Tool Support for Learning Büchi Automata and Linear Temporal Logic

Yih-Kuen Tsay

Dept. of Information Management
National Taiwan University

J oint work with Yu-Fang Chen \& Kang-Nien Wu

Background

$>$ Büchi automata and linear temporal logjc are two fundamental components of model checking, in particular, the automata-theoretic approach:

- The (finite-state) system is modeled as a Büchi automaton A.
- A desired behavioral property of the system is given by a linear temporal formula f.
- Let $B_{f}\left(B_{\sim f}\right)$ denote a Büchi automaton equivalent to $f(\sim f)$.
- The model checking problem is essentially asking whether

$$
\angle(A) \subseteq \angle\left(B_{f}\right) \text { or equivalently } \angle(A) \cap \angle\left(B_{-f}\right)=\emptyset \text {. }
$$

> The well-used model checker SPI N, for example, adopted the automata-theoretic approach.

Motivation

- Model checking has proven to be very useful and the number of courses covering related topics appears to be increasing.
$>$ Understanding the correspondence between Büchi automata and linear temporal logic is not easy.
- A graphical interactive tool may be helpful for the learner (and the teacher).
Tools exist for learning classic automata and formal languages, e.g., JFLAP (which inspired our tool GOAL and provided some of its basic building blocks).

Büchi Automata

> Büchi automata (BA) are a variant of omegaautomata, which are finite automata operating on infinite words.

- A Büchi automaton is given, as in finite automata, by a 5 -tuple ($\left.\Sigma, \mathrm{Q}, \delta, \mathrm{Q}_{0}, \mathrm{~F}\right)$, where $\mathrm{F} \subseteq \mathrm{Q}$ is the set of accepting states.
$>$ An infinite word $\alpha \in \Sigma^{\infty}$ is accepted by a Büchi automaton B if there exists a run ρ of B on α satisfying the condition: $\operatorname{Inf}(\rho) \cap F \neq \emptyset$ where $\operatorname{lnf}(\rho)$ denotes the set of states occurring infinitely many times in ρ.

Generalized Büchi Automata

> A generalized Büchi automaton (GBA) is like a BA but with $F \subseteq 2^{Q}$, i.e., $F=\left\{F_{1}, \ldots, F_{k}\right\}$ where F_{i} \subseteq Q.

- A word $\alpha \in \Sigma^{\omega}$ is accepted by a generalized Büchi automaton B if there exists a run ρ of B on α satisfying the condition:

$$
\forall F_{i} \in F: \quad \operatorname{Inf}(\rho) \cap F_{i} \neq \emptyset
$$

About the Alphabet

$>$ To link Büchi automata to temporal formulae, we will consider automata with an alphabet like:

- $\{p, \sim p\}$
- $\{p q, p \sim q, \sim p q, \sim p \sim q\}$

Propositional Linear Temporal Logic (PTL)

- A subset of linear temporal logic (LTL).
$>$ PTL formulae are interpreted over an infinite sequence of states, which can be seen as an infinite word over a suitable alphabet like $\{p, \sim p\}$ or $\{p q, p \sim q, \sim p q, \sim p \sim q\}$.
- Every PTL formula is equivalent to some Büchi automaton, but not vice versa.
Note: Quantified PTL (QPTL) are as expressive as Büchi automata.

Temporal Operators in PTL

> Future temporal operators:

- next: () or X
\lrcorner eventually (sometime): $>$ or Fi
- hence-forth (always): [] or C'
- wait-for (unless): III
- until: IS
> Past temporal operators:
- previous: (-) or Y
before: (\sim) or Z
- once: <-> or 0
so-far: [-] or H
- back-to: B
- since: S^{\prime}

Semantics of Future Operators

Let π be an infinite sequence of states.
$>(\pi, i) \vDash() f$ iff $(\pi, i+1) \models f$
$>(\pi, i) \vDash \diamond f$ iff $(\pi, j) \models f$ for some $j \geq i$
$>(\pi, i) \models[] f$ iff $(\pi, j) \models f$ for all $j \geq i$
$>(\pi, i) \models f U g$ iff $(\pi, k) \models g$ for some $k \geq i$ and $(\pi, j) \models f$ for all $j, i \leq j<k$
$>(\pi, i) \vDash f W g$ iff $(\pi, i) \vDash[] f$ or $(\pi, i) \vDash f U g$

Semantics of Past Operators

$>(\pi, i) \models(-) f$ iff $i \geq 1$ and $(\pi, i-1) \models f$
$>(\pi, i) \models(\sim) f$ iff $\mathrm{i}=0$ or $(\pi, \mathrm{i}-1) \models \mathrm{f}$
$>(\pi, i) \vDash \Leftrightarrow$ f iff $(\pi, j) \vDash f$ for some $j, 0 \leq j \leq i$
$>(\pi, i) \vDash[-] f$ iff $(\pi, j) \vDash f$ for all $j, 0 \leq j \leq i$
$>(\pi, \mathrm{i}) \models \mathrm{f} S \mathrm{~g}$ iff $(\pi, \mathrm{k}) \models \mathrm{g}$ for some $\mathrm{k} \leq \mathrm{i}$, and $(\pi, j) \models$ f for all $j, k<j \leq i$
$>(\pi, \mathrm{i}) \vDash \mathrm{f} B \mathrm{~g}$ iff $(\pi, \mathrm{i}) \vDash[-] \mathrm{f}$ or $(\pi, \mathrm{i}) \vDash \mathrm{f} S \mathrm{~g}$

Example 1: <>[]p

- Meaning: p always holds after some time
- Satisfying models:
- (p) ${ }^{\oplus}$, i.e., ppp...
- $p \sim p \sim p p \sim p(p)^{\infty}$
> Unsatisfying models:
- p~p~pp($\sim p p)^{\text {a }}$

$<>[]$ p as a Büchi Automaton

$$
F=\{q 1\}
$$

Example 2: [](p --> <->q)

Meaning: Every p is preceded by q.
> Satisfying models:

- ($\sim p \sim q)^{\text {e }}$
$\perp(\sim p \sim q)(\sim p q)(\sim p \sim q)(p \sim q)^{\omega}$
> Unsatisfying models:
- $(\sim p \sim q)(p \sim q) \ldots$

[]$(p--><->q)$ as a Büchi Automaton

$$
F=\{q 0, q 1\}
$$

Example 3: [](p --> p Uq)

> Meaning: Once p becomes true, it will remain true continuously until q becomes true, and q does become true.
> Satisfying models:

- $(\sim p \sim q)^{\omega}$
- $(\sim p \sim q)(p \sim q)(p \sim q)(p \sim q)(\sim p q)(\sim p \sim q)^{\omega}$
> Unsatisfying models:
- $(\sim p \sim q)(p \sim q)(\sim p \sim q) \ldots$

[]$(p-->p \cup q)$ as a Büchi Automaton

$$
F=\{q 0\}
$$

Example 4: "Even p"

$>$ This is NOT a PTL formula!
$>$ Meaning: p holds in very even state.
(Note: the states of a sequence are numbered $0,1,2,3, \ldots$)
$>$ Satisfying models:
$-(p)^{\omega}$
(p~p) ${ }^{\omega}$

- p~pp~p(pp) ${ }^{\text {a }}$
$>$ Unsatisfying models:
- p~ppp~p(pp) ${ }^{\omega}$

"Even p" as a Büchi Automaton

Main Features of GOAL

$>$ Drawing and Running Büchi Automata
$>$ PTL Formulae to BA Translation
> Boolean Operations on BA

- Union
- Intersection
- Complement
$>$ Tests on BA
- Emptiness
- Containment (language containment)
- Equivalence (language equivalence)
- Repositories of pre-drawn BA.

Test Running a BA

$>$ To get an intuitive understanding of what language is being defined by the $B A$.
$>$ Input format

- Input string: ppp~pp(~pp) ${ }^{\omega}$

Real format: $(p)(p)(p)(\sim p)(p)\{(\sim p)(p)\}$

- Input string: $(\sim p q)((\sim p q)(\sim p \sim q)(\sim p \sim q))^{\omega}$

Real format: $(\sim p q)\{(\sim p q)(\sim p \sim q)(\sim p \sim q)\}$

Demo Script

$>$ Draw a BA, intended for $<>[]$ p.
$>$ Check if it is correct, by comparing with a machine-translated one.

- Try to specify "Even p" in PTL.
> See why it fails.
>Perhaps more ...

The Future of GOAL

GOAL is constantly being improved; possible future extensions include:
> Integration with LTL model checkers

- For example, export automata as Promela code for SPIN
$>$ QPTL, PSL, S1S, etc. to Büchi automata (and vice versa)
$>$ Minimization of Büchi automata
$>$ Transformation to and from other variants of ω automata
$>$ Even better edjiting environment
- Faster local updates in large graph layouts

