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Abstract

This paper is a systematic study of verification conditions and their use in the
context of program verification. We take Hoare logic as a starting point and study
in detail how a verification conditions generator can be obtained from it. The notion
of program annotation is essential in this process. Weakest preconditions and the use
of updates are also studied as alternative approaches to verification conditions. Our
study is carried on in the context of a While language. Important extensions to this
language are considered toward the end of the paper. We also briefly survey modern
program verification tools and their approaches to the generation of verification
conditions.
Keywords: Hoare logic, Verification Conditions, Program Verification, Program
Annotations, Weakest Preconditions, Updates



1 Introduction

The idea of specifying the behaviour of programs through the use of preconditions
and postconditions, and in general of assertions that are true or false relative to
the current state of execution of a program, has been around since the sixties and
given rise to the development of the axiomatic style of program semantics. The same
idea has been used since the seventies in the implementation of practical tools for
checking the correct behaviour of programs (vis-à-vis their specifications), marking
the birth of Program Verification as a research area.

In the development of early tools [29, 21] it became clear that the most con-
venient way to organise a program verification system is to use the axiomatic se-
mantics to generate first-order proof obligations (baptised Verification Conditions,
VCs for short) that can be handled by a standard proof tool. The idea is that if
all proof obligations generated for a program can be discharged (i.e. they can be
proved valid), then the program is guaranteed to be correct. The semantics-based
component that generates the proof obligations is called a Verification Conditions
Generator (VCGen for short).

Program verification has recently received renewed attention from the Software
Engineering community. One very general reason for this is the continuing and
increasing pressure on industry to deliver software that can be certified as safe
and correct. A more specific reason is that program verification methods fit very
naturally the so-called Design by Contract methodology for software development,
with the advent of program annotation languages like JML. Program verification
fits in as the static, formal component of a methodology that encompasses also other
validation methods like dynamic checking and testing.

But recent times have not only witnessed an increase in the popularity of pro-
gram verification with software engineers; the field itself has developed and exciting
new techniques were recently proposed to target the certification requirements that
have been created, for instance, by mobile code and the associated new architec-
tures for the execution of software. For instance the following two techniques both
rely on verification conditions.

– Proof-carrying code [44], based on the generation of verification conditions from
annotated low-level (compiled) code. The idea is that a compiler can automat-
ically produce a proof – a certificate – that the compiled code satisfies some
requirements (say, it performs only safe memory accesses), and an execution
platform may then (cheaply, and without relying on the behaviour of complex
pieces of software like compilers or theorem provers) generate VCs and check
that the certificate provides evidence for these VCs.

– Certain information-flow properties (such as non-interference) that have tradi-
tionally been treated using a number of language-based Security techniques [48]
may also be addressed using axiomatic semantics tools like Hoare logic [7] or
Dynamic logic [15], providing yet further motivation for the relevance of Logic-
based methods for reasoning about programs.

This paper is a study of Verification Conditions for imperative, sequential, high-
level programming languages. Our tutorial presentation treats annotated programs
formally, and provides a uniform development of VCGen algorithms from program
logics. Although we do not attempt to give a thorough survey of program logics
or program verification systems, we do examine (and provide references for) those
systems that have become more popular in recent years.

The paper is structured as follows. Section 2 sets the basis by introducing a
simple programming language and the notion of Hoare triple. In Section 3 the
inference system H of Hoare logic is introduced, and Section 4 discusses its use in



program verification, based on the generation of Verification Conditions. Section 5
presents an alternative, goal-directed formulation of Hoare logic (system Hg), that
is more amenable to mechanising the construction of proof trees, since it contains
no ambiguity in the choice of rule. In Section 6 we show how the introduction of
program annotations (resulting in system Hga) completes this progression toward
the mechanisation of Hoare logic.

The previous approach forces the insertion of annotations between any two com-
posed commands of a program. The next step is to eliminate the need for this tedious
process. This can be done in two ways: by backward propagation of assertions, and
by forward propagation. The former approach leads us in Section 7 to VCGens based
on Dijkstra’s weakest preconditions. The latter approach, covered in Section 9, takes
us in the direction of systems based on the use of updates. Section 10 discusses how
the simple language used here can be extended with a number of features that can
be found in realistic programming languages, and Section 11 concludes the paper.

We also briefly review verification condition generation tools that bring to prac-
tice these ideas. Section 8 presents a guarded command language in the style intro-
duced by Dijkstra, and discusses how it has been used as an intermediate language
in the VCGens of the ESC family of tools. The KeY tool, based on a variant of
Dynamic logic, is discussed in Section 9; the Boogie and Why tools, both generic
VCGens, are discussed in Section 11. Our goal here is not to exhaustively cover
all tools for program verification; we merely select a few that we find suitable to
illustrate the concepts discussed in the paper.

2 Programs and Specifications: Hoare Triples

In this paper we explore methods for specifying programs in a simple imperative
language and for proving the correctness of such specifications formally. We consider
only partial correctness specifications: programs are required to behave properly if
they terminate, but are not required to terminate.

We consider a typical While language with data types for integer numbers
and booleans. Commands include a do-nothing command, assignment, composi-
tion, while loop and (two branched) conditional execution. The language has two
base types

τ ::= bool | int

The syntax of boolean and integer expressions could be more or less evolved; boolean
expressions should contain the boolean constants true and false, and it must be
possible to form expressions by comparing the values of two integers. The language
also includes boolean operators for conjunction, disjunction, and negation (we use
C/Java-like syntax for operators). Integer expressions are formed from constants
and a set of variables V, together with a number of operators on integers. We
let x, y, ... range over V. Note that these choices have no impact on the material
presented in the paper; the reader will find in the literature presentations that use
simpler languages as well as richer ones.

The key semantic notion is that of the program state (given by the values of
the variables involved in the computation). The value of an expression depends on
the current state, and the computing device changes the state when it executes a
command. In addition to expressions and commands, we need syntax for formulas
that express assertions about properties of particular states, as well as a class of
formulas for specifying the bahaviour of programs. We have the following phrase
types

θ ::= Exp[τ ] | Comm | Assert | Spec

corresponding respectively to expressions (for each data type), commands, asser-
tions and specifications. Their abstract syntax is defined in Figure 1. Note that the



Exp[int] 3 e ::= . . . | −1 | 0 | 1 | . . . | x | −e | e + e | e− e | e ∗ e | e div e | e mod e
Exp[bool] 3 b ::= true | false | e == e | e < e | e <= e | e > e | e >= e | e != e

| b && b | b ‖ b | ! b
Comm 3 C ::= skip | C ; C | x := e | if b then C else C | while b do C
Assert 3 A ::= true | false | e == e | e < e | e <= e | e > e | e >= e | e != e

| ! A | A && A | A ‖A | A → A | Forall x. A | Exists x. A
Spec 3 S ::= {A}C {A}

Fig. 1. Abstract Syntax

syntax rules may also be read implicitly as typing rules. For instance, if e1, e2 have
type Exp[int], then so has e1 + e2, and so on.

Expressions and commands are fairly obvious. It remains to discuss the language
of assertions, i.e. properties that hold at a given point in the program execution,
and program specifications.

It is common for assertions to be defined as a super-set of boolean expressions,
since they may have to refer to the values of expressions in the current state of the
program. If exactly the same syntax is used for assertions and boolean expressions,
it will be easier for ordinary programmers to write specifications (and also program
annotations, see Section 6).

We thus construct our language of assertions starting from the language of
boolean expressions of the programming language, and extend that with an im-
plication connective. Moreover, to allow for first-order reasoning about programs,
universal and existential quantifiers are introduced. So basically our language of as-
sertions is a first-order logic, where the terms and predicates are respectively integer
expressions and binary comparison predicates. We do not include many common
features of first-order logic (like arbitrary predicate symbols) in order to keep the
presentation concise.

Again, the particular choice for the language of assertions is merely illustrative;
the bottom line is that the richer the programming language is (and the richer the
set of types it contains), the richer the assertion language (and its semantics) must
be. Accordingly, the logical theories required for proving the validity of assertions
will also have to be progressively richer.

Assertions that hold before and after execution of a program – preconditions
and postconditions respectively – will allow one to write specifications of programs
or Hoare Triples – the last syntactic category in Figure 1. The intuitive meaning of
a specification {P}C {Q} is that if the program C is executed in an initial state in
which the assertion (precondition) P is true, then either execution of C does not
terminate or, if it does, assertion Q (a postcondition) will be true in the final state.
Because termination is not guaranteed, this notion is called a partial correctness
specification.

The notions of specification and Hoare triple coincide. We remark however that
sometimes it is useful to consider a notion of specification (P,Q) consisting only of
a precondition P and a postcondition Q. In this view if the Hoare triple {P}C {Q}
is valid for some program C then C is said to be correct with respect to the spec-
ification (P,Q). We will use both notions in the paper but this shouldn’t generate
any confusion.

The introduction of binding quantifiers in assertions imposes the usual notions of
free and bound variables. Variables that occur in the program C (and possibly also
free in the precondition P or in the postcondition Q) are called program variables.
Variables that occur free in P or Q but not in the program will be called auxiliary or



ghost variables (their use will be explained in Section 7), and those that are bound
by some quantifier in P or Q will be called logical variables.

Semantics. The meaning of a grammatically correct program can be formalized in
different ways (see [53, 46]):

– Operational semantics is focused on the computation the program induces on a
machine (small-step, or structural, if the emphasis is on the individual steps of
the execution; big-step, or natural semantics, if the emphasis is on the relation-
ship between the initial and the final state of the execution).

– Denotational semantics is focused on representing the effect of executing a pro-
gram by a mathematical object.

Frequently, the logical system for proving partial correctness properties of programs
is viewed as an axiomatic semantics, focused on specific properties (expressed by
assertions) of the effect of executing a program.

In the following, a natural semantics is used to describe the meaning of com-
mands, and we define semantic functions to interpret expressions, assertions and
specifications in a denotational style.

The semantics is given in terms of states. The base types are interpreted as
expected

[[bool]] = {true, false}
[[int]] = Z

Boolean and integer expressions are interpreted as boolean or integer values, but
these values depend on the values of variables that may occur in the expressions.
In other words, they depend on a state, which is a function that maps each variable
into its integer value1. We write Σ = V → [[int]] for the set of states, and for s ∈ Σ,
y ∈ V and v ∈ [[int]], s[y 7→ v] denotes the following state

s[y 7→ v](x) =
{

v if x = y
s(x) if x 6= y

For each phrase type we define the corresponding domain of interpretations (the
set of possible meanings)

[[Exp[τ ]]] = Σ → [[τ ]]
[[Comm]] ⊆ Σ ×Σ
[[Assert]] = Σ → {true, false}

[[Spec]] = {true, false}

These domains reflect our assumption that an expression has a value at every state
(evaluation of expressions always terminates without an error stop, see below). and
that expression evaluation never changes the state (the language is free of side
effects).

The behaviour of a command is to transform the state of a computation. Com-
mands are interpreted operationally via the evaluation relation (·, ·) ⇓ · ⊆ Comm×
Σ ×Σ. Intuitively (C, s) ⇓ s′ means that the execution of C from s will terminate
and the resulting state will be s′. A command whose execution does not terminate
for an initial state s is absent from this interpretation since there is no pair (s, s′)
corresponding to it.

Denotationally, the meaning of a command would be a state-transformation
function Σ → Σ, and dealing with non-termination would require the introduction
of more sophisticated mathematical domains. This denotational interpretation is
not required (nor the most appropriate) for our present goal.
1 Another possibility would be to consider states as partial functions.



Expressions:

[[n]](s) = n for n ∈ {. . . ,−2,−1, 0, 1, 2, . . .}
[[x]](s) = s(x)

[[−e]](s) = −[[e]](s)
[[e1�e2]](s) = [[e1]](s) � [[e2]](s) ,

for (�, �) ∈ {(+, +), (−,−), (∗,×), ( div ,÷), ( mod , mod )}
[[true]](s) = true

[[false]](s) = false
[[ ! e]](s) = ¬[[e]](s)

[[e1�e2]](s) = [[e1]](s) � [[e2]](s) ,
for (�, �) ∈ {(==, =), ( !=, 6=), (<, <), (<=,≤), (>, >), (>=,≥)}

Commands:

1. (skip, s) ⇓ s
2. (x := e, s) ⇓ s[x 7→ [[e]](s)]
3. If (C1, s) ⇓ s′ and (C2, s′) ⇓ s′′ then (C1 ; C2, s) ⇓ s′′

4. If (Ct, s) ⇓ s′ and [[b]](s) = true then (if b then Ct else Cf , s) ⇓ s′

5. If (Cf , s) ⇓ s′ and [[b]](s) = false then (if b then Ct else Cf , s) ⇓ s′

6. If (C, s) ⇓ s′, (while b do C, s′) ⇓ s′′, and [[b]](s) = true then (while b do C, s) ⇓ s′′

7. If [[b]](s) = false then (while b do C, s) ⇓ s

Assertions:

[[true]](s) = true
[[false]](s) = false

[[ ! A]](s) = ¬[[A]](s)
[[A1�A2]](s) = [[A1]](s) � [[A2]](s) , for (�, �) ∈ {( && ,∧), ( ‖ ,∨), (→,⇒)}

[[Forall x. A]](s) = ∀v ∈ [[int]]. [[A]](s[x 7→ v]) , with v fresh
[[Exists x. A]](s) = ∃v ∈ [[int]]. [[A]](s[x 7→ v]) , with v fresh

[[e1�e2]](s) = [[e1]](s) � [[e2]](s) ,
for (�, �) ∈ {(==, =), ( !=, 6=), (<, <), (<=,≤), (>, >), (>=,≥)}

Specifications:
[[{P}C {Q}]] = ∀s, s′ ∈ Σ. [[P ]](s) ∧ (C, s) ⇓ s′ ⇒ [[Q]](s′)

Fig. 2. Semantic equations and natural semantics for While

Assertions are interpreted as truth values depending on a valuation function
given by the state, and specifications are interpreted as truth values independently
of states.

Figure 2 shows the semantic equations that define the interpretation functions
for expressions, assertions and specifications, and the natural semantics for com-
mands as a set of evaluation rules. Note that we make an overloaded use of [[.]] (we
could subscript the semantic brackets with the phrase type of the object phrase
that is being interpreted, but this is usually obvious from the phrase itself or from
the context).

Concerning the interpretation of expressions, note that we are assuming that
n ÷ 0 and n mod 0 produce some erroneous (and fixed) integer result. To treat the
detection of arithmetic errors it would be necessary to extend our current seman-
tics, for instance by enlarging the domains of interpretation of integer and boolean
expressions to include one or more special results denoting errors.

Note that the semantic interpretation of a command C can be seen as a partial
function, since the binary relation on states induced by C satisfies the following
property.

Lemma 1 (Determinacy) If (C, s) ⇓ s′ and (C, s) ⇓ s′′, then s′ = s′′.

Proof. By induction on the structure of C.

The semantic interpretation of assertions is the usual for a first-order logic. Ob-
serve the correspondence between the logical connectives of the assertion language
and the connectives of classic predicate calculus used in the meta-logic. Let A be an
assertion and s ∈ Σ. If [[A]](s) = true, we say that A holds for s. When [[A]](s) = true



for all states s ∈ Σ, A is said to be valid, written |= A. For a set of assertions M,
we write |= M if |= A holds for every A ∈M.

The semantic interpretation of a Hoare triple is a truth value that is indepen-
dent of states. However there is a quantification over the set of states. Notice that
a command C trivially satisfies a specification when the execution of C fails to ter-
minate (since there exists no s such that (C, s) ⇓ s′). A Hoare triple {P}C {Q} is
true if and only if, for all states satisfying P , executing C either fails to terminate
or terminates in a state satisfying Q. We will also call a specification valid when it
is true.

Total Correctness. The above notion corresponds to partial correctness specifica-
tions, since termination is not guaranteed. If termination is required, we are in the
presence of a total correctness formula and write [P ]C [Q] instead. The idea is that
[P ]C [Q] is true if and only if, for all states satisfying P , executing C terminates
in a state satisfying Q. Note that the validity of a total correctness specification
can be proved by proving the corresponding partial correctness specification and
additionally proving termination of commands.

We will leave the discussion of termination out of this paper, since it is rather
different in nature. Most program verification tools allow the users to specify loop
variants: integer expressions whose value strictly decreases with each iteration [23].

3 Hoare Logic

Given a specification in the form of a Hoare triple {P}C {Q}, how can its validity
be checked? One could think of testing the program by running it with a battery
of initial states satisfying the precondition P , and checking whether Q is satisfied
after execution if the program terminates. Of course, this process can never be
exhaustive, and one can only expect to have a certain degree of confidence about
the validity of a specification. This would not provide a proof of correctness.

The usual method for assuring the validity of specifications is to use a sound
program-proof system. By sound we mean that it should not infer specifications
that are not valid. We will now outline a formal system for inferring valid speci-
fications and describe methods for mechanically verifying the correctness of given
specifications.

A program-proof system is a set of inference rules that can be seen as fundamen-
tal laws about programs. Before defining an inference system for our While-language
programs, let us first explain some basic concepts.

An inference rule consists of zero or more premises and a single conclusion (we
use the notation of separating the premises from the conclusion by a horizontal line).
Each rule consisting in a number of premises and a conclusion is in fact a schema
for a specification (that is, a pattern containing meta-variables, each ranging over
some phrase type). An instance of an inference rule is obtained by replacing all
occurrences of each meta-variable by a phrase in its range. In some rules, there
may be side conditions that must be satisfied by the replacement. Also, there may
be syntactic operations (such as substitutions) that must be carried out after the
replacement. An inference rule containing no premises is called an axiom schema
(or simply, axiom). An inference rule is sound if and only if, for every instance, if
the premises are all valid then the conclusion is valid.

Deductions will be presented as trees; nodes will be labelled with formulas (spec-
ifications); the specification being proved lies at the root node, and the immediate
sub-trees are deductions corresponding to the premises of the rule instance used to
infer the root specification formula. A deduction tree is also called a derivation tree
or proof tree, and it constitutes a formal proof of the specification at its root.



(skip)
{P} skip {P}

(assign)
{Q[x 7→ e]} x := e {Q}

(seq)
{P}C1 {R} {R}C2 {Q}

{P}C1 ; C2 {Q}

(while)
{I && b}C {I}

{I}while b do C {I && ! b}

(if)

{P && b}Ct {Q} {P && ! b}Cf {Q}

{P} if b then Ct else Cf {Q}

(conseq)
{P}C {Q}

if |= P ′ → P and |= Q → Q′

{P ′}C {Q′}

Fig. 3. Inference system of Hoare logic – System H

The inference system of Hoare logic is shown in Figure 3. We name it system
H. Moreover, we say that a Hoare triple {P}C {Q} is derivable in this system, and
write `H {P}C {Q}, if it can be inferred from the rules of Figure 3 (in general we
will subscript the symbol ` with an inference system to denote derivability in that
system).

This system comprises one rule for each command construct in the programming
language, and the consequence rule, which allows us to derive a specification from
another specification by strengthening the precondition or weakening the postcon-
dition. Two of the command rules (skip and assign) are in fact axioms (since the
do-nothing and assignment commands have no sub-commands, the rules have no
premises).

The assignment rule states that a postcondition Q can be granted for a com-
mand x := e if the condition that results from substituting e for x in Q holds as
precondition. Q[x 7→ e] stands for the result of substituting e for the free occurrences
of x in Q2. The sequencing and conditional constructs are handled by rules that are
quite straightforward to understand. The rule for while commands uses the familiar
notion of an invariant condition (denoted I in the rule), preserved by executions
of the loop body. Note that one does not require that condition I holds throughout
execution of the loop body; only that it is reestablished at the end of each itera-
tion. We remark that, as the assertion language subsumes boolean expressions, the
boolean condition b can be combined with assertions in the (if) and (while) rules
(otherwise an embedding function would have to be applied to b).

Finally the (conseq) rule establishes a connection with predicate logic by means
of side conditions that are assertions rather that specifications. The idea is that a
specification can be derived from another specification provided that their corre-
sponding preconditions and postconditions are related in the way dictated by the
side conditions.

As a trivial example of using this system, consider the following proof tree con-
cerning a single-instruction program, which is built from an instance of rule schema

2 In the application of a substitution to a term, we rely on a variable convention. The
action of a substitution over a term is defined, as usual, with possible renaming of bound
variables.



(conseq) and an instance of axiom schema (assign).

{x + 1 > 10} x := x + 1 {x > 10}
if |= x > 10 → x + 1 > 10 and |= x > 10 → x > 10

{x > 10} x := x + 1 {x > 10}

We remark that the side conditions concern the validity of purely first-order formulas
(with no occurrences of program constructs). The compositional rules, associated
with the program constructs of the language, depend on the semantics of commands
but are independent of the interpretation of data types and arithmetic operations. It
is the rule of consequence that brings data-specific assertions to bear on the proofs
of specifications, through the introduction of side conditions.

Different presentations of the consequence rule can be found in the literature;
some authors prefer to include the side conditions as premises in the rule. Observe
however that care must be taken interpreting the following very common presenta-
tion of the rule

P
′ → P {P}C {Q} Q → Q

′

{P ′}C {Q′}

In particular, program variables that occur in P ′ → P and Q → Q′ must be seen as
universally quantified locally to those formulas, and not globally in the rule, which
would be the usual interpretation in a natural deduction-like presentation. This is
due to the fact that it is the validity, rather than truth, of P ′ → P and Q → Q′

that must be established.
Because of the presence of the consequence rule, Hoare logic is not meant to

be used by itself; it must always be accompanied by some device for proving the
validity of side-conditions. Since assertion languages are usually variations of first-
order logic, this device will typically be a predicate calculus. Moreover, this first-
order reasoning will have to use specific theories to cope with the data types that are
present in the language. (for the concrete case of the assertion language considered
in this paper, we assume a predicate calculus with a theory for integers).

Finally, note that it is an immediate consequence of the above discussion that
reasoning about programs (with a first-order assertion language) is in general not
decidable.

We will now address the relationship between system H and the semantics of the
language. All of the subsequent material relies on the fact that the inference system
is sound: if some Hoare triple can be proved using system H, then it is indeed valid
according to the semantics.

Proposition 1 (Soundness) In system H, every derivable specification is seman-
tically valid. That is, if `H {P}C {Q}, then [[{P}C {Q}]] = true.

Proof. By induction on the derivation of `H {P}C {Q}. For the while case we also
proceed by induction on the definition of the evaluation relation.

The classic reference on Hoare logic is [26]. Two papers survey its technical
development [2] and its historical development and impact [33]. In this paper we
focus on applying Hoare logic in the context of program verification; its use in the
software development process is covered in detail in textbooks [4, 50].

Bertot [10] has formalized in the Calculus of Inductive Constructions the se-
mantics (both operational and denotational) of a language like the one considered
in this paper. A so-called deep embedding of the inference system of Hoare logic
is given (the rules are encoded as cases of the inductive definition of a predicate),
and correctness with respect to the operational semantics is proven. This very in-
structive work is available as part of an integrated Coq development that covers
many aspects of the semantics of programming languages. We will come back to
this development in Section 7.



4 Verification Conditions and VCGens

With the help of a theorem prover or proof assistant, Hoare logic can be put into
practice to produce a program verification system. This can be done in two ways.
The first is by directly encoding the inference system in the logic of the proof tool
and reasoning simultaneously with rules of both Hoare logic and first-order logic as
required: reasoning starts with the former but switches to the latter logic when side
conditions are introduced by the consequence rule.

The alternative approach, which is prevalent in modern program verification
systems, is organised in two steps as follows:

1. A proof tree is constructed for the desired specification, assuming that the side
conditions generated by the consequence rule are valid.

2. An external proof tool is used (such as a theorem prover or a proof assistant)
to actually establish the validity of the side conditions.

We let A H {P}C {Q}, where A represents a set of first-order assertions,
denote the fact that there exists a derivation tree of {P}C {Q} in system H such
that A is the set of side conditions in that tree (in general we will subscript the
symbol  with an inference system to denote the existence of a proof tree in that
system with a given set of side conditions).

Note that the soundness of this approach to verification is immediate: if A H

{P}C {Q} and all the assertions of A hold, then `H {P}C {Q}. The first step is
said to generate proof obligations (the elements of A) that must then be discharged
in the second step. In the context of program verification these proof obligations
are usually known as verification conditions.

The advantage of this method lies in its flexibility. Since program constructs do
not occur in the assertions in A, the second step involves only discharging first-order
proof obligations, for which a great number of proof tools can be used interchange-
ably or even cooperatively. It is also easier to modify a program verification system
organized in this way. For instance if the programming language is modified, only
the first step above is affected.

Clearly the inference system allows for different proof trees to be constructed
for the same conclusion specification, and in fact these trees may well have different
sets of side conditions. This tree construction process can be replaced by a sim-
ple algorithm – a Verification Conditions Generator (VCGen) – that constructs a
set of verification conditions by applying a specific strategy, i.e. the algorithm pro-
duces verification conditions that correspond to the side conditions of one particular
derivation.

VCGen algorithms will be given as functions that take as input a Hoare triple and
return a set of first-order proof obligations. A side condition of the form |= P → Q
will give rise to a verification condition written as [ P → Q ], where the [ · ] notation
represents the processing that may be required to export proof obligations to the
target proof tool.

This processing may require more than just translating assertions into the lan-
guage of the tool; one typical operation corresponds to calculating the universal
closure of an assertion, by making explicit the universal quantification over pro-
gram variables that is implicit in the notion of validity (i.e. truth in all states) of
side conditions. For instance, the side condition |= x > 10 → x + 1 > 10 in the
earlier example would generate the verification condition [ x > 10 → x + 1 > 10 ],
which in turn could be exported as the formula Forallx. x > 10 → x + 1 > 10.

We remark that there are two possible sources of errors that may cause the
verification of a given Hoare triple to fail. These are:

1. program errors; and



2. specification errors: the program may be correct with respect to the intended
specification, but the specification has not been correctly formalized (there are
errors in the preconditions or postconditions).

In the rest of this paper we will study several VCGen algorithms and show how
they are obtained from the inference system H or some other related system. Our
first step is to study how the construction of derivations of H can be mechanized.

5 An Alternative Formulation of Hoare Logic

We now focus on using Hoare logic to produce verification conditions, as part of the
verification architecture outlined in the previous section. Given a specification, we
wish to construct a proof tree having that specification as conclusion; verification
conditions result from the side conditions of instances of rules in that tree.

There are two desirable properties that the inference system of Hoare logic should
enjoy to make possible the automatic construction of proof trees.

1. The sub-formula property: the premises of a rule should not contain occurrences
of assertions that do not occur in the rule’s conclusion. In other words, all the
assertions that occur in the premises should be sub-formulas of those occurring
in the conclusion. Otherwise one would have to invent formulas when applying
the rule in a backward fashion.

2. Unambiguity: a unique rule should be applicable in a backward fashion for any
given goal, so that the construction of derivation trees can be syntax-directed.

We start with the second property. The system H of Hoare logic can easily be
transformed into an equivalent unambiguous system; observe that ambiguity is only
caused by the presence of the consequence rule. In particular, note that some rules
are only applicable to goals that satisfy certain constraints, namely:

– the (skip) rule can only be applied if the precondition and the postcondition
are equal;

– the (assign) rule for assignment can only be applied if the precondition results
from the postcondition by performing the corresponding substitution;

– the (while) rule can only be applied if the precondition is an invariant of the
loop, and the postcondition is the same invariant strengthened with the negation
of the loop condition.

Application of these three rules to goals with arbitrary preconditions and postcondi-
tions may previously require the application of the consequence rule. This becomes
unnecessary if the weakening/strengthening conditions are judiciously distributed
through the program rules. This is precisely the case in the system of Figure 4.

This new system may be called a goal-directed system, since it consists of ex-
actly one rule for each program construct, and moreover, for a given specification
{P}C {Q}, the rule matching the program C can always be applied (if the side
conditions are met), since the precondition and postcondition are now arbitrary.
We name it system Hg, and we let `Hg {P}C {Q} denote the fact that {P}C {Q}
can be inferred from the rules of Figure 4.

It is easy to see that the (conseq) rule is admissible in system Hg, and that
systems H an Hg are equivalent.

Lemma 2 If `Hg {P}C {Q} and both |= P ′ → P and |= Q → Q′ hold, then
`Hg {P ′}C {Q′}.

Proof. By induction on the derivation of `Hg {P}C {Q}.



if |= P → Q
{P} skip {Q}

if |= P → Q[x 7→ e]
{P} x := e {Q}

{P}C1 {R} {R}C2 {Q}

{P}C1 ; C2 {Q}

{I && b}C {I}
if |= P → I and |= I && ! b → Q

{P}while b do C {Q}

{P && b}Ct {Q} {P && ! b}Cf {Q}

{P} if b then Ct else Cf {Q}

Fig. 4. Goal-directed version of Hoare logic – System Hg

Proposition 2 `H {P}C {Q} iff `Hg {P}C {Q} .

Proof. ⇒) By induction on the derivation of `H {P}C {Q}, using Lemma 2. ⇐)
By induction on the derivation of `Hg {P}C {Q}.

We remark that this new system still does not enjoy the sub-formula property.
In fact, although we have removed two rules that did not enjoy the property, we
have also caused the while rule to lose that property since the invariant assertion no
longer occurs in the conclusion. Moreover the rule for the sequence construct does
not enjoy the property either, since the intermediate assertion R does not occur in
the conclusion.

In fact, attaining the sub-formula property, and the possibility of automated
proof construction, requires the programmer to provide some extra information.

6 Program Annotations

Program verification cannot in general be carried out in a totally automatic way.
The use of a first-order assertion language may require using interactive proof devel-
opment instead of automatic theorem proving. The more information is provided in
the source program, the higher the chances of mechanization are. Loop invariants,
for instance, are typically provided manually as inputs to the verification process.

One way to restore the sub-formula property in our current system for Hoare
logic is precisely to introduce human-provided annotations in the programs. An
annotated program is a program with assertions embedded within it. Inserted as-
sertions should express conditions one expects to hold whenever control reaches the
points at which they occur. Let AComm be the class of annotated commands. Its
abstract syntax is defined by

AComm 3 C ::= skip | C ; {A}C | x := e | if b then C else C | while b do {A}C

For instance the annotated command

while b do {I}C

denotes a loop with condition b, instruction body C, and (user-provided) invariant
I. Naturally, the introduction of the loop invariant plays no role in the execution
semantics of the loop. Similarly, the command sequence

C1 ; {R} C2



if |= P → Q
{P} skip {Q}

if |= P → Q[x 7→ e]
{P} x := e {Q}

{P}C1 {R} {R}C2 {Q}

{P}C1 ; {R} C2 {Q}

{I && b}C {I}
if |= P → I and |= I && ! b → Q

{P}while b do {I}C {Q}

{P && b}Ct {Q} {P && ! b}Cf {Q}

{P} if b then Ct else Cf {Q}

Fig. 5. Goal-directed version of Hoare logic for annotated programs – System Hga.

has the same semantics as C1 ; C2, but is annotated with an assertion that must be
true when the execution of C1 (started in a state in which any given preconditions
of the combined command hold) terminates.

An inference system of Hoare logic for annotated programs is shown in Figure 5.
We name it system Hga. Note that this system enjoys the sub-formula property, and
can be used mechanically in a backward fashion to generate verification conditions.
We will exemplify its use with a classic program. This example also illustrates the
need to extend the assertion language with a vocabulary of function symbols.

a) Program CFib b) Annotated program CA
Fib

x := 1 ;
y := 0 ;
i := 1 ;
while i < n do
{

aux := y ;
y := x ;
x := x + aux ;
i := i + 1

}

x := 1 ;
{x == 1}
y := 0 ;
{x == 1 && y == 0}
i := 1 ;
{x == 1 && y == 0 && i == 1}
while i < n do {i ≤ n && x == Fib(i) && y == Fib(i− 1)}
{

aux := y ;
{i ≤ n && x == Fib(i) && aux == Fib(i− 1)}

y := x ;
{i < n && x == Fib(i) && y == Fib(i) && aux == Fib(i− 1)}

x := x + aux ;
{i ≤ n && x == Fib(i) + Fib(i− 1) && y == Fib(i)}

i := i + 1 ;
}

Fig. 6. Example program: Fibonacci

Example 1 Consider the program for calculating Fibanocci numbers in Figure 6.
The annotated program CA

Fib shown in b) is the result of annotating CFib shown in
a) in an ad hoc way.

We extend the assertion language with a vocabulary (Σ,α) of function symbols,
where α : Σ → N defines the arity of each symbol. From the point of view of
verification condition generation, functions are transparent and may occur in the
proof obligations. They should be formalized by a set of axioms and rules in the
target proof tool. In this particular case, we have Fib ∈ Σ, α(Fib) = 1. This function



could be formalized by encoding the following axioms.

Fib(0) == 0
Fib(1) == 1
Forallx. x > 1 → Fib(x) == Fib(x− 1) + Fib(x− 2)

We also remark the following:

– The invariant states that variables x and y are used to store respectively the
Fibonacci numbers for i and i− 1, together with an obvious condition regarding
a bound for i.

– The annotations in the sequence of assignment instructions preceding the loop
basically store the current state of the program.

– Inside the loop body, the annotated state is reset, since all that is known when
execution enters this sequence of instructions in a particular iteration is that
the invariant was initially valid. The annotations are then propagated forward
from the invariant with each assignment instruction.

– The annotations are somewhat optimised. For instance after the first instruction
in the loop body, since y is about to lose its present value, there is no need to keep
the old value in the annotation. Similarly, aux is dropped from the annotation
as soon as it is clear that it will no longer be required.

Let us consider the following specification for this annotated program CA
Fib

{n > 0}CA
Fib {x == Fib(n)}

Suppose we take composition of programs to be right-associative and let C be
the body of the loop; then applying the rule for the sequence construct we obtain the
following two proof obligations.

{n > 0}
x := 1 ; {x == 1} y := 0 ; {x == 1 && y == 0} i := 1
{x == 1 && y == 0 && i == 1}

and
{x == 1 && y == 0 && i == 1}
while i < n do {i ≤ n && x == Fib(i) && y == Fib(i− 1)}C
{x == Fib(n)}

The former will generate trivial verification conditions, and for the latter, ap-
plying the loop rule yields two verification conditions, namely

|= x == 1 && y == 0 && i == 1 → i ≤ n && x == Fib(i) && y == Fib(i− 1)

and
|= i ≤ n && x == Fib(i) && y == Fib(i− 1) && ! (i < n) → x == Fib(n)

together with the proof obligation corresponding to the loop invariant preservation,

{i ≤ n && x == Fib(i) && y == Fib(i− 1) && i < n}C {i ≤ n && x == Fib(i) && y == Fib(i− 1)}

The reader is invited to continue this example through to the end. We will return
to it in subsequent sections.

Note that if the annotations introduced in a program are ‘wrong’ (for instance,
the user provides as loop invariant a property that is not preserved by the loop
body), there is no risk of corrupting the soundness of the verification process: simply,
proof obligations will be created that cannot be proved.

Each choice of annotations leads to the construction of a unique tree in system
Hga for a given Hoare triple (possibly a proof tree if the side-conditions are valid). In
system Hg for non-annotated programs, many different proof trees are admissible



for the same specification. However, if a Hoare triple for an annotated program
is derivable in system Hga, then the corresponding triple for the program without
annotations is derivable in system Hg. To formally state this property we first define
an erasure function erA : AComm → Comm inductively as follows

erA(skip) = skip
erA(x := e) = x := e

erA(C1; {R}C2) = erA(C1); erA(C2)
erA(if b then Ct else Cf ) = if b then erA(Ct) else erA(Cf )

erA(while b do {I}C) = while b do erA(C)

Proposition 3 If `Hga {P}C {Q}, then `Hg {P} erA(C) {Q}.

Proof. By induction on the derivation of `Hga {P}C {Q}.

We say that a program C is correctly annotated with respect to a specification
(P,Q) if `Hga {P}C {Q} whenever `Hg {P} erA(C) {Q}.

Note that additionally to the sources of errors identified in Section 4, annota-
tions provide a new opportunity for errors to occurs. Annotation errors occur when
a program has been annotated with assertions that may not hold when the cor-
responding program point is reached during execution, which may well cause the
verification of the program to fail.

It is clear from the above example that annotating programs is a mostly te-
dious activity. This is true in particular for intermediate assertions in sequences of
commands. Fortunately, these assertions can easily be inferred mechanically, if the
program is seen in the context of a specification. Consider for instance the Hoare
triple

{x == 5 && y == 10}
aux := y ;
y := x ;
x := x + aux ;

{x > 10 && y == 5}

One possible correct way to annotate this sequence of commands is to work
backwards from the postcondition to obtain a precondition for each atomic com-
mand (in this example it suffices to use the assignment rule). The alternative would
be to propagate the precondition forward. Figure 7, a) and b), illustrates these two
approaches.

{x == 5 && y == 10}
aux := y ;

{x + aux > 10 && x == 5}
y := x ;

{x + aux > 10 && y == 5}
x := x + aux ;

{x > 10 && y == 5}

{x == 5 && y == 10}
aux := y ;

{x == 5 && y == 10 && aux == 10}
y := x ;

{x == 5 && y == 5 && aux == 10}
x := x + aux ;

{x > 10 && y == 5}

a) Backward propagation of the postcondition b) Forward propagation of the precondition

Fig. 7. Annotation propagation

The two annotation strategies exemplified in Figure 7 will in the next two sec-
tions be explored and give rise to two different VCGen algorithms, that work on
programs annotated with loop invariants only. We shall now state some lemmas
concerning such programs.

We let IComm denote the class of programs with annotated while commands.
Its abstract syntax is defined by

IComm 3 C ::= skip | C ; C | x := e | if b then C else C | while b do {A}C



if |= P → Q
{P} skip {Q}

if |= P → Q[x 7→ e]
{P} x := e {Q}

{P}C1 {R} {R}C2 {Q}

{P}C1 ; C2 {Q}

{I && b}C {I}
if |= P → I and |= I && ! b → Q

{P}while b do {I}C {Q}

{P && b}Ct {Q} {P && ! b}Cf {Q}

{P} if b then Ct else Cf {Q}

Fig. 8. Goal-directed Hoare logic with annotated while-loops – System Hgi.

An inference system of Hoare logic for IComm programs is shown in Figure 8. We
call it system Hgi.

Of course, every derivation of a Hoare triple in Hgi has a correspondence in
Hg. To state this property formally we define an erasure function erI : IComm →
Comm similar to erA (with the obvious adaptation).

Proposition 4 If `Hgi {P}C {Q}, then `Hg {P} erI(C) {Q}.

Proof. By induction on the derivation of `Hgi {P}C {Q}.

For C ∈ IComm, P,Q ∈ Assert, if whenever `Hg {P} erI(C) {Q} it holds that
`Hgi {P}C {Q}, we say that C is correctly annotated wrt. (P,Q).

Lemma 3 If `Hgi {P}C {Q}, then C is correctly annotated wrt. (P,Q).

Proof. Trivial, regarding the definition of correctly annotated program.

Lemma 4 If C is correctly annotated wrt. (P,Q) and both |= P ′ → P and |= Q →
Q′ hold, then C is correctly annotated wrt. (P ′, Q′).

Proof. Immediate from Lemma 2.

Lemma 5

1. If `Hg {P} erI(C1) ; erI(C2) {Q} and C1 ; C2 is correctly annotated wrt. (P,Q),
then, for some assertion R, C1 is correctly annotated wrt. (P,R), C2 is correctly
annotated wrt. (R,Q) and both `Hg {P} erI(C1) {R} and `Hg {R} erI(C2) {Q}
holds.

2. If `Hg {P} if b then erI(Ct) else erI(Cf ) {Q} and if b then Ct else Cf is
correctly annotated wrt. (P,Q), then Ct is correctly annotated wrt. (P && b, Q),
Cf is correctly annotated wrt. (P && ! b, Q) and both `Hg {P && b} erI(Ct) {Q}
and `Hg {P && ! b} erI(Cf ) {Q} holds.

Proof. Both (1) and (2) are proved by definition of correctly annotated program,
case analysis on the rules of system Hgi, Lemma 3 and Prop. 4.



prec(skip, Q) = Q
prec(x := e, Q) = Q[x 7→ e]
prec(C1; C2, Q) = prec(C1, prec(C2, Q))

prec(if b then Ct else Cf , Q) = (b → prec(Ct, Q)) && ( ! b → prec(Cf , Q))
prec(while b do {I}C, Q) = I

Fig. 9. Definition of weakest precondition for IComm programs: prec

Gordon [22] has proposed a mechanisation of Hoare logic in the HOL proof
assistant, which includes derivations of the inference rules of Hoare logic from a
semantic description of the language. A system that is close to system Hga is also
proposed.

In Gordon’s system these rules are not seen as inference rules; they are instead
used to define tactics for the prover. A tactic is a function used to advance the proof
construction, i.e. it is applied to the current proof state to produce sub-goals of the
present goal. In Gordon’s system the VCGen is itself implemented as a tactic. The
system incorporates notions that will be explained in the next section, so we will
return to it.

Gordon uses a so-called shallow embedding of the language into the proof sys-
tem’s logic, which precludes proving the assignment axiom as a HOL theorem (it is
a meta-level property). Homeier and Martin [27] use a deep embedding instead and
achieve a proof of correctness for a VCGen; their work very likely reports the first
fully verified VCGen .

The difference between a shallow and a deep embedding is dictated by the way
in which the represented languages (for programs and assertions) are related to
the object language of the theorem prover – either as extensions to the latter, or
constructed with separate data types. See [3] for a survey on representing Hoare
logic in the language of a theorem prover, and the different embedding possibilities.

7 Weakest Preconditions

Backward propagation of assertions can be realized through the use of weakest
preconditions. Given a program C ∈ IComm and a postcondition Q, we calcu-
late an assertion prec(C,Q) such that {prec(C,Q)}C {Q} is valid and moreover if
{P}C {Q} is valid for some P then |= P → prec(C,Q). Thus prec(C,Q) is the
weakest precondition that grants the truth of postcondition Q after terminating
executions of C.

Weakest preconditions are implicit in Hoare logic, in the way that the assign-
ment axiom propagates postconditions backwards: Q[x 7→ e] is the weakest precon-
dition for Q to hold after execution of x := e. The explicit definition of prec given
in Figure 9 propagates postconditions backwards through the remaining program
constructs.

In the sequence command, the weakest precondition of the second command is
fed as postcondition to the first command, to obtain the precondition of the com-
bined command. The clause for conditional is also straightforward to understand:
the weakest precondition of such a command is the weakest precondition of the
appropriate branch (calculated considering the same postcondition), depending on
the value of the boolean condition.

In general, since the number of iterations may not be known at compile time,
the weakest precondition of a loop cannot be calculated statically – performing a
one-step expansion of a while command (using conditional) and trying to derive the



VC({P} skip {Q}) = {[ P → Q ]}
VC({P} x := e {Q}) = {[ P → Q[x 7→ e] ]}

VC({P}C1 ; C2 {Q}) = VC({P}C1 {prec(C2, Q)}) ∪ VC({prec(C2, Q)}C2 {Q})
VC({P}while b do {I}C {Q}) = {[ P → I ], [ I && ! b → Q ]} ∪ VC({I && b}C {I})

VC({P} if b then Ct else Cf {Q}) = VC({P && b}Ct {Q}) ∪ VC({P && ! b}Cf {Q})

Fig. 10. A VCGen for IComm based on weakest preconditions: VC

C′

8>>>>>>><>>>>>>>:

A0 = {1 ≤ n && 1 == Fib(1) && 0 == Fib(1− 1)}
x := 1 ;

A1 = {1 ≤ n && x == Fib(1) && 0 == Fib(1− 1)}
y := 0 ;

A2 = {1 ≤ n && x == Fib(1) && y == Fib(1− 1)}
i := 1 ;

I = {i ≤ n && x == Fib(i) && y == Fib(i− 1)}
while i < n do { i ≤ n && x == Fib(i) && y == Fib(i− 1)}

C′′

8>>>>>>>>>><>>>>>>>>>>:

{
aux := y ;

A3 = {i + 1 ≤ n && x + aux == Fib(i + 1) && x == Fib((i + 1)− 1)}
y := x ;

A4 = {i + 1 ≤ n && x + aux == Fib(i + 1) && y == Fib((i + 1)− 1)}
x := x + aux ;

A5 = {i + 1 ≤ n && x == Fib(i + 1) && y == Fib((i + 1)− 1)}
i := i + 1 ;

}

Fig. 11. Fibonacci with annotated loop: CI
Fib

weakest precondition from that expansion leads to a recursive equation. However,
for the case of loops annotated with invariants, the weakest precondition can be
defined to be precisely the invariant assertion. The reason for this is that all the
reasoning about the behaviour of loops depends on the invariants being granted as
preconditions. In an annotated program, the invariant of a loop is thus the weakest
precondition required for any postcondition to hold.

Proposition 5 If C ∈ IComm is correctly annotated wrt. (P,Q) and `Hg

{P} erI(C) {Q}, then

1. `Hgi {prec(C,Q)}C {Q}
2. |= P → prec(C,Q)

Proof. By induction on the structure of C, and using lemmas 2, 3 and 5 for (1)
and 2, 4 and 5 for (2).

Figure 10 contains the straightforward definition of a VCGen obtained from
system Hgi by using prec as an auxiliary function. The following lemma states that
the verification conditions produced by this algorithm, for a given Hoare triple, are
exactly the side conditions of a derivation tree of that triple in system Hgi.

Lemma 6 For any C ∈ IComm,VC({P}C {Q}) Hgi {P}C {Q}

Proof. By induction on the structure of C.

Before looking at an example, we remark the following. The VCGen is implicitly
constructing a derivation of Hg following a fixed strategy. This consists in always
constructing the sub-derivation corresponding to the second sub-command in any
sequence command, until the intermediate condition is attained, at which point



VC({n > 0}CI
Fib {x == Fib(n)})

= VC({n > 0} x := 1 {A1}) ∪ VC({A1} y := 0 {A2}) ∪ VC({A2} i := 1 {I}) ∪
VC({I}while i < n do {I}C′′ {x == Fib(n)})

= {[ n > 0 → 1 ≤ n && 1 == Fib(1) && 0 == Fib(1− 1) ]} ∪
{[ 1 ≤ n && x == Fib(1) && 0 == Fib(1− 1) → 1 ≤ n && x == Fib(1) && 0 == Fib(1− 1) ]} ∪
{[ 1 ≤ n && x == Fib(1) && y == Fib(1− 1) → 1 ≤ n && x == Fib(1) && y == Fib(1− 1) ]} ∪
{[ I → I ], [ I && ! (i < n) → x == Fib(n) ]} ∪ VC({I && i < n}C′′ {I})

= {[ n > 0 → 1 ≤ n && 1 == Fib(1) && 0 == Fib(1− 1) ],
[ 1 ≤ n && x == Fib(1) && 0 == Fib(1− 1) → 1 ≤ n && x == Fib(1) && 0 == Fib(1− 1) ],
[ 1 ≤ n && x == Fib(1) && y == Fib(1− 1) → 1 ≤ n && x == Fib(1) && y == Fib(1− 1) ],
[ I → I ], [ I && ! (i < n) → x == Fib(n) ],
[ I && i < n → i + 1 ≤ n && x + y == Fib(i + 1) && x == Fib((i + 1)− 1) ],
[ A3 → A3 ], [ A4 → A4 ], [ A5 → A5 ]}

Fig. 12. Fibonacci example: verification conditions obtained with VC.

the first sub-derivation can then be constructed. This results in the derivation that
would be constructed in Hga if the program was previously annotated with inter-
mediate conditions calculated by prec.

Example 2 Figure 12 shows the application of the VCGen algorithm to our run-
ning example program. The intermediate conditions (generated as weakest precon-
ditions by prec) are shown in Figure 11 as annotations in the program, for the sake
of readability.

Observe that while all the conditions generated are straightforward to prove, most
are tautological, of the form [ Q → Q ] for some Q. The ones that are not are

1. [ n > 0 → 1 ≤ n &&1 == Fib(1) &&0 == Fib(1 − 1) ], which states that
the precondition in the specification is stronger than the weakest precondition
calculated for the program;

2. [ I && i < n → i + 1 ≤ n &&x + y == Fib(i + 1) && x == Fib((i + 1)− 1) ],
which corresponds to the preservation of the loop invariant; and

3. [ I && ! (i < n) → x == Fib(n) ], corresponding to the “use case” upon
termination of the loop, which must imply the postcondition in the Hoare triple.

The reason why this VCGen generates many tautological conditions is that
for any command of the form C1 ; x := e with postcondition Q, a precondition
prec(x := e,Q) will be generated for the assignment command. Conditions like the
following will proliferate

VC({prec(x := e, Q)}x := e {Q}) = [ Q[x 7→ e] → Q[x 7→ e] ]

It is however possible to define a VCGen that eliminates these unnecessary con-
ditions. The trick is to calculate verification conditions independently of precon-
ditions. The VCGen in Figure 13, that we call VCG, uses an auxiliary recursive
function VCaux that does exactly this.

Note that for any sequence of assignments VCG generates a sole verification
condition. This is a consequence of the following lemma.

Lemma 7 VCaux(C1 ; C2 ; . . . ; Cn, Q) = ∅, if each Ci is either a skip or an assign-
ment.

Proof. By induction on the length of the sequence C1 ; C2 ; . . . ; Cn.

The verification conditions for a Hoare triple {P}C {Q} are then calculated by
adding to the set VCaux(C,Q) a condition explicitly relating P and the weakest
precondition prec(C,Q). This may be seen as the principal verification condition,



VCaux(skip, Q) = ∅
VCaux(x := e, Q) = ∅
VCaux(C1; C2, Q) = VCaux(C1, prec(C2, Q)) ∪ VCaux(C2, Q)

VCaux(if b then Ct else Cf , Q) = VCaux(Ct, Q) ∪ VCaux(Cf , Q)
VCaux(while b do {I}C, Q) = {[ (I && b) → prec(C, I) ]} ∪ VCaux(C, I) ∪ {[ (I && ! b) → Q ]}

VCG({P}C {Q}) = {[ P → prec(C, Q) ]} ∪ VCaux(C, Q)

Fig. 13. An improved VCGen: VCG

VCG({n > 0}CI
Fib {x == Fib(n)})

= {[ n > 0 → prec(CI
Fib, x == Fib(n)) ]} ∪ VCaux(C

I
Fib, x == Fib(n))

= {[ n > 0 → 1 ≤ n && 1 == Fib(1) && 0 == Fib(1− 1) ]} ∪ VCaux(C
′, I) ∪

VCaux(while i < n do {I}C′′, x == Fib(n))
= {[ n > 0 → 1 ≤ n && 1 == Fib(1) && 0 == Fib(1− 1) ]} ∪ ∅ ∪
{[ I && i < n → prec(C′′, I) ]} ∪ VCaux(C

′′, I) ∪ {[ I && ! (i < n) → x == Fib(n) ]}
= {[ n > 0 → 1 ≤ n && 1 == Fib(1) && 0 == Fib(1− 1) ],

[ I && i < n → i + 1 ≤ n && x + y == Fib(i + 1) && x == Fib((i + 1)− 1) ],
[ I && ! (i < n) → x == Fib(n) ]}

Fig. 14. Fibonacci example, using VCG.

obtained from the backward propagation of the postcondition, whereas VCaux(C,Q)
calculates secondary verification conditions resulting from loops.

It is easy to see that, for a given Hoare triple, the verification conditions gener-
ated by VCG entail the ones generated by VC.

Lemma 8 If |= VCG({P}C {Q}), then |= VC({P}C {Q}).

Proof. By induction on the structure of C.

Proposition 6 (Correctness of VCG) Let C ∈ IComm and P,Q ∈ Assert such
that |= VCG({P}C {Q}). Then `Hg {P} erI(C) {Q}

Proof. Immediate by lemmas 6 and 8, and proposition 4.

Figure 14 illustrates the use of this VCGen. We remark that, since prec and
VCaux perform similar traversals of the program structure, they could be fused into
a single function using the well-known tupling technique of functional programming.

Bertot’s Coq development on program semantics [10] (see Section 3) includes
both the definition of the VC as a recursive function, and its proof of correctness.

Gordon’s VCGen [22] (see Section 6) is very similar to the VCG presented in
this section; the difference is that his algorithm does not require invoking an exter-
nal function for calculating weakest preconditions; instead sequence commands are
required to be partially annotated. A sequence command of the form C1 ; x := e
does not need an annotation, but all other sequences have to be annotated with
an intermediate assertion, as in C1 ; {R} C2. This system thus stands between Hga
and Hgi.

Weakest preconditions were introduced by Dijkstra [17] from a semantic per-
spective. The idea was to interpret programs as predicate transformers – mappings
of postconditions into preconditions. Dijkstra used a more abstract programming
language based on guarded commands, and in fact some modern and very advanced
tools for program verification are based on such a language. This will be the topic
of Section 8.



A Note on Auxiliary Variables. There is a problem with the specification of Fi-
bonacci that we have been using as a running example. The specification (n >
0, x == Fib(n)) has trivial solutions, since nothing prevents the program from
modifying the value of the input variable n. Thus the triple {n > 0}n := 0 ; x :=
0 {x == Fib(n)} is a valid Hoare triple.

The problem can be avoided with the use of an auxiliary variable to record the
initial value of n. The triple

{n > 0 &&n == n0}F {x == Fib(n) && n == n0}

solves the problem as long as n0 is indeed auxiliary, i.e. it is not used as a pro-
gram variable in F . Hoare logic has no explicit support for auxiliary variables: it
is not possible to write the specification above in a way that formally prevents n0

from being modified by F . This is particularly relevant if one is interested in doing
modular verification, since one may have to reason about a program that calls an
external procedure for which only the specification, and not the code, is available
(see Section 10.3 below).

This limitation has since been addressed at the theoretical level [35, 49, 51]. In
the context of program verification tools a practical solution has been found, which
consists in enriching the assertion language with the means to refer to the value of
an expression at a given program point, and introducing fresh variables accordingly.

For instance, our example specification could be written

{n > 0}F {x == Fib(n) && n == old(n)}

or simply
{n > 0}F {x == Fib(old(n))}

where old(n) refers to the value of n in the initial state, in which the precondition
is true. The generation of verification conditions can be altered to cope with this
operator in two ways, that we illustrate by means of an example.

The first method would be to interpret the old(·) operator as simply acting as
a protection against variable substitution. The definition of substitution could be
extended as follows:

old(e) [x 7→ e′] = old(e)

Thus old(e) would be treated as a constant. Occurrences of the operator could
then be removed from assertions when it is no longer necessary (a task for the
[·] operator when exporting verification conditions). Used with the Hoare triple
{n > 0}CI

Fib {x == Fib(old(n))} this would yield the same verification conditions
as before, but it would still work correctly if CI

Fib modified the value of n.
The second approach would be to introduce in the precondition an equation

old(e) = x′ where x′ is a fresh auxiliary variable (with respect to the current Hoare
triple). This would require modifying the VCGen as follows3

VCG({P}C {Q}) = {[ (P && e == x′) → prec(C,Q[old(e) 7→ x′]) ]} ∪
VCaux(C,Q[old(e) 7→ x′])

Thus for the above example one would have

VCG({n > 0}CI
Fib {x == Fib(old(n))}) =

[ n > 0 &&n == n0 → prec(CI
Fib, x == Fib(n0)) ] ∪

VCaux(CI
Fib, x == Fib(n0))

The treatment above (where we admit a single use of old) can easily be adapted to
this general case. In general each application of the operator would introduce a new
fresh variable.
3 Here Q[old(e) 7→ x′] stands for the result of replacing x′ for the occurrences of old(e) in

Q.



8 Guarded Commands

We take a detour here to briefly consider a variant of Dijkstra’s guarded commands
language and Weakest Precondition Calculus (WPC). The calculus provides a ver-
ification conditions generator, and guarded commands, although apparently very
abstract, are used as intermediate language by at least two standard program veri-
fication tools.

The language is different from the programming language we have been consid-
ering in a number of ways. First, there is no distinction between boolean expressions
and assertions. The language contains two primitives that test the value of asser-
tions: the commands assert b and assume b both behave like skip if b evaluates to
true. The difference is that the former terminates abruptly if b evaluates to false,
whereas the latter cannot be executed. It is thus a partial command that can be
used as a guard for the execution of a subsequent command.

Another aspect is the presence of a non-deterministic choice operator. The com-
mand C1 8 C2 will arbitrarily execute either C1 or C2.

The expression wp.C.Q denotes the weakest precondition such that Q holds as
a postcondition if the command C terminates. The following calculus defines the
weakest precondition semantics of the language.

wp.(assert b).Q = b &&Q
wp.(assume b).Q = b → Q

wp.(x := e).Q = Q[x 7→ e]
wp.(C1;C2).Q = wp.C1.(wp.C2.Q)

wp.(C1 8 C2).Q = wp.C1.Q &&wp.C2.Q

Given a program C, the verification condition generated for the partial correct-
ness Hoare triple {P}C {Q} is given by

VC({P}C {Q}) = [ P → wp.C.Q ]

In fact, since it corresponds to partial correctness, this notion is usually known as
the weakest liberal precondition.

Two crucial constructs of an imperative language – conditional and loops – are
missing from the guarded commands language, but they can be encoded, i.e. trans-
lated into guarded commands that generate the appropriate weakest preconditions.
The command if b then Ct else Cf can be encoded as

(assume b ; Ct) 8 (assume ! b ; Cf )

where b and ! b are used as guards in a choice command, which has the effect of
removing non-determinism since it is certain that one of the commands cannot be
executed.

Loops can be encoded in a number of ways. If one is willing to give up on
soundness and check that the invariant holds for only a limited number of iterations,
the loop while b do {I}C can simply be encoded as follows

assert I ;
(assume b ; C ; assert I ; assume false) 8 (assume ! b)

Here the loop is taken to execute at most once but this can easily be expanded to an
arbitrary fixed number of iterations. The effect of the first assert command is to test
the invariant in the initial conditions; the first branch of the choice command tests
its preservation by an iteration of the loop body; the second branch establishes the
falsity of the loop condition on exit. Note that if the choice selects the first branch,
the second branch will inevitably be selected when assume false is reached (the



command in the first branch cannot be executed in its entirety), thus this encodes
a loop that iterates at most once.

To test the preservation of the invariant in an arbitrary iteration of the loop
requires to identify all the variables (say x1, . . . , xn) assigned in the loop body, and
to assign them arbitrary values. Fresh variables (y1, . . . , yn) can be used to this
effect. The following translation of the loop first tests that the invariant is initially
true, then resets the values of variables, and assumes the truth of the invariant for
the current arbitrary state. The choice command that follows is the same as before,
but the first branch is now testing the preservation of the invariant in an arbitrary
iteration.

assert I ;
x1 := y1 ; . . . ; xn := yn ;
assume I ;
(assume b ; C ; assert I ; assume false) 8 (assume ! b)

The specific guarded command language presented in this section has been
widely used as a core language in the development of at least two major tools
for checking the behaviour of programs: the ESC [41, 39, 14] family of tools (of
which ESC/Modula3, ESC/Java and ESC/Java2 are instances) and more recently
Boogie [5], a generic VCGen that is being used notably with the Spec# language.
Both tools are capable of generating verification conditions as proof obligations for
the Simplify [16] prover, but Boogie supports more recent and advanced proof tools.

ESC stands for “extended static checking”; its emphasis was more on providing
programmers with tools that could find common errors (such as null dereferenc-
ing) rather than on program verification. Boogie is a very sophisticated tool that
integrates advanced features such as automatic inference of loop invariants. It is a
generic VCGen in the sense that different programming languages can be translated
into the BoogiePL language (in a sound way with respect to the generated verifica-
tion conditions). VC generation based on weakest preconditions has been advanced
with the development of Boogie to cover, for instance, programs containing both
loops and goto statements [6].

Both tools can be used with complex annotation languages for real-world pro-
grams. For instance ESC/Java uses JML (a standard annotation language for Java
programs, see Section 11), and Boogie has been used as a VCGen for Spec# (simi-
lar to JML but for C# programs). In both tools the guarded command language is
used as an intermediate language into which source code is translated; verification
conditions are generated by applying the weakest-precondition calculus.

An important result was proposed as part of the development of ESC. The
simple definition of weakest precondition given above generates VCs whose size is
potentially exponential in the size of the source code. Two clauses in the definition
of wp are responsible for this: the case of the assignment command x := e, which
may have to create as many copies of the expression e as there are occurrences of x
in the postcondition Q; and the choice command, which duplicates Q.

This problem can be fixed [20, 40] by using a two-stage algorithm that produces
VCs that are worst-case quadratic in size (and usually close to linear). The idea
is that guarded commands are first translated into a passive form, where assign-
ments are eliminated, replaced by assume commands and fresh variables for each
assigned variable. For instance, x := x + 1;assertx > 0 becomes assumex1 =
x+1 ; assertx1 > 0. This translation preserves the weakest precondition semantics,
and while it may increase the size of the code, this growth is worst-case quadratic
and near linear in practice.

Passive commands may not affect the state of programs since they do not contain
assignment statements. The semantics of two programs may differ only with respect



to termination: programs may terminate normally or erroneously. The weakest pre-
conditions wp.C.true and wp.C.false characterize respectively the states from which
C may not terminate erroneously and the states from which C may not terminate
normally. The weakest precondition for a given postcondition Q can then be written
as

wp.C.Q = wp.C.true &&( !wp.C.false → Q)

The resulting condition is worst-case quadratic in the size of the code.
The weakest precondition technique is quite flexible. For instance it is easy to

treat erroneous termination explicitly by calculating weakest preconditions with
respect to two postconditions. The following extended definition ensures a given
postcondition Q if the program terminates normally and a possibly distinct post-
condition R if it terminates abruptly with a failed assert command.

wp.(assert b).(Q,R) = (b &&Q) ‖ ( ! b &&R)
wp.(assume b).(Q,R) = b → Q

wp.(x := e).(Q,R) = Q[x 7→ e]
wp.(C1;C2).(Q,R) = wp.C1.(wp.C2.(Q,R), R)

wp.(C1 8 C2).(Q,R) = wp.C1.(Q,R) &&wp.C2.(Q,R)

Exceptional termination can also be considered in this framework, which inspires
our treatment of exceptions for the While language in Section 10.1.

The weakest preconditions calculus has also been studied extensively and ap-
plied in many textbooks [17, 34, 23] as a tool for the development of correct-by-
construction software – quite a different perspective from program verification.

9 Hoare Logic with Updates

In Section 6 it was shown that the intermediate assertions required by the sequencing
rule of Hoare logic could be calculated either backwards from postconditions or in
a forward fashion starting from the preconditions. In order to define an inference
system that propagates assertions in a forward manner, it is convenient to modify
the abstract syntax of programs to the following linear version, in which programs
are defined as (possibly empty) sequences of commands. We let PROG denote the
class of programs.

PROG 3 W ::= C ; W | ε
ICOMM 3 C ::= skip | x := e | if b then W else W | while b do {A}W

This corresponds simply to a left-associative view of the sequence operator. We
define a translation function T : IComm → PROG as follows

T (skip) = skip ; ε
T (x := e) = x := e ; ε
T (C1 ; C2) = T (C1)@T (C2)

T (if b then Ct else Cf ) = if b then T (Ct) else T (Cf ) ; ε
T (while b do {I}C) = while b do {I} T (C) ; ε

where ·@· denotes sequence concatenation.
A natural semantics for programs and commands can be given via a mutually

dependent definition of the evaluation relation, similar to what is done in Figure 2
(with the obvious adaptations).

The formulation of specifications that will be defined for these programs uses a
notion of update. An update is simply a partial mapping from variables to expres-
sions of the language. We write {x1 7→ e1, . . . , xn 7→ en} for the update mapping xi

to ei, for i ∈ {1, . . . , n}. Let U = {x1 7→ e1, . . . , xn 7→ en} be an update, and t an
expression (resp. assertion). We write U(t) to denote the expression (resp. assertion)



obtained by the simultaneous substitution of terms ei for the free occurrences of
variables xi in t.

Updates are modified by an operation that sets the value of a variable, defined
as

(U ;x := e) = U ⊕ {x 7→ U(e)}

where ⊕ denotes function overriding. For two partial functions f, g : X ↪→ Y we
define f ⊕ g : X ↪→ Y as follows

(f ⊕ g) (x) =
{

g(x) if x ∈ dom(g)
f(x) if x 6∈ dom(g) ∧ x ∈ dom(f)

The notion of specification will now be slightly modified to correspond to a
Hoare triple extended with an update, written {P}[U ]W {Q}. The idea is that the
update is applied to the initial state, in which the precondition holds, before the
program is executed. The semantic interpretation of such a specification is

[[{P}[U ]W {Q}]] = ∀s, s′ ∈ Σ. [[P ]](s) ∧ (W, sU ) ⇓ s′ ⇒ [[Q]](s′)

where the updated state sU is defined as follows:

sU (x) =
{

s(x) if x 6∈ dom(U)
[[U(x)]](s) if x ∈ dom(U)

Before introducing the inference system we proceed with some lemmas involving
the concepts described.

Lemma 9 For all C ∈ IComm, (T (C), s) ⇓ s′ iff (C, s) ⇓ s′

Proof. By induction on the structure of C.

Proposition 7 For C ∈ IComm, [[{P}[∅] T (C) {Q}]] = [[{P}C {Q}]]

Proof. Immediate by Lemma 9.

Lemma 10 (W1@W2, s) ⇓ s′ iff (W1, s) ⇓ s′′ and (W2, s
′′) ⇓ s′, for some s′′ ∈ Σ

Proof. By induction on the length of W1.

Lemma 11 [[U(Q)]](s) = [[Q]](sU )

Proof. By induction on the structure of Q.

Lemma 12 1. s(U ; x:=e) = (sU )x:=e

2. (W, s(U ; x:=e)) ⇓ s′ iff (x := e ; W, sU ) ⇓ s′

Proof. Directly by unfolding the definitions.

The inference system of Hoare logic with updates is given in Figure 15. We name
it system Hu. There is one rule for each program construct, except for sequencing,
since all programs are now seen as sequences. The rule for the empty program (called
the exit rule) introduces a verification condition; the remaining rules are selected
by pattern-matching on the first command of the program. So, the construction of
derivation trees is syntax-directed.

Proposition 8 (Soundness) Every specification derivable in system Hu is seman-
tically valid: If `Hu {P}[U ]W {Q}, then [[{P}[U ]W {Q}]] = true.

Proof. By induction on the derivation of `Hu {P}[U ]W {Q}.



if |= P → U(Q)
{P}[U ] ε {Q}

{P}[U ] W {Q}

{P}[U ] skip ; W {Q}

{P}[U ; x := e] W {Q}

{P}[U ] x := e ; W {Q}

{I && b}[∅] Wt {I} {I && ! b}[∅] W {Q}
if |= P → U(I)

{P}[U ]while b do {I}Wt ; W {Q}

{P &&U(b)}[U ] Wt@W {Q} {P && !U(b)}[U ] Wf @W {Q}

{P}[U ] if b then Wt else Wf ; W {Q}

Fig. 15. Rules of Hoare logic with updates – System Hu

VCGu({P}[U ] skip ; W {Q}) = VCGu({P}[U ] W {Q})
VCGu({P}[U ] x := e ; W {Q}) = VCGu({P}[U ; x := e] W {Q})

VCGu({P}[U ] ε {Q}) = {[ P → U(Q) ]}
VCGu({P}[U ]while b do {I}Wt ; W {Q}) = {[ P → U(I) ]} ∪ VCGu({I && b}[∅] Wt {I}) ∪

VCGu({I && ! b}[∅] W {Q})
VCGu({P}[U ] if b then Wt else Wf ; W {Q}) = VCGu({P && b}[U ] Wt@W {Q}) ∪

VCGu({P && ! b}[U ] Wf @W {Q})

Fig. 16. A VCGen based on updates: VCGu

So, it follows directly from propositions 7 and 8 that to prove the validity of the
triple {P}C {Q} it is enough to show that `Hu {P}[∅] T (C) {Q}.

Applying the rules of system Hu backwards to construct a proof tree is in fact
very close to performing a symbolic execution of the program, since at each step of
the proof, corresponding to a program C ; W , the proof construction will proceed
with the execution of the program W .

For this reason it has been argued that tools based on such a system with
updates may be more adequate for debugging purposes, since the construction of
proofs follows the symbolic execution of the code.

Figure 16 contains the definition of a VCGen obtained from system Hu. We
remark that whereas in the case of system Hgi producing a VCGen required imposing
a specific strategy for the construction of proof trees, in system Hu the construction
of derivations is deterministic. It is immediate to see that the verification conditions
produced by this algorithm, for a given Hoare triple with updates, are exactly the
side conditions of its derivation tree.

Lemma 13 VCGu({P}[U ]W {Q}) Hu {P}[U ]W {Q}

Proof. By induction on the structure of W .

Example 3 We exemplify the use of this VCGen with our running example of Fig-
ure 11. Let P = n > 0, Q = x == Fib(n), and I = i ≤ n &&x == Fib(i) && y ==
Fib(i− 1). We start with an empty update. The set of generated verification condi-



tions consists of the following

VCGu({P}[∅] CI
Fib ; ε {Q})

= VCGu({P}[{x 7→ 1, y 7→ 0, i 7→ 1}]while i < n do {I}C′′ ; ε {Q})
= {[ P → {x 7→ 1, y 7→ 0, i 7→ 1}(I) ]} ∪ VCGu({I && i < n}[∅] C′′ {I}) ∪ VCGu({I && ! (i < n)}[∅] ε {Q})
= {[ n > 0 → 1 ≤ n && 1 == Fib(1) && 0 == Fib(1− 1) ]} ∪ {[ I && ! (i < n) → ∅(Q) ]} ∪

VCGu({I && i < n}[∅] aux := y ; y := x ; x := x + aux ; i := i + 1 ; ε {I})
= {[ n > 0 → 1 ≤ n && 1 == Fib(1) && 0 == Fib(1− 1) ],

[ i ≤ n && x == Fib(i) && y == Fib(i− 1) && ! (i < n) → Q ],
[ i ≤ n && x == Fib(i) && y == Fib(i− 1) && i < n →

i + 1 ≤ n && x + y == Fib(i + 1) && x == Fib((i + 1)− 1) ]}
since,
VCGu({I && i < n}[∅] aux := y ; y := x ; x := x + aux ; i := i + 1 ; ε {I})
= VCGu({I && i < n}[∅ ; aux := y] y := x ; x := x + aux ; i := i + 1 ; ε {I})
= VCGu({I && i < n}[{aux 7→ y} ; y := x] x := x + aux ; i := i + 1 ; ε {I})
= VCGu({I && i < n}[{aux 7→ y, y 7→ x} ; x := x + aux] i := i + 1 ; ε {I})
= VCGu({I && i < n}[{aux 7→ y, y 7→ x, x 7→ x + y} ; i := i + 1] ε {I})
= {[ I && i < n → {aux 7→ y, y 7→ x, x 7→ x + y, i 7→ i + 1}(I) ]}
= {[ i ≤ n && x == Fib(i) && y == Fib(i− 1) && i < n →

i + 1 ≤ n && x + y == Fib(i + 1) && x == Fib((i + 1)− 1) ]}

Hoare logic with updates was introduced in [24] with the accompanying proof
tool KeY-Hoare. The tool will read in specifications and allow the user to construct
proof trees to prove them (no explicit VCGen is used). The tool also includes a first
order theory.

KeY-Hoare is in fact a side-product of a much bigger effort. The full-fledged
KeY tool [1] is a verification tool for Java Card programs (compatible with JML
annotations) capable of handling many aspects of real-world object-oriented pro-
grams. KeY is based on JavaCardDL [9], a version of Dynamic logic [25] suited for
this language. KeY also includes a symbolic debugger module.

Updates are a key ingredient of JavaCardDL; the other main ingredient, which
stands at the heart of Dynamic logic, is the existence of modalities in the assertion
language; in particular, for each program W in the programming language and as-
sertion Q, there exists a new assertion [W ]Q, interpreted informally as “if execution
of W terminates, then Q will hold in the final state”.

Formulas of JavaCardDL are of the form ([W ]Q)U . This formula is interpreted
as true in a state s if Q holds in the state that results from executing W in the
state sU , if execution terminates.

The Hoare triple {P}C {Q} can be written as the formula P → [C]Q, and it is
not difficult to see that system Hu can be rewritten in the syntax of Dynamic logic.
Note however that, since assertions of Dynamic logic may contain programs, it may
not be possible to interpret an arbitrary formula like P → [C]Q directly as a Hoare
triple.

10 Language Extensions

In this section we discuss several extensions to the initial language. Our aim here
is to provide some insight into how each of these aspects is treated by common
program verification tools for real-world languages. A brief review of these tools is
then given in the next and final section.

10.1 Exceptions

Adding exceptions to our language is useful not only because an exception mecha-
nism is useful in itself, but also because it provides a means to model control-transfer
commands (like break in C and Java).

We extend the syntax with two new commands, and a new form of specifications
for exceptional termination.

IComm 3 C ::= . . . | try C catchC | throw
Spec ∈ S ::= {A}C {A} | {A}C {|A|}



The throw command raises an exception (execution terminates abruptly). The
command try C catchCc executes C and catches a possible exception raised by it,
in which case the code Cc is executed.

The informal meaning of a specification {P}C {|Q|} is that if the program C is
executed in an initial state in which the precondition P is true, then either execution
of C does not terminate or it terminates with an exception raised, in which case the
postcondition Q is true in the final state. If the triple {P}C {Q} is valid and C
terminates, then it does so normally, with no exception raised.

The behaviour of throw and try C catchCc can be described axiomatically
by rules like the following, where in the latter case one rule is given for normal
termination of C and another for exceptional termination.

if |= P → Q
{P} throw {|Q|}

{P}C {Q}

{P} try C catch Cc {Q}

{P}C {|Q|} {Q}Cc {R}

{P} try C catch Cc {R}

This presentation is a bit tedious: one would also need a second version of the
last rule above, for the case where execution of Cc raises an exception. Moreover,
simply adding these rules to the system Hgi would not work: one would have to
add new rules to account for exceptional termination. It is simpler to use the no-
tation {P}C {Q}{|R|} for a specification with two possible outcomes. The intended
meaning is that {P}C {Q}{|R|} is valid if either {P}C {Q} is valid or {P}C {|R|}
is valid.

With this notion of specification it is possible to write a goal-directed Hoare logic
system for the extended language by simply adding an exceptional postcondition
{|R|} to all the Hoare triples in the system Hgi and extending it with the rules

if |= P → R
{P} throw {Q}{|R|}

{P}C {Q}{|R|} {R}Cc {Q}{|S|}

{P} try C catch Cc {Q}{|S|}

The definitions of prec and VCG (Figures 9 and 13) can be easily adapted; it
suffices to modify the signatures of functions to take two postconditions as ar-
guments, including a second postcondition R in every invocation prec (·, ·, R) and
VCaux (·, ·, R). The following additional clauses are required.

prec (throw, Q,R) = R
prec (try C catchCc, Q,R) = prec (C,Q, prec (Cc, Q,R))

VCaux (throw, Q,R) = ∅
VCaux (try C catchCc, Q,R) = VCaux (C,Q, prec (Cc, Q,R)) ∪ VCaux (Cc, Q,R)

And finally

VCG({P}C {Q}{|R|}) = [ P → prec (C,Q,R) ] ∪ VCaux (C,Q,R)

This treatment of exceptions is similar to that proposed in the work of Leino
and colleagues on weakest preconditions of guarded command languages [41].

10.2 Arrays and Pointers: Aliasing

Aliasing is a phenomenon that occurs in programming languages when some form
of indirection is possible in the data types.

Arrays are one such example: if we introduce arrays of integers in our language
(with notation u[k] for the value stored in position k of array u), then of course in-
dexing by arbitrary expressions must be allowed – restricting indexes to be constants



makes them useless collections of variables, since it is not possible to iterate over
them. This creates an opportunity for aliasing to occur. In particular, the expres-
sions u[e] and u[e′] may refer to the same positions in the array or not, depending
on whether e = e′ holds. This is usually called subscript aliasing.

A similar phenomenon occurs in a language with structures (or objects). Let s.a
denote the value stored in the field a of structure s, then p.a and q.a may refer to the
same value or not, depending on whether p and q refer to the same structure. Note
that this only makes sense if p and q are references (or pointers) to structures, since
it is not possible for two ordinary variables to have as values the same structure.
For this reason this form of aliasing is known as pointer aliasing.

Simply viewing arrays as indexed variables will not work. Consider the following
adaptation of the weakest precondition calculation for an assignment instruction.

prec(u[i] := e,Q) = Q[u[i] 7→ e]

This would yield for instance

prec(u[i] := 10, u[j] > 100) = u[j] > 100

but clearly the precondition u[j] > 100 will not be preserved by the command, if
executed in a state in which i = j.

Hoare’s solution to this problem was to see arrays as monolithic objects, and to
have an array update operation. This approach is not so useful in the context of the
generation of verification conditions. The correct output would be a logical condition
that incorporates all the required comparisons between all index expressions present
in the postcondition and the array position assigned to. For the above example one
would have

prec(u[i] := 10, u[j] > 100) = (i == j → 10 > 100) && (i != j → u[j] > 100)

It is relatively simple to devise an algorithm to produce this verification condition,
which we leave to the reader.

The logic with updates studied in section 9 copes very easily with aliasing: it
suffices to adapt to array positions or structure fields the definition of the operation
that sets the value of a variable. For instance for array positions one could write

(U ; a[j] := e) = U ⊕ {a[j] 7→ U(e)}

Dealing with pointer aliasing is crucial if one wants to be able to verify programs
that use recursive data-structures, dynamically defined in heap memory. A heap
can be seen as a very big array (indexed by memory positions), and in this sense
pointer aliasing is an instance of index aliasing. Seriously reasoning about pointer
programs requires a new framework that avoids the proliferation of arithmetic proof
obligations concerning indexes. The theoretical advances in this area have been
developed in the context of Separation logic [47], whose key idea is the possibility
to explicitly express the separation between different structures.

An alternative to this approach had previously been proposed by Burstall [13]
and further explored by Bornat [12]. The idea here was to see the heap as a collection
of arrays, rather than a single array. In particular, there should be one such array
for every structure/object field. For instance, p.a and q.a could be represented by
positions in the same (heap model) array a. They will be represented by the same
position if p and q are the same memory address (thus the same index of a). This
approach has the advantage of producing first-order verification conditions, which
means that it can be included in a standard VCGen.

The Caduceus VCGen uses this approach to construct a memory model for C
programs. The heap model is explicitly constructed as a set of data-structures in
the language of the Why generic VCGen (see Section 11 below).



10.3 Procedure Calls

Procedures interact with auxiliary variables in a way that destroys completeness of
a Hoare-style logic for the extended language. The theoretical problems raised by
introducing (mutually-recursive) procedures and the solutions proposed for them
(typically involving modified structural rules and a view of the inference system
oriented to judgments, with Hoare triples possibly assumed valid in the context)
are outside the scope of this paper. The reader is referred to [2, 35, 51] for details.

It is easy to see that recursive procedures raise a difficulty similar to the one that
leads to the introduction of loop invariants. Suppose procedure f has as body the
code Cf ; then the following straightforward rule transfers the proof of correctness
to the procedure body.

{P}Cf {Q}

{P} call f {Q}

and it is immediate to see that if Cf contains a call to f this may generate infinite
derivations.

We outline here the approach taken by modern program verification systems,
which consists in annotating procedures with a precondition and a postcondition,
i.e. to force the inclusion of specifications at the level of procedures. Homeier and
Martin’s mechanically verified VCGen has been extended to a language with recur-
sive procedures (with parameters) following this approach [28].

We assume a set of procedure names F and let f range over F . We let Proc
denote the class of procedure definitions (the body of a procedure definition is really
just a specification). We extend the command syntax with procedure calls, and let
programs be defined as sequences of procedure definitions.

IComm 3 C ::= . . . | call f
Proc 3 Φ ::= proc f = {A}C {A}
Prog 3 Π ::= Φ Π | Φ

We say that a program is well-defined if the names of its procedures are pairwise
disjoint.

One particular procedure should be designated as an entry point into each pro-
gram, but we will abstract away from this operational issue. From the axiomatic
point of view, all procedures should meet their specifications, which means that the
generated set of verification conditions will be the union of the sets generated for
each individual procedure.

Apart from that, there is the call command to consider. The specification of
each procedure establishes a sort of ‘contract’ between the calling procedure and the
invoked procedure: if f1 calls f2 then f1 should ensure that the precondition of f2 is
satisfied immediately before the call; the specification of f2 guarantees that its post-
condition will be satisfied when control is returned to f1. This principle is thoroughly
explored in the so-called design-by-contract approach to software development.

Let proc f = {Pf}Cf {Qf} ∈ Π with Π a well-defined program. The following
rule is all that is necessary to complement the system Hgi.

if |= P → Pf and |= Qf → Q
{P} call f {Q}

Note that the rule enjoys the sub-formula property, since Pf and Qf are obtained
from f .

The following clauses complement accordingly the definition of the auxiliary
functions of VCG, which now become relative to a given program Π.

precΠ(call f , Q) = Pf

VCΠ
aux(call f , Q) = {[ Qf → Q ]}



The verification conditions for the whole program guarantee that each procedure
keeps to its part of the contract, when invoked. They are given by

VCG(Π) =
⋃

Φ∈Π

VCG(Φ)

This system is similar (although presented is a slightly different way) to that
of [8]. We remark that this notion of procedure without parameters, which relies on
the use of global variables, is appropriate to capture the behaviour of methods in
object-oriented programming languages. In this case, global variables correspond to
class or instance variables.

We briefly consider now the case of procedures with parameters. Consider the
following procedure definition, where x is the only formal parameter of f , of type
int.

proc f(x) = {Pf}Cf {Qf}

One novelty is that the variable x is local to the procedure (one could also have
variables that are local to a block of code, but in this paper we haven’t considered
this possibility). One first difficulty is that in general this introduces a new form of
aliasing, which is present if x is also used as a global variable. In this case, it makes
sense that occurrences of x in annotations internal to the procedure definition be
interpreted as referring to the local variable. However, this makes it impossible to
refer to the value of the global variable x. This form of aliasing is called parameter
aliasing. We avoid it here by simply assuming that global and local variables are
taken from disjoint alphabets.

Note also that it must be possible for the precondition and postcondition of a
procedure specification to contain occurrences of the parameter variables. Following
the discussion at the end of Section 7, it may be necessary to resort to auxiliary vari-
ables or an operator like old to be able to refer, in the postcondition of a procedure,
to the entry value of a parameter.

When the procedure is called with an actual parameter e, using a command
call f(e), the contract between the invoking procedure and f implies that the pre-
condition should be met, with the actual parameter substituted by the formal one.
This is formalized as the following rule

if |= P → Pf [x 7→ e] and |= Qf → Q
{P} call f(e) {Q}

and the corresponding clause in the weakest precondition function would now be

precΠ(call f(e), Q) = Pf [x 7→ e]

A final remark: the treatment of call-by-reference parameters further complicates
things; it requires a formalization of pointers as discussed at the end of the previous
subsection.

Functions. A function is a subroutine that returns a value upon completion. Our
language could be extended with functions returning integers as follows (F can be
used also as an alphabet of function names).

IComm 3 C ::= . . . | x := fcall f(e)
Proc 3 Φ ::= . . . | fun f(x) = {A}C ; return e {A}

We assume every function definition contains a single return statement at the end,
and moreover function calls can only occur directly in assignment commands.

In order to make it possible to write useful specifications of functions, the anno-
tation language has to be extended once again. We use the keyword ‘result’ in the



postcondition of a function specification, to refer to the value returned by the func-
tion. ‘result’ is a logical variable that may only occur in postconditions of functions.
For instance, one could specify a function that calculates Fibonacci numbers as

fib(n) = {n > 0}Cfib {result == Fib(n)}

The function body could be implemented as Cfib = (CI
Fib ; returnx), where CI

Fib

is the code in Figure 11.
Let fun f(x) = {Pf}C ; return e {Qf} ∈ Π. The verification conditions are

calculated in the same way as before, with new rules for function calls and for the
result keyword.

if |= P → Pf [x 7→ e] and |= Qf [result 7→ y] → Q
{P} y := fcall f(e) {Q}

{P}C {Q[result 7→ e]}

{P}C ; return e {Q}

And the VCGen of Section 7 could be modified by adding the following clauses.

precΠ(y := fcall f(e), Q) = Pf [x 7→ e]
VCΠ

aux(y := fcall f(e), Q) = {[ Qf [result 7→ y] → Q ]}

precΠ(C ; return e,Q) = precΠ(C,Q[result 7→ e])
VCΠ

aux(C ; return e,Q) = VCΠ
aux(C,Q[result 7→ e])

Notice that the variable ‘result’ does not occur in the verification conditions pro-
duced by the VCGen.

Frame Properties. In languages like C or Java, evaluation of expressions may have
side effects that modify the state of the program; x++ is a typical example of such
an expression. This issue has been addressed in most attempts to construct Hoare
logics for realistic languages, see Section 11.

A function call is also an example of an expression with side effects. A command
like x := fcall f(e) alters the state of the program in a way that may not be limited
to x, since execution of the body of f is free to access global variables (or class and
instance variables, in the case of object-oriented programs). To allow for modular
reasoning, the function’s contract can include information describing the unchanged
part of the state, using a technique similar to that described at the end of Section 7.
However, it is easy to see that this approach is inadequate. For instance, if new
variables are introduced in the state, the specifications of many different functions
may have to be changed. This is usually known as the frame problem [11], and
it applies to all forms of subroutines, including procedures, functions, and object
methods – it is in fact particularly important in object-oriented languages.

In general terms, it is more useful to include in contracts a description of what
part of the state the subroutines are allowed to affect, rather than what part re-
mains unchanged. This is usually known as the subroutine’s frame condition. For
instance in JML there are two frame annotations that may be included in specifi-
cations: assignable annotations, which list the variables that may be assigned by
a method, and modifies annotations, which list variables whose value is allowed
to be modified. Thus a variable that may be assigned inside a method, but whose
value upon exit must be guaranteed to be restored to its entry value can be listed
as assignable but not as modifiable.

Frame conditions are part of a method’s contract: typically they give rise to
proof obligations when the method is being verified, and generate hypotheses that
may be used when reasoning about calls to that method. In JML, methods that do
not affect the state at all are called pure. A method annotated as pure can be used
for specification purposes and called inside annotations.



11 Conclusion: Realistic Programming Languages

The gap between the point where this paper stops, and program verification for
real-world languages begins, has been the object of significant work in recent years.
We finish the paper with a brief survey of how this work is being carried out.

One first aspect is that much of the recent work on program verification has
been developed around a community federated around the Java Modeling Language
(JML) [38, 36]. This is an annotation language for Java programs with support for
preconditions, postconditions, frame conditions, and loop invariants, all written us-
ing the same syntax for expressions as the source language (exclusive of side-effects).
JML also includes special keywords \old and \result with a similar interpretation
to what has been explained in Sections 7 and 10.3.

The language incorporates many other modeling aspects that are useful to rea-
son about object-oriented programs, such as class invariants (properties on the
values of instance and class variables that must be preserved by all methods) and
specification-only (or model) fields and methods, which allow for reasoning about
hidden (or not yet implemented) specifications. It also includes a rich library of
types with accompanying mathematical theories, including sets and sequences.

JML was not developed exclusively with program verification or other static
checking methods in mind. In fact, the design-by-contract approach to software
development is supported by a number of different tools for different tasks. These
include dynamic assertion checkers, unit test class generators, and even generators
that can be used to help write specifications. A number of program verification
systems discussed below also use JML as specification language.

Admittedly, the material in Section 10 barely starts to cover the complex lan-
guage constructs and memory models found in programming languages like C, Java
or C#. For the particular case of object-oriented languages, there are many specific
aspects that we have not covered at all. Poetzsch-Heffter and Müller [45] summarise
as follows the difficulties involved in designing Hoare-style logics for these languages.

Three aspects make verification of OO-programs more complex than veri-
fication of programs with just recursive procedures and arbitrary pointer data
structures: Subtyping, abstract types, and dynamic binding. Subtyping allows
variables to hold objects of different types. Abstract types have different or
incomplete implementations. Thus, techniques are needed to formulate type
properties without referring to implementations. Dynamic binding destroys
the static connection between the calls and the body of a procedure.

A discussion of how these issues are addressed is beyond the scope of this paper;
in the following we will concentrate instead on the organisational aspects. Accounts
of the state of the art and current challenges in the field of object-oriented program
verification (and specification languages) have been given by Jacobs, Kiniry and
Warnier [31] and more recently by Leavens, Leino, and Müller [37].

The work on verification conditions for realistic languages falls roughly into two
categories. Some researchers have proposed logics that attempt to fully describe
the axiomatic semantics of the programming language; this is the case for instance
of the following, which have been used to produce working program verification
systems.

– Poetzsch-Heffter and Müller’s logic for sequential Java [45], used in the Jive [43]
verification platform to generate verification conditions exported to the PVS
theorem prover. Following Gordon and Homeier and Martin, both the opera-
tional semantics of the language and the proposed Hoare inference system have
been encoded in Higher-order logic, and the latter proved sound with respect
to the former.



– In the context of the Loop project, a Hoare logic for JML has been devel-
oped [32]. The approach followed in Loop is quite different from what has been
discussed in this paper: a compiler first produces a logical theory (in the lan-
guage of the PVS theorem prover) that describes the behaviour of a given JML-
annotated Java program; program correctness is then proved in this theory.
However, a weakest-precondition function can also be integrated in the tool [30],
with the aim of reducing the required user interaction. This function is defined
inside the logic, and works on translated programs.

– The KeY project’s JavaCardDL [9] is used in an integrated tool that supports
the development of JML-annotated Java Card programs. JavaCardDL has
not to our knowledge been mechanically proved correct with respect to a non-
axiomatic semantics. This system uses a special-purpose theorem prover to con-
struct proofs of JavaCardDL.

The architectures of the latter two systems do not use a separate VCGen com-
ponent, and do not export proof obligations free of program constructs.

Von Oheimb’s Hoare logic for a subset of Java Card [52], although not used
(to our knowledge) to produce a working tool, was an important development since
it was mechanically proved sound and complete with respect to the operational
semantics, using the Isabelle/HOL interactive theorem prover.

A second approach has concentrated on developing practical tools for program
verification. The focus here has not been so much on correctness – these tools do
not promise to find all errors a program may contain – but on usability, integration
into the software development process, and compatibility with different proof tools.

We mention here two VCGen tools that are based on relatively small and simple
intermediate languages, sufficiently expressive to support the translation of realistic
languages. The more complex aspects are handled by an adequate translation into
the intermediate language, rather than by the design of a complex Hoare logic for
the target language. A good example of this is the memory model: the intermediate
language will typically have a very simple model with no heap, and the translation
of the target language encodes the heap in some way into that model, to ensure an
adequate treatment of references/pointers and aliasing.

The Boogie [5] program verifier was designed for the Spec# language (which
stands for C# as JML stands for Java) and incorporates many advanced features,
including integration with a development environment and automatic inference of
loop invariants. The BoogiePL intermediate language is a guarded command lan-
guage that features procedures and mutable variables, but excludes more complex
features like methods, side-effects, or call-by-reference. So the translation of the
target language into this intermediate language is responsible for encoding these
features in a sound way.

The Why tool [19] was born from a very different perspective: the basic idea is to
provide an interpretation of programs in type theory, such that the proof obligations
for typability of the interpretation function coincide with the verification conditions.
In this way, interpreting programs in type theory becomes an alternative to using
a standard VCGen. The Why intermediate language is ML-like, including both
functional and imperative features, exceptions, and labelling of statements (to make
the use of auxiliary variables unnecessary). The type system accounts for effects, i.e.
the type of an expression is annotated with, for instance, the set of variables that
are possibly modified by its evaluation, which makes possible to eliminate aliasing.
Why supports a variety of theorem provers, and has been used to produce program
verification tools for both C (Caduceus [18]) and Java (Krakatoa [42]).
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