
1

Emil Sekerinski
McMaster University
August 2006

Experience in teaching
 • Software Design 1, 2nd year course
 • Software Design 2, 3rd year course
from 99/00 to 05/06

Teaching the Mathematics of Software Design

2

Difficulty of Teaching Software Design

• Rules of software design can be broken
• Design qualities difficult to judge
• Consequences of breaking design rules not experienced
• Poorly working software is "normal"
• Misconception that programming skills are sufficient

How to motivate teaching the mathematics of software design?

• Uniform design notation and uniform mathematical basis
– Integrating mathematics, rather than contrasting formal vs informal
– Uniform textual notation (in which diagrams are explained)
– Typed logic and equational reasoning

• Middle-out sequencing of topics

3

Excerpt from 1. Elements of Programming

4

Excerpt from 1. Elements of Programming

5

Excerpt from 2. Modularization

6

Excerpt from 2. Modularization

7

Excerpt from 3. Abstract Programs

8

Excerpt from 3. Abstract Programs

9

Excerpt from 4. Testing

10

Excerpt from 4. Testing

11

Excerpt from 5. Exception Handling

12

Excerpt from 7. Object-Oriented Programming

13

Excerpt from 8. Object-Oriented Modeling

14

Excerpt from 9. Requirements Analysis

15

1. Elements of Programming 7. Object-Oriented Programs
2. Program Modularization 8. Object-Oriented Modeling
3. Abstract Programs 9. Requirements Analysis
4. Testing 10. Object-Oriented Design
5. Exception Handling 11. Reactive Systems
6. Functional Specifications 12. Software Design Process

+ Configuration Management

• Tools:
– Pascal
– Java
– jUnit
– iState

Middle-out Sequencing of Topics

16

• No sense of students being math-phobic:
– At the end of SD2 students take logic for granted
– (Topic with most difficulties was Object-Oriented Modeling)

• Requiring Logic & Discrete Math prerequisite had moderate effect:
– Too many differences in notation
– Large part of SD1 "wasted" on logic & data types

• Evaluation at end of 4th year Software Design Project:
– SD1 & SD2 among top 3 most useful courses
– Project rarely show systematic application of concepts
– Reason: material not repeated in other courses, eg. Of

5 algorithms books with 550-770 pages, 1 has 8 pages on correctness
• Course evaluation:

– 30%-65% report 81%-100% of material valuable
– 35%-50% report 61%-80% of material valuable
– Critical judgment high, course delivery mixed
– No complaints of overly mathematical contents

Evaluation

17

• 710 pages of lecture notes plus selected articles

• Mixture of mathematical and less mathematical topics give confidence
that use of mathematics is justified.

• No formal tools, no "light" method

• Not possible with 1 semester course.

• Likely influenced students' way of understanding programs, but little their
programming practice

• Dijkstra:
... providing symbolic calculation as an alternative to human reasoning ...
is sometimes met with opposition from all sorts of directions: ... 6. the
educational business that feels that if it has to teach formal mathematics
to CS students, it may as well close its schools.

Discussion

