
From Design by Contract

to Static Analysis

of Java Programs:

A Teaching Approach

FM-Ed 2006

Dr. Christelle Scharff, Pace University, NY, USA

Sokharith Sok, Pace University, NY, USA & Institute
of Technology of Cambodia



Correctness

• Programmers should be able to answer two funda-
mental questions about their program:

– What is the meaning of the program they devel-
oped?

– Can it be proved that it has the correct meaning?

Programmers are not required to write the proofs
but should be provided with tools that would help
them guarantee that their programs meet given
specifications.

[Lamport, 1977]



Approach (1)

• A Design-by-Contract-First approach

• Covering the same problems redundantly

– Informally

– Using Design by Contract

– Using Static Analysis for software verification



Approach (2)

• Step 1: Determine normal courses, alternative courses,
exceptions, error cases and boundary conditions

/*
* Factorial computes factorial n
* @param n int
* @return int - the factorial of n
*/
public int factorial(int n) {

if (n == 0) {
return 1;

}
else {

return n * factorial(n - 1);
}

}

/*
* @param n int - needs to be <= 13 and > 0
* @return int - the factorial of n
* @exception IllegalArgumentException on bad inputs
*/
public int factorial(int n) {

if (n <= 13 && n > 0) {
return n * factorial(n - 1);

} else if (n == 0) {
return 1;

}
throw new IllegalArgumentException("argument pb");

}



Approach (3)

• Step 2: Determine the pre-conditions, post-conditions
and loop (and class) invariants

• Step 3: Design by Contract approach [Meyer, 1992]

– Assertions written in Java 1.5 in the Eclipse in-
tegrated development environment

– Pre-conditions - exceptions

– Post-conditions - assert

– No class invariants

– Agile Java

P: if we start with x equals to y and execute x =
x + 1 followed by y = y + 1, then x is still equal to
y.

// Pre-condition
if (x != y){

throw new illegalArgumentException("x must be equal to y");
}
x = x + 1;
y = y + 1;
// Post-condition
assert (x == y): "After execution of the program X = " + x +
" must be equal to Y = " + y + ".";



Approach (4)

• Step 4: Introduction to Static Analysis

– E.g. Unnecessary else, unused variables and meth-
ods

– Advantages (e.g. execution time)

• Step 5: Static Analysis for Software Verification

– Hoare Logic [Hoare, 1969]

– Annotation of the code with pre-conditions, post-
conditions, invariants written in particular logic

– Propagation of post-conditions – Done on paper!

– Check of the assertions using ICS (I Can Solve /
Integrated Canonizer and Solver), a little engine of
proofs developed at SRI

[http://www.icansolve.com]

[x = y] (Pre-condition)
[x + 1 = y + 1] (Generated pre-condition)
x = x + 1;
[x = y + 1] (Generated assertion)
y = y + 1;
[x = y] (Post-condition)

ics> sat x=y & ~x+1 =y+1.
:unsat



Implementation of

the Approach

• Programming Languages course of 15 junior stu-
dents in fall 2005

– 2 weeks

• Assessment: Homework (toy examples) + Ques-
tionnaire

– As a developer, what do you think are the diffi-
culties with annotating programs with assertions
that are checked at run-time?

– As a developer, what do you think are the diffi-
culties of formal static analysis of programs?

– What would you be more willing to use as a
developer: design by contract or formal static
analysis? Why?

– In formal static analysis of programs, what do
you think are the phases that are the responsi-
bility of the developer and what should be au-
tomated?



Students Difficulties

• How to come up with the right pre-conditions, post-
conditions and invariants?

• Design by Contract easier because integrated and
closer to the code

• Static analysis phase

– Lack of automation

∗ Need of integrated tools

– Lack of fluency in logic

– Scalability concerns

– Scope of the tool used to check assertions

∗ What the tool can prove, what it cannot prove,
what language it is based on?



Conclusion

• Main concerns:

– Difficulties with logic

– Tools for formal software verification

• ”Given the right tools, the use of formal methods
could become widespread and transform software
engineering“. C. Jones, P. O’Hearn and J. Wood-
cock. Verified Software: A Grand Challenge. IEEE
Computer Magazine article, April 2006.


