temperature, procedure 
(sensor or group of sensors), the feature of interest and the observation value, which is stored in a 
separate table.  An observation is an action with a result which has a value describing some phenomenon. 
An observation uses a procedure to determine the value of the result, which may involve a sensor or 
observer, analytical procedure, simulation or other numerical process. 

 procedure, it is the reference to one or more procedures, including sensor systems, instruments, 
simulators, etc, that supply observations in this offering. 

 offering, the table that stores each offering of the SOS. It is only used when the SOS is initialized to read 
in the offerings of the SOS and the phenomena which are related to each offering. An SOS organizes 
collections of related sensor system observations into Observation Offerings. For example, temperature in 
a station weather placed in a city.  

 phenomenon, it represents the phenomena (temperature, humidity, etc). 
 

The SOS will use these tables to answer incoming requests, but it is not SOS responsibility to update the 
values in the tables. This task has to be fulfilled externally or using the CJI. 
 
 
6 Conclusions and Future Work 
 
A functional prototype to provide Grid civil protection applications with data from a remote wireless sensor 
network was developed. A first version of the prototype is based on the utilization of the DORII middleware. 
This prototype was later improved with observations handling and services which are in conformity with the 
OGC SWE standards, O&M/SensorML and SOS respectively. SOS was implemented successfully, working 
in Standalone mode, receiving XML requests and returning XML documents with the response. 

From our point of view, the main weaknesses of the present DORII middleware evolution are: 
• The necessity of having the VCR online in order to receive alarms or to carry out planned observations; 
• Limited support for the virtualization of an instrument that is a network of devices; 
• The control needs to be shared simultaneously by several different users while maintaining the integrity 

of their individual jobs. 
These problems will be overcome if an improved interface is used in the instrument side, but this will 

result in custom and non-normalized libraries, and maybe some problems regarding Grid protocols. In order 
to provide a feasible tool, these points should be corrected in DORII, as well as a few others of minor 
functionality already discussed with the DORII project members. In the present stage of development, the IE 
concept has shown itself to be a little too restrictive to be used by CP people; however, it seems that there are 
good chances of it evolving in the right direction in the near future. 

The Web-based access to sensors seems to be an obvious valuable improvement to the local and 
traditional access to heterogeneous sensors. Further studies are needed to evaluate if Grid enabled access to 
sensors is adequate for Civil Protection purposes. It is necessary to identify and balance the real necessities of 
CP people, the benefits brought by this technology, the training overhead needed to use it, and its fidelity in 
critical situations usage. 

In the future, a QoS could be defined to guarantee that Grid-enabled applications and sensor accessing 
fulfill Civil Protection requirements. QoS can be used to guarantee that applications perform in real-time, or 
near real-time. Another issue to address in the future is power consumption control in sensors. In WSNs, like 
those based in Imote2s, power is a critical resource that must be saved as much as possible. This can be 
crucial to keep sensors running when an intensive access, such as a full time access, is being performed by CP 
applications in an emergency situation. 
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