

Tool Support for Learning Büchi Automata and Linear Temporal Logic

Yih-Kuen Tsay
Dept. of Information Management
National Taiwan University

Joint work with Yu-Fang Chen & Kang-Nien Wu

Background

- Büchi automata and linear temporal logic are two fundamental components of model checking, in particular, the automata-theoretic approach:
 - The (finite-state) system is modeled as a Büchi automaton A.
 - A desired behavioral property of the system is given by a linear temporal formula f.
 - Let $B_f(B_{\sim f})$ denote a Büchi automaton equivalent to $f(\sim f)$.
 - The model checking problem is essentially asking whether

$$L(A) \subseteq L(B_f)$$
 or equivalently $L(A) \cap L(B_{\sim f}) = \emptyset$.

► The well-used model checker SPIN, for example, adopted the automata-theoretic approach.

Motivation

- Model checking has proven to be very useful and the number of courses covering related topics appears to be increasing.
- Understanding the correspondence between Büchi automata and linear temporal logic is not easy.
- ► A graphical interactive tool may be helpful for the learner (and the teacher).
- Tools exist for learning classic automata and formal languages, e.g., JFLAP (which inspired our tool GOAL and provided some of its basic building blocks).

Büchi Automata

- Büchi automata (BA) are a variant of omegaautomata, which are finite automata operating on infinite words.
- ▶ A Büchi automaton is given, as in finite automata, by a 5-tuple $(\Sigma, Q, \delta, Q_0, F)$, where $F \subseteq Q$ is the set of accepting states.
- ▶ An infinite word $\alpha \in \Sigma^{\infty}$ is accepted by a Büchi automaton B if there exists a run ρ of B on α satisfying the condition: Inf(ρ) \cap F $\neq \emptyset$ where Inf(ρ) denotes the set of states occurring infinitely many times in ρ .

Generalized Büchi Automata

- ▶ A generalized Büchi automaton (GBA) is like a BA but with $F \subseteq 2^{\mathbb{Q}}$, i.e., $F = \{F_1, ..., F_k\}$ where $F_i \subseteq \mathbb{Q}$.
- ▶ A word $\alpha \in \Sigma^{\omega}$ is accepted by a generalized Büchi automaton B if there exists a run ρ of B on α satisfying the condition:

 $\forall F_i \in F: Inf(\rho) \cap F_i \neq \emptyset$

About the Alphabet

- ➤ To link Büchi automata to temporal formulae, we will consider automata with an alphabet like:
 - {p,~p}
 - {pq,p~q,~pq,~p~q}

Propositional Linear Temporal Logic (PTL)

- ► A subset of linear temporal logic (LTL).
- ▶PTL formulae are interpreted over an infinite sequence of states, which can be seen as an infinite word over a suitable alphabet like {p,~p} or {pq,p~q,~pq,~p~q}.
- ► Every PTL formula is equivalent to some Büchi automaton, but not vice versa.

Note: Quantified PTL (QPTL) are as expressive as Büchi automata.

Temporal Operators in PTL

- ► Future temporal operators:
 - next: () or X
 - eventually (sometime): <> or F
 - hence-forth (always): [] or G
 - wait-for (unless):
 - until: *U*
- Past temporal operators:
 - previous: (-) or Y
 - before: (~) or Z
 - once: <-> or ()
 - so-far: [-] or H
 - back-to: B
 - since: 5'

Semantics of Future Operators

Let π be an infinite sequence of states.

```
▶ (\pi, i) \models ()f iff (\pi, i+1) \models f

▶ (\pi, i) \models \Leftrightarrow f iff (\pi, j) \models f for some j \ge i

▶ (\pi, i) \models []f iff (\pi, j) \models f for all j \ge i

▶ (\pi, i) \models f Ug iff (\pi, k) \models g for some k \ge i

and (\pi, j) \models f for all j, i \le j < k

▶ (\pi, i) \models f Wg iff (\pi, i) \models []f or (\pi, i) \models f Ug
```

FMEd 2006

Semantics of Past Operators

- \triangleright $(\pi, i) \models (-) f$ iff $i \ge 1$ and $(\pi, i-1) \models f$
- \triangleright $(\pi, i) \models (\sim) f \text{ iff } i=0 \text{ or } (\pi, i-1) \models f$
- \triangleright $(\pi, i) \models <->f$ iff $(\pi, j) \models f$ for some j, $0 \le j \le i$
- \triangleright $(\pi, i) \models [-]f$ iff $(\pi, j) \models f$ for all j, $0 \le j \le i$
- $(\pi, i) \models f S g \text{ iff } (\pi, k) \models g \text{ for some } k \leq i,$ and $(\pi, j) \models f \text{ for all } j, k < j \leq i$
- \triangleright $(\pi, i) \models f B g \text{ iff } (\pi, i) \models [-]f \text{ or } (\pi, i) \models f S g$

Example 1: <>[]p

- ► Meaning: p always holds after some time
- Satisfying models:
 - **■** (p)[∞], i.e., ppp...
 - p~p~pp~p(p)[∞]
- Unsatisfying models:
 - p~p~pp(~pp)[∞]

FMEd 2006

<>[]p as a Büchi Automaton

$$F = \{q1\}$$

Example 2: [](p --> <->q)

- ► Meaning: Every p is preceded by q.
- Satisfying models:
 - (~p~q)∞
 - $-(-p-q)(-pq)(-p-q)(p-q)^{\omega}$
- Unsatisfying models:
 - -(-p-q)(p-q)...

[](p --> <->q) as a Büchi Automaton

$$F = \{q0,q1\}$$

Example 3: [](p --> p Uq)

- Meaning: Once p becomes true, it will remain true continuously until q becomes true, and q does become true.
- Satisfying models:
 - (~p~q)∞
 - $-(-p-q)(p-q)(p-q)(p-q)(-pq)(-p-q)^{\infty}$
- Unsatisfying models:
 - (-p-q)(p-q)(-p-q)...

[](p --> p Uq) as a Büchi Automaton

$$F = \{q0\}$$

Example 4: "Even p"

- ▶ This is NOT a PTL formula!
- ► Meaning: p holds in very even state. (Note: the states of a sequence are numbered 0,1,2,3,...)
- Satisfying models:
 - **■** (p)∞
 - (p~p)[∞]
 - $-p \sim pp \sim p(pp)^{\omega}$
- Unsatisfying models:
 - p~ppp~p(pp)[∞]

"Even p" as a Büchi Automaton

 $F = \{q0,q1,q2\}$

Main Features of GOAL

- ▶ Drawing and Running Büchi Automata
- > PTL Formulae to BA Translation
- Boolean Operations on BA
 - Union
 - Intersection
 - Complement
- ► Tests on BA
 - Emptiness
 - Containment (language containment)
 - Equivalence (language equivalence)
- Repositories of pre-drawn BA.

Test Running a BA

- ► To get an intuitive understanding of what language is being defined by the BA.
- ► Input format
 - Input string: ppp~pp(~pp)[∞]
 Real format: (p)(p)(p)(~p)(p){(~p)(p)}
 - Input string: (~pq) ((~pq) (~p~q) (~p~q))[∞]
 Real format: (~pq) {(~pq) (~p~q) (~p~q)}

Demo Script

- ▶ Draw a BA, intended for <>[]p.
- Check if it is correct, by comparing with a machine-translated one.
- Try to specify "Even p" in PTL.
- ► See why it fails.
- Perhaps more ...

The Future of GOAL

GOAL is constantly being improved; possible future extensions include:

- ► Integration with LTL model checkers
 - For example, export automata as Promela code for SPIN
- ▶ QPTL, PSL, S1S, etc. to Büchi automata (and vice versa)
- Minimization of Büchi automata
- Transformation to and from other variants of ωautomata
- Even better editing environment
 - Faster local updates in large graph layouts