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Abstract. We tackle the problem of sequence classification using rel-
evant subsequences found in a dataset of protein labelled sequences. A
subsequence is relevant if it is frequent and has a minimal length. For
each query sequence a vector of features is obtained. The features consist
in the number and average length of the relevant subsequences shared
with each of the protein families. Classification is performed by com-
bining these features in a Bayes Classifier. The combination of these
characteristics results in a multi-class and multi-domain method that
is exempt of data transformation and background knowledge. We illus-
trate the performance of our method using three collections of protein
datasets. The performed tests showed that the method has an equivalent
performance to state of the art methods in protein classification.

1 Introduction

Concerning data where an order relation between atomic elements occurs, se-
quence data appears as a natural representation. An important and very useful
operation to be done over sequence data is classification. The problem of classi-
fying sequence data is to take a given set of class labelled sequences and build
up a procedure to a posteriori assign labels to unlabelled sequences (queries).
Many examples of the application of this task can be found in a variety of do-
mains. Consider the case of biology/bioinformatics field where given a database
of nucleotide sequences (DNA/RNA) or amino-acids sequences. Portions of the
former sequences code for the latter through two mechanisms: transcription and
translation [12, 6]. A sequence of amino-acids constitute a protein and is here-
after called as a protein sequence. A possible scenario would be the case where a
biologist wants to find the respective family/domain or function of an unclassi-
fied sequence, for example a new synthesized protein. This problem is of critical
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importance due to the exponential growth of newly generated sequence data in
the last years, which demands for automatic methods for sequence classification.
In the problem of sequence categorization/classification three types of methods
can be distinguished:

– The Direct Sequence Classifiers, that exploit the sequential nature of data
by directly comparing the similarity between sequences. Example of these
type of classifiers is the k -Nearest Neighbour. In this method the class label
of the k most similar sequences in respect to the query sequence are used
to vote on a decision. Sequence similarity can be assessed through a method
like FASTA [17] or BLAST [1].

– The Feature based Sequence Classifiers, that work by first extracting and
model a set of features from the sequences and then adapt those features
to accomplish with the traditional techniques, like decision trees, rule based
classifiers, SVM’s and many others. In [15, 16, 5, 4, 21] we have examples of
these type of methods.

– The Probabilistic Model Classifiers, that work by simulating the sequence
family under consideration. Typical probabilistic classifiers are the simple
and k-order Markov Chain [19], Hidden Markon Models [14] and Probabilis-
tic Suffix Trees [11].

Recently Probabilistic Suffix Trees (PSTs) [11] and Sparse Markov Trans-
ducers (SMTs) [8] have been applied in the protein classification problem, and
have shown superior performance. A PST is essentially a variable length Markov
Model, where the probability of a symbol in a sequence depends on the previous
symbols. The number of previous considered symbols is variable and context
dependent. The prediction of an input sequence is done symbol by symbol. The
probability of a symbol is obtained by finding the longest subsequence that ap-
pears in the tree and ends just before the symbol. These probabilities are then
combined to determine the overall probability of the sequence in respect to a
database of sequences. One of the disadvantages of the PSTs is that the condi-
tional probabilities of the symbols rely on exact subsequence matches. In protein
family classification this becomes a limitation since substitutions of symbols by
equivalent ones is often very frequent. SMTs are a generalization of PSTs that
support wild-cards. A wild-card is a symbol that denotes a gap of size one and
matches any symbol on the alphabet. In [11] an experimental evaluation has
shown that PSTs perform much better than a typical BLAST search and as
good as HMM. This is very interesting since the latter approach makes use of
multiple alignments and the families are usually defined based on an HMM [9].
Additionally PSTs are a totally automotive method without prior knowledge
(multiple alignments or score matrices) or any human intervention. In [8], SMTs
have shown to outperform PSTs.

Our motivation to this work is to suggest a robust and adaptable classification
method using a straightforward algorithm. We propose a multi-class sequence
classification method which can be applied to data in many different domains, in
particular to protein sequence data without requiring any type of data transfor-



Protein Sequence Classification 3

mation, background knowledge or multiple alignment. Our proposal fits under
the direct sequence classifiers type described before.

2 Preliminaries

Our method exploits global and local similarity of the sequences by extract-
ing common subsequence patterns of different sizes that occur along the query
sequence and the sequence families. These same patterns can then be used to
interpret and understand the classification results.

Since our main concern is protein datasets we are only considering the alpha-
bet of amino-acids. Each symbol of the sequence is generically called as an event
and the distance between consecutive events as gaps. Considering the definition
of a pattern as A1−x(p1, q1)−A2−x(p2, q2)− . . .−An where Ai are amino-acids
and −x− gaps greater than pi and smaller than qi, then two types of patterns
can be distinguished:

– Rigid Gap Patterns only contain gaps with a fixed length, i.e. pi = qi,∀i

The symbol “.” is a wild-card symbol used to denote a gap of size one and
it matches any symbol of the alphabet. Ex: MN..A.CA

– Flexible Gap Patterns allow a variable number of gaps between events of
the sequence, i.e. pi ≤ qi,∀i. Ex: A-x(1,3)-C-x(4,6)-D.

The idea behind our method is that a sequence can be classified based on its
relevant subsequences. A (sub)sequence is relevant if it is:

– Frequent, i.e. appears in at least an user defined number (minimum support)
of database sequences.

– Has a non trivial length, i.e. satisfies a minimal defined length.

The problem that we address in this work can be formulated as follows: Given
a collection D of previously classified sequences, an unclassified query sequence,
a minimum support (σ) and a minimal sequence length, determine the similarity
of the query sequence w.r.t all the classes present in D.

2.1 Sequence Patterns

Protein sequences of the same family typically share common subsequences,
also called motifs. These subsequences are possibly implied in a structural or
biological function of the family and have been preserved through the protein
evolution. Thus, if a sequence shares patterns with other sequences it is expected
that the sequences are biologically related.

Since the protein alphabet is small, many small patterns that express trivial
local similarity may arise. Therefore, longer patterns are expected to express
greater confidence in the sequences similarity.

Considering the two types of patterns, rigid gap patterns reveal better con-
served regions of similarity. On the other hand, flexible gap patterns have a
greater probability of occur by chance, having a smaller biological significance.
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3 Method

Sequence pattern mining [20, 18, 2, 13] is the task of finding frequent patterns
along the sequence data. A pattern is considered to be frequent if it occurs in
the data sequences a number of times greater than a pre-determined threshold,
called support. Besides providing valuable information about the data, these
patterns have application in many areas like clustering or classification.

In this work we will make use of a method that consists in an adaptation of a
sequence pattern mining algorithm [10] designed for the task of protein mining.
The method reports all the frequent patterns occurring in a query sequence in
respect to a user defined database. The query sequence is used to drive the
mining process ensuring containment of the reported patterns. The algorithm
allows a refined analysis by enumerating frequent patterns that eventually occur
in a small subset of the database sequences. Two types of patterns (described
in section 2), with variable or fixed length spacing between events, satisfying
the user restrictions and associated options can be identified. The restrictions or
constraints that the algorithm supports are:

– Item Constraints: restricts the set of the events (excludedEventsSet) that
may appear in the sequence patterns,

– Gap Constraints: defines the (minGap) minimum distance or the maximum
distance (maxGap) that may occur between two adjacent events in the se-
quence patterns,

– Duration or Window Constraints: defines the maximum distance (window)
between the first and the last event of the sequence patterns.

Given a query sequence S and a collection of protein families D, applying the
above algorithm, two parameters are obtained: number of relevant patterns and
average length of the patterns. This information is then combined to determine
the probability of S belonging to one of the families in D.

3.1 Bayes Classifier

The näıve Bayes Classifier is a simple probabilistic classifier. It is based on a prob-
abilistic model that requires strong independence assumptions of the variables
involved. Nevertheless, even in the cases where the independence assumption is
not strictly satisfied the classifier performs well on a variety of situations, in-
cluding complex real world situations [7]. The goal of the classifier is to assign a
probability to one of the classes in {C1, C2, . . . , Cn}, based on a d-dimensional

vector of observed parameters,
−→
f = f1 . . . fm. This can be expressed through a

conditional probability relation in the form P (Ci|
−→
f ). Using the Bayes Theorem

this can be written as:

P (Ci|
−→
f ) =

P (Ci) × P (
−→
f |Ci)

P (
−→
f )

(1)
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P (Ci) is known as the apriori probability of the class and can be obtained

through the relative occurrence of Ci in the data. Since P(
−→
f ) is class independent

its value can be expressed as a constant value. Thus, equation 1 can be rewritten
as:

P (Ci|
−→
f ) = αi ×

n∏

j=1

P (fj |Ci) (2)

where αi is a constant value for the respective class Ci. For our classification
problem, the vector consist only of two parameters: total number and average
length of the extracted relevant subsequences. We assume that they are statis-
tically independent, although this is not entirely the case.

In our work three different models are studied and compared. These models
are slightly variations of the model in 2. In the first model (A), the apriori
probability of the class is not taken into account, thus in equation 2: αi = 1 ∀i.

When a query sequence S is analyzed against a database D, it is naturally
expected that the number of extracted patterns is proportional to the number
of sequences in D. To avoid the bias due to the different databases length the
probability is normalized by the length of the class. In equation 2, αi = N

|Ci|

where N =
∑n

i=1
Ci, i.e. it corresponds to the inverse of the apriori probability

of Ci. Finally, in model C, the parameter “average length” is given a greater
relative weight than the parameter “number of patterns” and in equation 2,
P (f = avgLength|Ci) is raised to a power of three.

Now for the three models, and given the feature vector
−→
f of a sequence S,

the classification is simply given by:

max{P (
−→
f |Ci) ∀i} (3)

4 Results and Discussion

To evaluate our method, we configured our query driven miner to extract rigid
gap patterns. Only two types of constraints were applied: maxGap and Window,
with a value of 15 and 20, respectively. These constraints allow a confinement of
the search space and make possible the mining in interactive time. The minimal
length of the extracted patterns is two. We used three collections of protein
families. A smaller collection was obtained from Pfam [9] version 17.0. Most of
the proteins in this collection were taken from the top twenty list of April 2005.
This collection gave us the first insights in the performance of the method. The
second collection is composed of 50 sequences, obtained from Pfam version 1.0,
and can be downloaded from [9]. This set of families was already used in [8] and
will allow a direct comparison with the PSTs and SMTs. Due to the constant
refinement in the topology of the PFam database we should note that there are
significant differences in the families common to the two collections. The third
dataset consist on 27 families from the receptors group entries on the Prosite [3]
database.
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All the methods are assessed based on the precision rate (PR) measure:

PR =
NumCorrect

NumTested
× 100% (4)

The method was evaluated using the “leave-one-out” methodology1. The
classification result is determined by equation 4. The evaluation in [11] and [8]
was different from ours. They used 4/5 of the family sequences to build a model
for the respective family and evaluated the model with the remaining 1/5 of
the sequences. Unfortunately, since there is no indication on how the folds were
created, their experiment could not be totally recreated.

The only parameter required by our model is the support value. Since we do
not have a way to apriori define this value, it was determined empirically. For
each family we measured the average time to mine the largest, the smallest and
two medium size sequences of the respective family. If the average time was ap-
proximately below one minute than that support value was used for that family.
The reason for the use of this criterion is that the performance of the mining
process directly depends on the support value and on the density (similarity
between the sequences) of the family. Thus, if the support is set to low values in
the more dense families the mining process becomes very time consuming.

All the experiments were performed on 1.5GHz Intel Centrino machine with
512MB of main memory, running windows XP Professional. The mining appli-
cation was written in C++ language.

In table 1 we present the classification results for the collection of 26 protein
families. In the left columns we have the name, the number and the average
length of the sequences in the family. The intra similarity of the family is also
presented (see [9]). The fifth column shows the support used to mine the re-
spective family. In the right side of the table, the precision rate for the three
probabilistic models of our method is presented. The last column shows the av-
erage time that it takes to mine each sequence of the family. This value has to
be multiplied by the total number of families to give the total amount of time
spent mining the sequence against all the families. From the presented results
we can see that the prediction rate is around or above the 80%, except for the
PPR and the TPR-1 family. In these cases, the number of missed sequences is
extremely large. These results can be explained due to a combination of small
intra-similarity, low average length and a large family size, resulting in a relative
small number of common patterns shared by the sequences of the family. On the
other hand, the small length of the sequences leads the query sequences to share
more patterns with the families with a greater average length. Model B gives
particularly bad results for these cases since the multiplication factor imposes a
big penalty in the classification probability. Table 2 shows the average classifi-
cation results for table 1, when all the families are considered (row 2), when the
family PPR is left out (row 3) and when PPR and TPR are both left out of the
classification (row 4).

1 The complete set of the results and the datasets can be obtained from the authors.
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Name Size AvgLen Intra-Sim Supp. A(%) B(%) C(%) Time(secs)

7tm-1 64 269 19 2 100.0 100.0 100.0 0.18
7tm-2 33 263 25 2 100.0 100.0 100.0 2.65
7tm-3 30 256 27 2 100.0 100.0 100.0 3.34
AAA 245 194 25 2 95.3 88.4 97.7 0.26

ABC-tran 65 191 26 2 100.0 100.0 100.0 0.22
ATP-synt-A 30 162 52 2 78.6 96.4 89.3 0.20
ATP-synt-ab 157 232 54 6 98.9 98.9 98.9 1.29
ATP-synt-C 35 69 49 2 93.9 97.0 97.0 0.09

c2 409 76 23 2 89.2 46.7 91.3 0.13
CLP-protease 88 182 41 2 91.8 85.9 94.1 0.14
COesterase 129 541 27 2 86.5 58.7 87.3 1.73

cox1 24 461 48 2 90.9 90.9 90.9 0.41
cox2 32 117 60 2 96.7 100.0 100.0 0.43

Cys-knot 24 103 37 2 95.5 100.0 100.0 0.09
Cytochrom-B-C 9 101 74 2 100.0 100.0 100.0 1.61
Cytochrom-B-N 8 199 69 2 85.7 100.0 85.7 0.15

HCV-NS1 10 347 51 2 100.0 100.0 100.0 6.90
Oxidored-q1 33 284 28 2 90.3 93.5 93.5 0.26

Pkinase 54 274 24 2 98.1 90.4 96.2 0.21
PPR 558 36 20 2 11.9 0.0 22.6 0.03

RuBisCO-large 17 310 79 10 81.3 87.5 81.3 0.72
rvt-1 164 219 74 4 76.5 75.5 79.6 0.23

RVT-thumb 42 71 89 4 88.2 97.1 91.2 2.84
TPR-1 569 35 18 2 43.6 10.5 54.9 0.04
zf-C2H2 196 25 37 2 83.6 64.0 88.4 0.03
zf-CCHC 208 19 51 2 100.0 100.0 100.0 0.04

Table 1. Classification results of the three models, for the collection of 26 sequences
from Pfam 17.0.

In table 3 we compare the three probabilistic models with the results from the
PSTs and SMTs published in [11, 8]. In the last row of the table we present the
average classification results. We can see that the precision rates of all classifiers
are above the 90% threshold and that SMT ranks at the top. We should remind
that this is a raw comparison since different evaluation methods were used.
For our method all the sequences were evaluated, in this sense our evaluation
provides more confidence on the presented results. Besides, at the cost of an
extra computational work, the precision of a class can be increased by setting
the support of that class to a lower value.

We applied a two-tailed signed rank test [22] to study if the medians of
the classifiers C, PST and SMT are statistically equal. It was tested as a null
hypothesis that medians for the pairs of classifiers C and PST, C and SMT are
equal. For the first pair, the null hypothesis is rejected, thus the medians of the
classifiers are significantly different. In the second case the null hypothesis is
accepted, consequently there is no significant difference between the medians for
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PrecisionRate A(%) B(%) C(%)

All 87.6 83.9 90.0

without PPR 90.6 87.3 92.7

without PPR and TPR 92.5 90.5 94.3

Table 2. Average classification results for the collection of 26 proteins from Pfam 17.0

the classifiers C and SMT, with a level of significance of 0.05 and a p-value of
0.34.

In terms of computational demands, our method has low requirements. Since
the mining algorithm only counts and does not collect the frequent patterns, it
required a maximum of 5 MB of memory usage. This is in contrast with HMMs,
PSTs and SMTs which are known to have high memory requirements.

As a last experiment we selected a set of proteins that match the patterns
in the group of Receptors from the PROSITE [3] database. This group contains
27 entries matching a total of 13458 protein sequences. Table 4 contains the
name and the size of each group of sequences and the respective support used.
Next, we randomly selected 30% of the sequences of each group. Based on the
percentage of the true positives (main diagonal) and false negatives we built a
similarity matrix for the 27 groups of sequences. Figure 1 displays the similarity
matrix, where each row and column represent the entries listed in table 4. Dark
areas represent a higher number of class hits.

Similarity Matrix for the Receptors Groups of Sequences

ps00236
ps00237
ps00238
ps00239
ps00240
ps00242
ps00243
ps00244
ps00419
ps00421
ps00458
ps00538
ps00649
ps00652
ps00790
ps00950
ps00952
ps00969
ps00979
ps01026
ps01156
ps01212
ps01352
ps01353
ps01354
ps01355
ps01356

Fig. 1. Similarity Matrix for the classification performed on the 27 families of the set
of sequences that match the entries in the Prosite Database.
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Name Supp Size A(%) B(%) C(%) PST(%) SMT(%) Time(secs)

7tm-1 14 530 90.2 41.3 90.4 93.0 97.0 0.34
7tm-2 3 36 97.2 97.2 97.2 94.4 97.2 1.32
7tm-3 3 12 100.0 100.0 100.0 83.3 100.0 0.57
AAA 15 79 87.3 89.9 89.9 87.9 94.9 0.37

ABC-tran 20 330 92.1 62.7 94.8 83.6 93.3 0.43
actin 100 160 86.3 86.3 86.9 97.2 97.5 0.80

ATP-synt-A 7 79 82.3 82.3 83.5 92.4 94.9 0.09
ATP-synt-ab 12 183 88.5 84.2 90.7 91.9 96.8 15.68
ATP-synt-C 14 62 96.8 98.4 100.0 96.7 100.0 0.10

c2 15 101 95.0 95.0 94.1 92.3 96.0 0.08
COesterase 5 62 91.9 93.5 88.7 91.7 90.3 0.35

cox1 4 80 100.0 100.0 100.0 83.8 97.5 0.17
cox2 10 114 91.2 91.2 93.0 98.2 95.6 1.27

Cys-Knot 2 61 86.9 91.8 91.8 93.4 100.0 0.07
Cys-protease 4 95 94.7 94.7 94.7 87.9 95.1 4.94
DAG-PE-bind 2 108 97.2 97.2 99.1 89.7 95.4 5.82

DNA-methylase 2 57 86.0 100.0 89.5 83.3 91.2 0.71
DNA-pol 4 51 88.2 98.0 94.1 80.4 88.2 0.35

E1-E2-ATPase 20 117 94.9 80.3 94.0 93.1 94.0 0.18
EGF 2 676 99.6 97.8 99.6 89.3 98.8 0.05
FGF 7 39 100.0 100.0 100.0 97.4 100.0 2.53

GATase 2 69 94.2 100.0 95.7 88.4 94.2 0.12
GTP-EFTU 40 184 91.3 82.6 92.4 91.8 98.4 0.23

HLH 3 133 97.7 95.5 98.5 94.7 98.5 0.05
HPS70 25 171 88.9 80.7 94.7 95.7 98.2 0.35
HSP20 40 132 97.0 95.5 97.0 94.6 96.2 0.14
HTH-1 2 101 100.0 100.0 100.0 84.2 85.1 0.11
HTH-2 2 65 89.2 93.8 90.8 85.7 81.5 0.09

KH-domain 2 51 88.2 90.2 88.2 88.9 84.0 2.30
Kunitz-BPTI 2 79 98.7 100.0 100.0 90.9 92.3 7.30
MCP-signal 7 24 100.0 100.0 100.0 83.3 100.0 0.20

MHC-I 125 151 97.4 96.7 98.0 98.0 100.0 0.60
NADHdh 3 61 96.7 98.4 96.7 93.0 98.4 0.18

PGK 10 51 90.2 98.0 98.0 94.1 98.0 0.46
PH 5 77 93.5 94.8 96.1 93.3 83.1 4.36

Pribosyltran 4 45 86.7 93.3 88.9 88.9 95.6 0.11
RIP 3 37 86.5 91.9 89.2 94.6 91.9 0.13

RuBisCO-large 250 311 99.7 98.7 99.7 98.7 99.7 9.79
RuBisCO-small 20 107 98.1 97.2 99.1 97.0 99.1 4.86

s4 28 54 87.0 92.6 90.7 92.6 96.3 0.12
s12 12 60 85.0 90.0 90.0 96.7 100.0 1.20
SH2 3 150 100.0 98.0 100.0 96.1 98.7 0.10
SH3 2 161 98.8 98.1 98.8 88.3 96.9 12.31

STphosphatase 15 88 100.0 100.0 100.0 94.2 97.7 6.37
TGF-beta 15 79 92.4 92.4 92.4 92.4 98.7 0.14

TIM 4 42 95.2 100.0 97.6 92.5 100.0 0.15
TNFc6 2 91 79.1 89.0 81.3 86.2 93.4 0.04

UPAR-c6 2 18 94.4 100.0 94.4 85.7 94.4 0.68
Y-phosphatase 8 122 87.7 83.6 89.3 91.3 96.7 0.04

Zn-clus 2 54 96.3 100.0 96.3 81.5 90.7 0.05

Avg. PR(%) 93.1 93.3 94.5 91.0 95.4

Table 3. Classification results of the three models, PSTs and SMTs, for the collection
of 50 sequences from Pfam 1.0.
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Dataset Size support(%)

ps00236 772 0.03

ps00237 8522 0.017

ps00238 862 0.03

ps00239 157 0.05

ps00240 119 0.06

ps00242 170 0.03

ps00243 116 0.3

ps00244 22 0.99

ps00419 521 0.18

ps00421 226 0.05

ps00458 20 0.5

ps00538 44 0.2

ps00649 233 0.04

ps00652 372 0.014

Dataset Size support(%)

ps00790 101 0.2

ps00950 121 0.2

ps00952 52 0.35

ps00969 89 0.05

ps00979 82 0.12

ps01026 36 0.08

ps01156 417 0.025

ps01212 82 0.15

ps01352 104 0.11

ps01353 66 0.03

ps01354 48 0.05

ps01355 71 0.08

ps01356 33 0.2

Table 4. Identifier of the Prosite entries (Dataset), number of sequences in the Swiss-
Prot database that match the respective entry and the relative support value used for
sequence classification.

4.1 Factors that affect the performance of the method

Although we do not have the exact values, we verified that all the protein fam-
ilies in the second dataset, have a high intra-similarity. This explains the high
precision values of the three methods in the second evaluation.

From the three probabilistic models of our method, the one with higher pre-
cision in the performed evaluations is model C. It seems that the average length
of the patterns has a bigger impact in the sequence classification. As naturally
expected, the lower it is the support value the higher the precision rate of the
models is. Lower support values allow finding more common patterns between
the query sequence and smaller subsets of families sequences. The support val-
ues used for the two evaluations establish a reasonable trade-off between the
performance and the precision of the method. A very important aspect of this
method is that the extracted motifs reveal local and global similarity. One of the
aspects pointed in [8] for the success of SMTs is the use of common short sub-
sequences patterns that contain wild-cards. These wild-cards allow to describe
the positions of the patterns that can be occupied by two or more amino-acids.
Our method incorporates this feature through the rigid gap patterns. We do not
include any type of biological information. We believe that the introduction of
Equivalent/ Substitution sets of amino-acids can further improve the precision
of the method. These sets will permit that during the mining process an event
can be substituted by another event belonging to the same set without lost of
equivalence. Additionally, the introduction of a discrimination score for the most
biological or statistical relevant patterns may result in another improvement.



Protein Sequence Classification 11

5 Conclusions and Future Work

In this article we presented a method of straightforward implementation to per-
form multi-class and multi-domain sequence classification. The method does not
require background knowledge or any change in the sequence representation.
It extracts two features, number and average length of the frequent patterns,
which the query sequence has in relation to the sequences families. These features
are then combined through a Bayesian classifier. We present three probabilistic
models based on this classifier. When compared to two state-of-the-art meth-
ods, PSTs and SMTs, for protein sequence classification the method shows very
promising results. Our method performs better than PSTs and has an equivalent
performance to SMTs.

As a future work, we plan to evaluate and compare our method with col-
lections of protein families with lower homology. We believe that our method
may have superior performance to other methods in those cases. We are also
seeking for a way to apriori determine the support value to be used for each
family. Finally, we aim to extend our pattern mining process to determine the
biological significance of the patterns. This will allow discriminating the weight
of each pattern in the overall classification results.
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