A Data Structure to Represent Association Rules based
Classifiers

3
Paulo J Azevedo
Departamento de Informatica
Universidade do Minho
Braga, Portugal

pja@di.uminho.pt

ABSTRACT

We tackle the problem of representing association rules for a
prediction purpose. We approach this problem by introduc-
ing a novel data structure for representing association rules
(now seen as classification/regression rules). Unseen cases
are fitted into a graph like structure that avoids any type of
sorting procedure. The graph indexes the items present in
the rules so that only rules with the antecedent covered by
the new case are visited.

A detailed description of the data structures to store the
association rules is given along with the most important
steps of the algorithm. Benchmarking and discussion on the
main features is also presented.

1. INTRODUCTION

Many association rule based classifiers had been proposed
in the literature. The basic idea is to generate rules with
a single item in the consequent and to select rules with the
defined target attribute occurring at the consequent. These
rules are known as CAR (Classification Association Rules)
rules. The prediction procedure works by selecting rules
whose antecedent covers a new instance (case) to be clas-
sified. Then, an order is imposed on these rules according
to a measure, typically rule strength (e.g. confidence, lift).
The best rule is chosen to fire and the new case prediction is
the consequent of this rule. This procedure is known as Be-
stRule prediction. Examples of this approach can be found
in [6; 5; 4], However, not many proposals have considered
the problem of efficiently representing association rules as
prediction models i.e with the aim of performing prediction
for new cases. In this paper, we tackle the program of effi-
ciently store rules as prediction models. The aim is to store
rules in such a way that:

1. Fast indexing of the rules that cover a specific unseen
case is provided.

2. Rules are efficiently stored by eliminating redundancy
between items on the antecedent.

3. Easily gather and order the set of triggered conse-
quents for an unseen case.

*Supported by the POSI/SRI/39630/2001/Class Project
(Fundagao Ciéncia e Tecnologia), FEDER e Programa de
Financiamento Plurianual de Unidades de I & D.

The first requirement has to do with the expected ability to
identify the rules that contribute to the unseen case. The
efficiency of the prediction procedure is highly dependent
on this capability. The second statement aims for a very
compact method to store the rules. Items that appear in
two rules should not appear twice to represent the rules. Fi-
nally, the last requires that, for each new case, the set of
consequents fired to build the prediction be computation-
ally efficient obtained. In this paper we will suggest a data
structure that covers the three requirements.

The rest of the paper is organized as follows: We proceed by
describing the hash graph structure. Then, a description of
the prediction algorithm is presented. The implementation
of the CAREN system [8] is described. Finally, benchmark-
ing and related work are discussed.

2. CARRULES

As proposed by several authors [6; 5; 4], association rules
can be used as classification rules. The idea is to impose
constrains into the frequent mining algorithm so that it de-
rives rules with a single item consequent belonging to the
target (class) attribute.

Association rules are rules of the form

an&a & .. &a, —c

Such rules describe association (or simply co-occurrence) be-
tween atomic elements present in data. These elements can
be items bought in supermarket or genes present in a cer-
tain chromosome, or simply a pair of attribute/value items
from a relational database. Rules are made out of item-
sets observed in the dataset, i.e. combination of items. For
instance, itemset ajasas...anc gave rise to the former rule.
Quality of rules is measured through statistical measures
like support and confidence. Support describes incidence
of the itemset in the database and confidence measure the
predictability strength of the rule. Support is calculated
by itemset counting among the transactions contained in
the dataset. Although in general they have multiple items
in the consequent, here we focus on rules with a singleton
right-hand-side. This emphasizes the classification purpose,
where the consequent is expected to contain the class at-
tribute.

The prediction procedure follows closely the one proposed in
[5]. These authors suggest that confidence should be used to
obtain rule’s ordering. Ties are solved by consulting support
and rule’s length. We follow the same policy but generalize
to any rule’s measure (not just confidence). Such measures

asses the predictive ability of the rules. In this setting, mea-
sures like confidence, conviction and lift can be used. We will
refer to these, generally, as interest measures. The ordering
procedure is summarized as follows:

Given R; and R2 we say that Ry precedes Ra

Ry > Ry if
int(R1) > int(R2) or
int(R1) == int(Rz2) A sup(R1) > sup(R2) or
int(R1) == int(R2) A sup(R1) == sup(R2)
A#ant(R1) < #ant(R2).

where int is the used interest measure and #ant is the length
of the antecedent.

The approach described in [5] and [6] contain a rules selec-
tion procedure that reduces to a coverage algorithm. First,
it orders the rules following the rank descending order de-
scribed before (relation). Then, it selects a rule from the
top of the rank that covers and correctly classifies an in-
stance from the training set. The procedure stops when all
the instances are covered by a selected rule. This process
is executed in a post-processing step i.e after the deriva-
tion of rules occurs. Our approach specifically does not
apply any sort of coverage algorithm to select rules. In-
stead, we make use of the improvement measure [2], the x>
test between antecedent and consequent and the traditional
minconf, minsup constraints to select rules. Furthermore,
rules selection occurs during rules derivation rather than
as a post-processing step. We believe that applying a cov-
erage algorithm entails information loss and consequently
prediction power degradation. Although no evidences for
this claim will be shown, experiments performed in the past
suggest that there is a large opportunity for the degration
to occur.

A question arises when using rules as prediction models,
which is how to efficiently select rules that fire for a given
case. We call this problem the antecedent cover problem. To
solve it most authors propose dataset indexing techniques
rather than rules indexing data structures. We proceed by
proposing a data structure to attain the antecedent cover
problem. This data structure indexes and efficiently stores
rules without antecedent redundancy.

3. DATA STRUCTURE

We introduce a novel data structure to represent associa-
tion rules for a classification task. The purpose of this data
structure is to optimize storing space and computational
time related to the prediction task. In the sequel, we will
replace the term “prediction” by “classification”. However,
one could be performing a regression (numeric prediction)
task using the same prediction algorithm. Here, classifica-
tion refers to the task of collecting the consequents of the
rules whose antecedents are covered by the new case, i.e.,
rules that fire for the new case.

The structure (which in the sequel will be referred as Hash-
Graph) is item oriented. It grows out of an array of frequent
items. The order in this array is the same as the items order
imposed by the frequent patterns mining algorithm (we used
support ascending order). Rules are represented through a
trie like structure, a kind of discrimination tree. Tries are

well known data structures suited to index strings, enabling
to collapse operations of insertion and retrievial. Each item
in the array contains an associated trie to represent rules
where the same item is the first element at the antecedent.
Rule’s antecedents also follow the order imposed in the ar-
ray.

We will follow figure 1 to describe the hashgraph data struc-
ture. A rule is represented by a set of items, corresponding
to the antecedent, plus a last item representing the conse-
quent (in our case it would correspond to a class value). The
leaf node in a path of the trie (class node) represents the last
item of the antecedent. It also contains the consequent item
and information about the rule’s metrics. In figure 1 it is
pictorially represented by hexagon nodes. Each position in
the array of items contains a Boolean field. This is used
to signal that an unseen case (to be classified) contains the
item. We refer to an item having the Boolean field with the
true value as light on item. The procedure to verify whether
a new case covers the antecedent of a rule reduces to check if
the items in the antecedent are on. Notice that this simple
mechanism eliminates the need to reorder the items of a new
case (according to the order in items array), each time it is
used for classification.

In figure 1 an hashgraph is pictorially described. Notice
the class nodes (hexagons) where the last item of the an-
tecedent, the class label and rule’s metrics are represented.
Antecedent nodes (rounded boxes) store a single item from
the antecedent. The ”look back” arrows represent the check-
ing for items in light on state.

In terms of compactness, the hashgraph structure depends
on the items ordering. The ability of item sharing between
rules is proportional to the support of that item. That is,
high support items yield higher sharing capability.

4. ALGORITHM - PREDICTION TASK

The algorithm to collects the rules that fire given a new case
is described as follows:

Input: Unseen case(set of items)
Switch to light on (in the binary array) the items present
in the new case;
foreach item in the array that is on do
Follow each path of the trie that contains items on ;
if consequent node reached then
collect it;

end
end

Switch to light off the items present in the new case;

Output: the set of consequents
Algorithm 1: Algorithm Collect_Firing_Rules

As we can see, the prediction algorithm is based on the sim-
ple idea of following light on items and process the associated
rules. No case (instance) reorder is required.

S. IMPLEMENTATION

We implemented the described algorithm in the Caren sys-
tem [8]. Caren contains a specific module (carenclass) to
generate association rules with the purpose of classifica-
tion. Besides the basic parameters, this module requires
the user to specify the consequent (attribute or item) to

Freguent items
(support ascendent order)

(A (class node)

Figure 1: HashGraph for storing association rules as a pre-
diction model

generate rules for. Carenclass implements a bitwise depth-
first frequent patterns mining algorithm. It resembles the
ECLAT algorithm proposed in [9], since it is a depth first
algorithm that also makes use of a vertical representation
of the database. It also has similarities to the OPUS_AR
procedure [11] since it aims to construct the rules rather
than first deriving the itemsets. We use bitmaps to repre-
sent items coverage. This is the formalism used to obtain
a vertical representation of the database. Along the execu-
tion of the algorithm, bitmaps for the itemsets are obtained
by performing bitwise operation between the bitmaps of the
composed items. The complete procedure is summarized in
algorithm 2.

In this algorithm, the operator # refers to bitcounting for
determining the support of itemsets and rules. It is given a
database DB, a set of consequent items CON S and thresh-
old values for minsup and minint. The latter is a constraint
for a rule’s predictability strength. The algorithm returns
a set of rules that satisfies the constraint for consequent,
support and strength.

M .
L.
s=0.76,c=0.68 s=0.77,c=0.91
L&M&O ——> no, s=0.77,c=0.91
L&M&P ——>no, s=0.76,c=0.68
O &P ——>yes, s=0.71,c=0.82
Figure 2: Comparison with CR-trees.
T1 T2 T3 T4
minsup 0.05 0.03 0.03 0.02
minconf 0.4 0.4 0.3 0.5

num cases | 125 811 | 671 599 | 671 599 | 1 463 927
num rules 2 295 4 437 4444 | 2 799 617
time 0°26” 0’56” 0’55” | 1h51°53”

Table 1: Benchmark on models built out of t40.i10.d100
dataset

M1 M2 M3
minsup 0.1 0.07 0.05
minconf 0.5 0.6 0.4
num rules | 279 046 | 675 038 | 1 843 608
time 4’327 9°01” 23’53”

Table 2: Benchmark on models built out of mushroom
dataset (num of cases = 8124)

C1 C2 C3 C4
minsup 0.5 0.57 0.6 | 0.65
minconf 0.65 0.6 0.6 | 0.65
num rules 1317840 | 86920 | 16304 52
time 14h02°02” | 43’23” | 7’397 9”7

Table 3: connect-4 dataset results (num of cases = 67557)

Input: minsup,minint,DB,CONS
Rules := (;
First DB scan (count items)
A :={Vz € Items(DB),z ¢ CONS : count(z) >
minsup};
C :={Vz € CONS : count(x) > minsup};
Reorder the items in A according to support ascendant
order;
Second DB Scan
Define a bitmap for each frequent item in A and C;}
Define a flat matrix (sup2[]) for 2-itemset counting;

/*(derive cover for each frequent item) */
foreach transaction t € DB do
Set correspondent bit in each bitmap of a frequent item
(in A and C) present in ¢;
Count 2-itemsets occurring in ¢;
end

/*(Expansion phase) */
foreach frequent item i € A do
Rules := Rules U {Vc € C, sup2[i][c] >
minsup, int(i — ¢) > minint : i — c};
foreach frequent item i’ € A : i’ =i (= refers to item
ordering) do
if sup2[i][i'] > minsup then
a = {i,i'};
bitmap(a) := bitmap(i) ® bitmap(i');
supla) := #(bitmap(a));
Rules := Rules U Expansion(a,i’, 4, C);
end

end
end

Output: Rules
Algorithm 2: Algorithm Depth First Expansion

Input: (itemset,lastitem,A,C)
R :=(;
foreach i € A : i > lastitem (> refers to item ordering)
do
if Va€itemset sup2[a]li] > minsup then

new := itemset U {i};

bitmap(new) := bitmap(itemset) @ bitmap(i);

sup(new) := #(new);

if sup(new) > minsup then

foreach c € C do
if #(bitmap(new) @ bitmap(c)) > minsup

then
if int(new — c¢) > minint then
R:=RU
{new — c} UExpansion(new, i, A, C);
end
end
end
end
end
end
return R

Function Expansion(itemset,lastitem)

Typically, association rules generation is a post-processing
task. That is, it is executed after the frequent pattern min-
ing algorithm determines which itemsets are valid. For ef-
ficiency purposes, it is desirable to push the rules gener-
ation task into the frequent pattern mining phase. This
way, as soon as an frequent itemset is counted and checked
valid (for instance, that it contains the required consequent
item), rule generation for that itemset is triggered. However,
depth-first approaches to itemset counting face a problem.
It may happen that subsets of the itemset in question are
not yet determined. Thus, we might have a rule ready to
be derived but that does not have the antecedent support
counted. Algorithms like Apriori [1] do not suffer from this
problem. Being a breath-first approach imply that all sub-
sets are determined for a counted itemset. Carenclass has a
simple and elegant approach to this problem. Since it knows
in advance what items it will generate rules for (they will
occur in the consequent) it re-allocates the items defined as
consequents in a separate list (variable C' in algorithm 2).
This ensures two things: first, consequent items are the last
to “join” the itemset obtained from depth-first expansion;
secondly, when about to generate a rule, the support of the
antecedant itemset (without the consequent item) is already
known. The same approach is used to apply x? filtering to
itemset counting.

In terms of memory requirements, carenclass consumption
is at most:

memory = (2x # frequent_items) x BitMap_size

BitMap_size is the size of the memory word to represent
an item coverage. The memory word size in bits must be at
least the number of database transactions. # frequent_items
is the number of frequent items. The times two represents
the bitmap for each frequent item and the bitmap for the
branch of depth-first expansion, which is at most the size of
the maximal itemset minus one i.e. # frequent_items — 1.
An extra bitmap is needed to represent the actual itemset.

The carenclass module constructs a prediction model out

of the derived rules. It organizes the rules into an hash-
graph. The Caren system performs classifications through
the Predict module. Predict [8] makes use of an hash-
graph structure to represent association rules and classify
test data.

6. BENCHMARKING

We projected several testes to demonstrate the suitability of
the proposed data structure. Some datasets considered com-
putationally heavy were selected for benchmarking. One,
t40.110.d100, was generated using IBM synthetic datasets
tool. The very dense connect-4 and mushroom datasets from
the Irvine collection [12] were also used. The sets of rules
derived from these datasets tend to be very large, which en-
tails prediction models with exagerated number of rules. A
typical association model for prediction contains hundreds
of rules, not millions. However, for benchmarking purpose
we chose very large sets of rules to verify linearity along the
number of rules.

The tests, shown in table 2 and 3, actually show linearity
along the number of rules. The test described in table 1
shows linearity along the number of rules and number of
cases. For connect-4, the same accuracy was obtained for
all 4 models. All datasets were used both as training set,
to derive association rules, and as test set. In basket data
like dataset t40.110.d100, each case is used in a all-but-one
fashion. Thus, a transaction with n items (size) yields n
different cases, where the hidden item plays the role of the
class value to be predicted.

Test were performed using a 1.3MHz Pentium IIT machine
with 2 Gigabyte of main memory.

7. RELATED WORK

Most proposals for implementing algorithms to build models
for classification seem to focus their overall performance in
the efficient retrieval of training cases. The training dataset
is indexed and typically loaded into main memory e.g. [3].
For instance, [7] proposes a data structure to index data
according to the values that each example takes for each
attribute. This enables a fast evaluation of a new case on a
set of decision rules since, to evaluate one instance, it does
not require processing all the examples.

Our work concentrate on organizing rules to favor a faster
evaluation. In this context, the CMAR [5] approach to rep-
resent association rules is the most similar to ours. This
work represents rules using a FP-tree like structure, called
CR-tree. Figure 2 presents the CR-tree representation of
the last three rules described in figure 3. The CMAR ap-
proach requires transaction reordering. To classify a new
transaction, items present in the case (transaction) must be
ordered according to the imposed item order supplied by the
CR-tree. In an HashGraph, no items reordering is required.
The only computational burden required to classify a new
case is to signal, in the binary array, the items present in
the transaction.

Figures 3 and 2 suggest that an HashGraph collapses more
information than a CR-tree. For the same set of rules (the
ones in figure 2), a smaller number of nodes is required by
an hashgraph than a CR-tree to represent them (three last
rules in figure 3). Thus, apart from being a faster data struc-
ture in supplying prediction for new instances, Hashgraphs

provides the most compact formalism to represent the same
set of rules.

8. CONCLUSIONS

Caren was developed with the aim of producing a tool ca-
pable of generating classification rules, although it can also
be used for undefined item consequent association rules gen-
eration. By classification rules, we meant rules that can be
used with a classification purpose where a prediction model
makes use of them in the form of a decision list.

We proposed a novel data structure (HashGraph) for stor-
ing association rules as classification rules. It covers the
three requirements that is expected when performing pre-
diction using rules.

We also propose a simple solution to push into the itemset
mining process the association rules derivation procedure.
As shown before, it is not trivial to implement this feature
into a depth-first frequent pattern mining algorithm.

One should bear in mind this fact and that Caren and
Predict are Java-based, when comparing performance with
implementations like [5]. Despite this issue, benchmarking
suggests that hash graph is an interesting formalism to rep-
resent rules for prediction.

Acknowledgments

Thanks to Alipio Jorge for all the suggestions and testing.
This work was developed during the execution of the CLASS
project (POSI/SRI/39630/2001/Class Project - Fundagao
Ciéncia e Tecnologia)

9. REFERENCES

[1] Agrawal R., Srikant R.
Fast Algorithms for Mining Association Rules
in Proceedings of the 20th International Conference on
Very Large Databases, Santiago, Chile, Sept. 1994

[2] Bayardo, R.J., Agrawal, R., Gunopulos, D.,
Constraint-Based Rule Mining in Large, Dense Databases
in Data Mining and Knowledge Discovery, Volume 4, Issue
2 - 3, Pages 217 - 240, (2000)

[3] Quinland J. R.,
C4.5: Programs for Machine Learning
Morgan Kaufman 1993.

[4] Jovanoski V., Lavrac N.
Classification Rule Learning with Apriori-C
in Proceedings of the 10th Portuguese Conference on Ar-
tificial Intelligence, EPIA 2001, LNCS 2258, Porto, Por-
tugal.

[5] Li W., Han J., Pei J.
CMAR: Accurate and Efficient Classification based on
MultiClass-Association Rules
in Proceedings of the IEEE International Conference on
Data Mining, 2001.

[6] Liu B., Hsu W., Ma Y.
Integrating Classification and Association Rule Mining
in Proceedings of the ACM SIGKDD International
COnference on Knowledge Discovery and Data Mining
(KDD98), New York 1998.

[7] Girldez R., Aguilar-Ruiz J., Riquelme J.
An efficient data structure for decision rules discovery
in Proceedings of the ACM Symposium of Applied Com-
puting (SAC2003), Florida 2003.

[8] Azevedo P., Jorge A.
The CLASS Project
http://www.niaad.liacc.up.pt/~amjorge/Projectos/Class/

[9] Zaki M.J.
Scalable algorithms for association mining
IEEE Transactions on Knowledge and Data Engineering,
12(3):372-390, May-June 2000.

[10] Merz J., Murphy P.,
UCI repository of Machine Learning Database
http://www.cs.uci.edu/ ~mlearn

[11] Webb G.
Efficient search for association rules
in the Sixth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD’00),
Boston, MA 2000.

[12] C. J. Merz and P. Murphy.,
Uci repository of machine learning database
in http://www.cs.uci.edu/~mlearn, 1996.

Frequent items
(binary array)

A B C D E G H | L M (@)
— E 77 A A A AR
| . . - | S S
I N I N B I
N	: o
N	N B
N	R .
.	
$=0.67,620.89 i _
v $=0.71,c=0.82 .-
§=0.77,6=0.91 5=0.76,c=0.68
s$=0.40,c=0.80
A&B&D&H&L -->yes, s=0.40,c=0.80

$=0.47,c=0.85

A&B&D&E ——>yes, s=0.47,c=0.85

A&l ——>no0s=0.67,c=0.89
L&M&O —=>no, s=0.77,c=0.91
L&M&P —-—>no, s=0.76,c=0.68
O&P —-—>yes, s=0.71,c=0.8:

Figure 3: Example of stored association rules.

