Teaching the Mathematics of Software Design

Emil Sekerinski
McMaster University
August 2006

Experience in teaching
e Software Design 1, 2nd year course
e Software Design 2, 3rd year course
from 99/00 to 05/06

Difficulty of Teaching Software Design

e Rules of software design can be broken

e Design qualities difficult to judge

e Consequences of breaking design rules not experienced
e Poorly working software is "normal"

e Misconception that programming skills are sufficient

How to motivate teaching the mathematics of software design?

e Uniform design notation and uniform mathematical basis
— Integrating mathematics, rather than contrasting formal vs informal
— Uniform textual notation (in which diagrams are explained)
— Typed logic and equational reasoning

e Middle-out sequencing of topics

Excerpt from 1. Elements of Programming

Program Annotations

We can subdivide the task of checking correctness assertions by
adding intermediate annotations:

x>0
{x>0}
z,u:=0,x; (z+u-y=x-y)a
{invariant: (z+u-y=x-y) A (u>0)} (u>0)
while u >0 do
Z, U= 2+¥,U"1
{z=x-y}

10

Excerpt from 1. Elements of Programming

Statements with Partial Expressions
Extended definition of assignment (assuming a : array N of T):

wp(x = E, P)
wp(a(E) := F, P)

AEAP[x\E]
AEAAFA(Q<E<N)AP[a\(a;E:F)]

Extended definition of conditional:

wp(if B then S, R)
wp(if B then S else T, R)

AB A ((BAwp(S, R))v(-BAR))
AB A ((B Awp(S,R)) v (=B A wp(T,R)))

Extended rule for repetition: If

BaP = wp(S,P) (P is invariant of S)
BAPA(T=v) = wp(S, T«v) (S decreases T)

BaP = T30 (T < O causes termination)
P = AB (B is always defined)

then

P = wp(whileBdoS,Pa-B) 71

Excerpt from 2. Modularization

Why Modularization

Modularization - the division of a program into modules - serves
several purposes:

- Comprehensibility: we cannot understand a sizeable program unless
we split it inte manageable modules.

- Maintainability: we cannot make changes to a sizeable program
unless the changes are confined to some modules.

- Development: we cannot develop a sizeable program in a team
unless each feam member develops a separate module.

All these goals necessitate clear interfaces between modules:

- Modules can be used based on their interface, without the need of
understanding their implementation.

- Modules can be implemented based on their interface, without the
need of knowing its use.

This way, the clients (users) and the implementation of a module can
be designed separately and can evolve (more) independently.

Originally the word ‘module’ meant unit of measure, here it means a
unit itself. Modularization-2

Excerpt from 2. Modularization

Meodule Invariants

A module invariant characterizes the possible states of a module. It is
a predicate that holds after the initialization and after any subsequent
call to the module.

As the module invariant is an essential design decision of a module, we
document the invariant as an annotation:

module BoxOffice
public const CAPACITY = 250
var seats : integer

{invariant: O < seats <« CAPACITY}
public procedure bookSeat
begin assert seats « CAPACITY ; seats := seats + 1 end

public procedure cancelSeat
begin assert seats » 0 ; seats := seats - 1 end

begin seats := 0

end
Modularization-15

Excerpt from 3. Abstract Programs

Two Nondeterministic Programs
Program for determining the maximal value in an array:

var i integer;
begin m, i := a(0), 1;
doi<n—
if a(i) < m — skip
0 a(i)>m — m:= a(i)
fi:

i=i+1

Program for determining a location of the maximal value in an array:

var it integer;

beg;n k,i=0,1 Both programs are
doi<n—

if a(i)<a(k) — skip nondeterministic, but
T a()>alk) > k:=i the outcome of the
fi

first is unique!
=i+l

end Abstract Programs-11

Excerpt from 3. Abstract Programs

Algorithmic Abstraction vs. Data Abstraction

Multiple assignments, guarded commands, and specification statements
provide algorithmic abstraction: they abstract from possible algorithms
implementing them, but are expressed in terms of the data structures
(variables) of the program.

Data abstraction additionally abstracts from pessible data structures of
the implementation by using abstract data structures.

Example: Counting the number of distinct elements in array a : array N
of T.

var i : integer; s: set of T;

begini,s =0, {}:
doi<N—=s:=sufa(i)}:i=i+1od;
num := #s

end

Here we abstract how elements of the set s are stored: they could be
stored in an array, linked list, hash table, trees, etc. Abstract Programs-21

Excerpt from 4. Testing

Path Coverage - 1

We can alternatively derive a set of test cases such that all full paths
are covered. In the example, we have to derive test cases for
executing paths with the statements A-C, A-D, B-C, B-D.

For this, we annotate the point at which execution should pass with
true, exclude all alternatives, and calculate the weakest precondition.
For example, for testing the path A-C we start with:

{P}
if a(0)<a(l) then
Q}l:=1 A
else
{false} 1:=0; B
{R}
if a(l)<a(2) then
{true} | := 2 C
else
{false} skip D

Testing-17

Excerpt from 4. Testing

Testing Modules

Since modules may have private variables, we can neither set nor
inspect their values directly.
- Inorder to set their values to a desired state, we have to call a
sequence of modifiers (medifying public procedures).

- Inorder to inspect their values, we have to call one or more
observers (observing public procedures).

With testing in mind, we should include sufficiently many modifiers and
observer from the beginning. This leads to the requirement of
designing modules for testability.

Testing-30
J 10

Excerpt from 5. Exception Handling

Weakest Exceptional Precondition of Conditionals
wp(if B then S, Q,R) = (ABABAawp(S, QR)v
(ABA-BaQ)v (-AB AR)
wp(if BthenSelse T, Q,R) = (AB A Bawp(S, Q,R)v

(AB A =B A wp(T, Q,R)) v
(-AB A R)

Example: Assume a : array N of T,i:integer, m: T.
wp(if a(i) > m thenm = a(i), (¥ j€ [0 .. i] * a(j) < m), false)

(0<i<N)A(VJjE[O0. i) a(j)<m)

Exceptions-19

n

Excerpt from 7. Object-Oriented Programming

Class Invariants ..

All methods with default, protected, and public visibility have to
preserve the invariant. For example:

class Rectangle
protected var w, h : integer ;
initialization (w, h : integer)
begin assert (w>0) A (h>0); self.w := w: self.h:= h end
public method scale(s : integer)
begin assert s >0 self.w := self.w x s ; self.h := self.h x s end
{invariant: (self.w > 0) a (self.h > Q)}
end

Initialization establishes local invariant Q = (self.w > 0) A (self.h > 0)} :

true {init} Q
Partial
Method scale preserves the invariant: correctness is
Q {scale} Q sufficient!

Object-Oriented Programs-41 12

Excerpt from 8. Object-Oriented Modeling

A Formal Model of Associations - 2

The multiplicity is expressed through additional constraints in the
invariant. For exactly-one:

A
C ran A = D A injective(A)
A 5 dom A = C A functional(A)
For zero-or-one:
~ A L
C o, injective(A)
A 3 5 functional(A)

Object-Oriented Modelling-17
13

Excerpt from 9. Requirements Analysis

.. Checking Interaction Requirements

Description:

Setting an extension a second time overwrites the extension set
the first time

Formalization: If p € staff initially, the sequence

setExtension(p, nl) ;
setExtension(p, n2) ;
queryExtension(p, n, found)

must lead to found A (n = n2).

Derive some
From these scenarios, we can test cases!

- derive test cases

- check whether the specifications allows these scenarios.

Requirements Analysis-17

14

Middle-out Sequencing of Topics

1. Elements of Programming 7. Object-Oriented Programs
2. Program Modularization 8. Object-Oriented Modeling
3. Abstract Programs 9. Requirements Analysis
4. Testing 10. Object-Oriented Design
5. Exception Handling 11. Reactive Systems

6. Functional Specifications 12. Software Design Process

+ Configuration Management

e Tools:
— Pascal
— Java
— jUnit
— [State

Evaluation

e No sense of students being math-phobic:
— At the end of SD2 students take logic for granted
— (Topic with most difficulties was Object-Oriented Modeling)
e Requiring Logic & Discrete Math prerequisite had moderate effect:
— Too many differences in notation
— Large part of SD1 "wasted" on logic & data types
e Evaluation at end of 4th year Software Design Project:
— SD1 & SD2 among top 3 most useful courses
— Project rarely show systematic application of concepts

— Reason: material not repeated in other courses, eg. Of
5 algorithms books with 550-770 pages, 1 has 8 pages on correctness

e Course evaluation:
— 30%-65% report 81%-100% of material valuable
— 35%-50% report 61%-80% of material valuable
— Critical judgment high, course delivery mixed
— No complaints of overly mathematical contents

16

Discussion

e 710 pages of lecture notes plus selected articles

e Mixture of mathematical and less mathematical topics give confidence
that use of mathematics is justified.

e No formal tools, no "light" method
e Not possible with 1 semester course.

e Likely influenced students' way of understanding programs, but little their
programming practice

e Dijkstra:

... providing symbolic calculation as an alternative to human reasoning ...
is sometimes met with opposition from all sorts of directions: ... 6. the
educational business that feels that if it has to teach formal mathematics
to CS students, it may as well close its schools.

17

