Basic Science for Software Developers

David Lorge Parnas

and
Michael Soltys



Every engineer must understand the properties of the materials
that they use.

Properties of physical products:

— Technological properties (e.g., rigidity)

— Fundamental properties (e.g., Maxwell’s or Newton’s laws)
Fundamental properties don’t change with improved

technology.

Students must understand the fundamental limitations of the
materials that they use, to be effective and competent

engineers.

Explaining the relevance of basic science is difficult:
technological limitations are constantly used to compare
products, and so they seem more real to students.



e For software engineers the materials used are computers and
software.
e In this area too, the properties can be divided into two classes:

— Technological properties: memory, processor speed,

word length, precision, etc.

— Fundamental properties: limits of computability,

complexity, and the inevitability of noise in data.

Technological properties change; fundamental properties don’t.

e Misunderstandings: can we prove that loops terminate?



Basic Science Course at McMaster
Finite Automata (finite number of states, no memory)
Regular Expressions
Context-Free Grammars
Pushdown Automata (finite automata with a stack)
Turing machines (computability)

Rudimentary complexity (enough to discuss P & NP, and
cryptography)



Complexity: build intuition
Challenge: so much of complexity is conjectures.

NP is the set of problems which have simple, verifiable solutions
(and these solutions may be difficult to find).

Statement Interpretation

P # NP hard problems exist
Avg-P # Dist-NP hard problems are easy to generate

There exists a one-way | hard solved problems are easy to generate

function
There exists a Alice and Bob can publicly generate a hard
trap-door function problem for Carl

2R. Impagliazzo, “A personal view of average-case complexity”, 1995.



Possible Worlds

Algorithmica: P = NP, in this world everything is easy, once

you learn how to do it.

Heuristica: P # NP but Avg-P = Dist-NP. Hard problems

exist, but you never encounter them in “practice”.

Pessiland: Avg-P # Dist-INP but one-way functions do not
exist. So things are hard to solve, but not hard enough to allow

for reliable cryptography.

Minicrypt: Private-key cryptography is possible, there are
pseudo-random number generators, digital signatures,

zero-knowledge proofs.

Cryptomania: All four statements in the previous table are
true, and public-key cryptography is secure.



