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Introduction

First-order logic (FOL) is a richer language than propositional logic. Its lexicon

contains not only the symbols ∧, ∨, ¬, and → (and parentheses) from

propositional logic, but also the symbols ∃ and ∀ for “there exists” and “for all”,

along with various symbols to represent variables, constants, functions, and

relations.

There are two sorts of things involved in a first-order logic formula:

terms, which denote the objects that we are talking about;

formulas, which denote truth values.

Examples:

“Not all birds can fly.”

“Every child is younger than its mother.”

“Andy and Paul have the same maternal grandmother.”
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Syntax

Variables: x, y, z, . . . ∈ X (represent arbitrary elements of an underlying set)

Constants: a, b, c, . . . ∈ C (represent specific elements of an underlying set)

Functions: f, g, h, . . . ∈ F (every function f as a fixed arity, ar(f))

Predicates: P,Q, R, . . . ∈ P (every predicate P as a fixed arity, ar(P ))

Fixed logical symbols: �, ⊥, ∧, ∨, ¬, ∀, ∃
Fixed predicate symbol: = for “equals” (“first-order logic with equality”)
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Syntax

Terms

The set T , of terms of FOL, is given by the abstract syntax

T � t ::= x | c | f(t1, . . . , tar(f))

Formulas

The set L, of formulas of FOL, is given by the abstract syntax

L � φ, ψ ::= ⊥ | � | ¬φ | φ ∧ ψ | φ ∨ ψ | φ → ψ | t1 = t2
| ∀x. φ | ∃x. φ | P (t1, . . . , tar(P ))

In absence of parentheses, we adopt the following convention about
precedence. Ranging from the highest precedence to the lowest, we have
respectively: ¬, ∧, ∨ and →. Finally we have that → binds more tightly
than ∀ and ∃. Implication is right-associative.
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Free and bound variables

The free variables of a formula φ are those variables occurring in φ
that are not quantified. FV(φ) denotes the set of free variables
occurring in φ.

The bound variables of a formula φ are those variables occurring in φ
that do have quantifiers. BV(φ) denote the set of bound variables
occurring in φ.

Note that variables can have both free and bound occurrences within the
same formula. Let φ be ∃x.R(x, y) ∧ ∀y. P (y, x), then

FV(φ) = {y} and BV(φ) = {x, y}.

A formula φ is closed if it does not contain any free variables.

If FV(φ) = {x1, . . . , xn}, then
� its universal closure is ∀x1. . . .∀xn. φ
� its existential closure is ∃x1. . . .∃xn. φ

Maria João Frade (DI-UM) First-Order Logic (Classical) MFES 2009/10 5 / 33

Substitution

Substitution

We define u[t/x] to be the term obtained by replacing each
occurrence of variable x in u with t.

We define φ[t/x] to be the formula obtained by replacing each free
occurrence of variable x in φ with t.

Care must be taken, because substitutions can give rise to undesired
effects.

Given a term t, a variable x and a formula φ, we say that t is free for x in

φ if no free x in φ occurs in the scope of ∀z or ∃z for any variable z
occurring in t.

From now on we will assume that all substitutions satisfy this condition.
That is when performing the φ[t/x] we are always assuming that t is free
for x in φ.
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Substitution

Convention

We write φ(x1, . . . , xn) to denote a formula having free variables
x1, . . . , xn. We write φ(t1, . . . , tn) to denote the formula obtained by
replacing each free occurrence of xi in φ with the term ti. When using
this notation, it should always be assumed that each ti is free for xi in φ.
Also note that when writhing φ(x1, ..., xn) we do not mean that x1, ..., xn

are the only free variables of φ.

A sentence of first-order logic is a formula having no free variables.

The presence of free variables distinguishes formulas from sentences.

This distinction did not exist in propositional logic.
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Semantics

Vocabulary

A vocabulary (or signature) is a set of function, relation, and constant
symbols.

C ∪ F ∪ P is a vocabulary.

V-structure

Let V be a vocabulary. A V-structure consists of a nonempty underlying
set U along with an interpretation of V. An interpretation of V assigns:

an element of U to each constant in V,

a function from Un to U to each n-ary function in V, and

a subset of Un to each n-ary relation in V.

Model

We say that M is a model of (C,F ,P) iff M is a (C ∪ F ∪ P)-structure.
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Semantics

An alternative definition:

Model

A model M of (C,F ,P) consists of the following set of data:

a non-empty set U , the universe of concrete values;

for each constant symbol c ∈ C, a concrete element M(c) ∈ U ;

for each f ∈ F , a concrete function M(f) : U ar(f)→U ;

for each P ∈ P, a subset M(P ) ⊆ U ar(P ).

The set U is the interpretation domain (or interpretation universe) of M.

Semantically, one recognises the special role of equality by imposing on an
interpretation function M(=) to be actual equality on the set U of M.
Thus, (a, b) is in the set M(=) iff a and b are the same elements in the
set U .
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Semantics

Assignment

An assignment or environment for a universe U of concrete values is a
function α : X →U .

We denote by α[x �→ a] the assignment which maps x to a and any other
variable y to α(y).

Given a model M for (C,F ,P) with interpretation domain U , and given
an assignment α : X →U , we define an interpretation function for terms,
αM : T →U , as follows:

αM(x) = α(x)
αM(c) = M(c)
αM(f(t1, . . . , tn)) = M(f)(αM(t1), . . . , αM(tn))
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Semantics

Satisfaction relation

Given a model M for (C,F ,P) and given an assignment α : X →U , we
define the satisfaction relation M |=α φ for each logical formula φ over
(C,F ,P) as follows:

M |=α �
M �|=α ⊥
M |=α P (t1, . . . , tn) iff (αM(t1), . . . , αM(tn)) ∈M(P )
M |=α ¬φ iff M �|=α φ
M |=α φ ∧ ψ iff M |=α φ and M |=α ψ
M |=α φ ∨ ψ iff M |=α φ or M |= ψ
M |=α φ → ψ iff M �|=α φ or M |=α ψ
M |=α ∀x. φ iff M |=α[x �→a] φ for all a ∈ U
M |=α ∃x. φ iff M |=α[x �→a] φ for some a ∈ U

If φ is a sentence we often drop α and write M |= φ.
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Validity, satisfiability, and contradiction

If M |= φ holds, then we say that M models φ, or that φ holds in M, or
simply, that φ is true in M.

A sentence φ is

valid iff it holds in every model. We write |= φ.
A valid sentence is called a tautology.

satisfiable iff it holds in some model.

unsatisfiable iff there is no model in which φ is true.
An unsatisfiable sentence is called a contradiction.
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Validity, satisfiability, and contradiction

The definition of satisfiability can be extended to apply to all formulas of
first-order logic (not just sentences).

The formula φ(x1, . . . , xn) is satisfiable if and only if the sentence
∀x1. . . .∀xn. φ(x1, . . . , xn) (its universal closure) is satisfiable.
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Consequence and equivalence

φ |= ψ iff for every model M, if M |= φ then M |= ψ. We say ψ is
a consequence of φ.

φ ≡ ψ iff φ |= ψ and ψ |= φ. We say φ and ψ are equivalent.

Let Γ = {φ1, φ2, φ3, . . . } be a set of sentences.

M |= Γ iff M |= φi for each sentence φi in Γ. We say M models Γ.

Γ |= ψ iff M |= Γ implies M |= ψ for every model M. We say
ψ is a consequence of Γ.

Proposition

φ |= ψ iff |= φ → ψ

Γ |= ψ and Γ finite iff |=
�

Γ → ψ

Maria João Frade (DI-UM) First-Order Logic (Classical) MFES 2009/10 14 / 33



Consistency

Let Γ = {φ1, φ2, φ3, . . . } be a set of sentences.

Γ is consistent or satisfiable iff there is a model for Γ.

We say that Γ is inconsistent iff it is not consistent and denote this by
Γ |= ⊥.

Proposition

{φ,¬φ} |= ⊥
If Γ |= ⊥ and Γ ⊆ ∆, then ∆ |= ⊥.

Γ |= φ iff Γ,¬φ |= ⊥
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Substitution

Formula ψ is a subformula of formula φ if it occurs syntactically
within φ.

Formula ψ is a strict subformula of φ if ψ is a subformula of φ and
ψ �= φ

Substitution theorem

Suppose φ ≡ ψ. Let θ be a formula that contains φ as a subformula. Let
θ� be the formula obtained by safe replacing (i.e., avoiding the capture of
free variables of φ) some occurrence of φ in θ with ψ. Then θ ≡ θ�.
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Adquate sets of connectives for FOL

As in propositional logic, there is some redundancy among the connectives
and quantifiers.

Note that in classical first-order logic

∀x. φ ≡ ¬∃x.¬φ

∃x. φ ≡ ¬∀x.¬φ

Maria João Frade (DI-UM) First-Order Logic (Classical) MFES 2009/10 17 / 33

Decidability

Given formulas φ and ψ as input, we may ask:

Decision problems

Validity problem: “Is φ valid ?”
Satisfiability problem: “Is φ satisfiable ?”
Consequence problem: “Is ψ a consequence of φ ?”
Equivalence problem: “Are φ and ψ equivalent ?”

These are, in some sense, variations of the same problem.

φ is valid iff ¬φ is unsatisfiable
φ |= ψ iff ¬(φ → ψ) is unsatisfiable
φ ≡ ψ iff φ |= ψ and ψ |= φ
φ is satisfiable iff ¬φ is not valid
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Decidability

A solution to a decision problem is a program that takes problem instances
as input and always terminates, producing a correct “yes” or “no” output.

A decision problem is decidable if it has a solution.

A decision problem is undecidable if it is not decidable.

In PL we could, in theory, compute a truth table to determine whether or not a

formula is satisfiable. In FOL, we would have to check every model to do this.

Theorem (Church & Turing)

The decision problem of validity in first-order logic is undecidable: no
program exists which, given any φ, decides whether |= φ.

The decision problem of satisfiability in first-order logic is undecidable:
no program exists which, given any φ, decides whether φ is satisfiable.
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Decidability

However, there is a procedure that halts and says “yes” if φ is valid.

A decision problem is semi-decidable if exists a procedure that, given an
input,

halts and answers “yes” iff “yes” is the correct answer,

halts and answers “no” if “no” is the correct answer, or

does not halt if “no” is the correct answer

Unlike a decidable problem, the procedure is only guaranteed to halt if the
correct answer is “yes”.

The decision problem of validity in first-order logic is semi-decidable.
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Decidability

Methods for the Validity problem in fist-order logic:

Semantic Tableaux

Resolution for first-order logic

SLD-resolution

...

Although first-order validity is undecidable, there are special simple
fragments of FOL where it is decidable, e.g.

Monadic predicate logic (i.e. only unary predicates and no function
symbols) is decidable.

The Bernays-Schönfinkel class of formulas (i.e. formulas that can be
written with all quantiers appearing at the beginning of the formula
with existentials before universals and that do not contain any
function symbols) is decidable.
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Proof system

As with any logic, the semantics of first-order logic yield rules for
deducing the truth of one sentence from that of another.

The proof system we present for FOL is Natural Deduction in sequent
style.

The sequent Γ � φ indicates that φ can be formally derived from the
set of assumptions Γ.

Basically, we just have to add rules for quantifiers and the equality.

Other proof systems for FOL: Hilbert system and sequent calculus.
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Natural deduction rules for L (in sequent style)

Γ � � true
φ ∈ Γ

Γ � φ
assumption

Γ � φ Γ ⊂ Γ�

Γ� � φ
monotonicity

Γ � φ Γ � ψ

Γ � φ ∧ ψ
∧I

Γ � φ ∧ ψ

Γ � ψ
∧E1

Γ � φ ∧ ψ

Γ � ψ
∧E2

Γ � φ

Γ � φ ∨ ψ
∨I1

Γ � ψ

Γ � φ ∨ ψ
∨I2

Γ � φ ∨ ψ Γ, φ � θ Γ, ψ � θ

Γ � θ
∨E

Γ, φ � ψ

Γ � φ → ψ
→I

Γ � φ Γ � φ → ψ

Γ � ψ
→E

Γ, φ � ⊥
Γ � ¬φ

¬I
Γ � φ Γ � ¬φ

Γ � ⊥
¬E

Γ � ⊥
Γ � φ

⊥E
Γ � ¬¬φ

Γ � φ
¬¬E
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Natural deduction rules for L (in sequent style)

Proof rules for equality and quantifiers.

Γ � t = t
=I

Γ � φ(t1) Γ � t1 = t2
Γ � φ(t2)

=E

Γ � φ(y)
Γ � ∀x. φ(x)

∀I (a)
Γ � ∀x. φ(x)

Γ � φ(t)
∀E

Γ � φ(t)
Γ � ∃x. φ(x)

∃I
Γ � ∃x. φ(x) Γ, φ(y) � θ

Γ � θ
∃E (b)

(a) y must not occur free in Γ or φ(x).

(b) y must not occur free in Γ, φ(x) or θ.

Maria João Frade (DI-UM) First-Order Logic (Classical) MFES 2009/10 24 / 33



Formal proof

Deduction is purely syntactical.

A formal proof is a finite sequence of statements of the form “Γ � φ” each
of which follows from the previous statements by one of the basic rules.
We say that ψ can be derived from Γ if there is a formal proof concluding
with the statement Γ � ψ.

Example: t1 = t2 � t2 = t1

Statements Justification
1. t1 = t2 � t1 = t2 assumption
2. t1 = t2 � t1 = t1 =I 1
3. t1 = t2 � t2 = t1 =E 2, 1

Recall that in a proof-assistant the proof is usually developed backwards.
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Formal proof

Example: P (t), (∀x. P (x) → ¬Q(x)) � ¬Q(t)

Statements Justification
1. P (t),∀x. P (x) → ¬Q(x) � P (t) assumption
2. P (t),∀x. P (x) → ¬Q(x) � ∀x. P (x) → ¬Q(x) assumption
3. P (t),∀x. P (x) → ¬Q(x) � P (t) → ¬Q(t) ∀E 2
4. P (t),∀x. P (x) → ¬Q(x) � ¬Q(t) →E 1, 3

Example: ∀x. P (x) � ∃x. P (x)

Statements Justification
1. ∀x. P (x) � ∀x. P (x) assumption
2. ∀x. P (x) � P (t) ∀E 1
3. ∀x. P (x) � ∃x. P (x) ∃I 2
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Formal proof

Example: ∃x.¬ψ(x) � ¬∀x. ψ(x)

Statements Justification
1. ∃x.¬ψ(x),∀x. ψ(x) � ∃x.¬ψ(x) assumption
2. ∃x.¬ψ(x),∀x. ψ(x),¬ψ(x0) � ∀x. ψ(x) assumption
3. ∃x.¬ψ(x),∀x. ψ(x),¬ψ(x0) � ¬ψ(x0) assumption
4. ∃x.¬ψ(x),∀x. ψ(x),¬ψ(x0) � ψ(x0) ∀E 2
5. ∃x.¬ψ(x),∀x. ψ(x),¬ψ(x0) � ⊥ ¬E 4, 3
6. ∃x.¬ψ(x),∀x. ψ(x) � ⊥ ∃E 1, 5
7. ∃x.¬ψ(x) � ¬∀x. ψ(x) ¬I 6
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Soundness, completeness and compactness

Soundness

If Γ � φ, then Γ |= φ.

Therefore, if � ψ, then ψ is a tautology; and if � ¬ψ, then ψ is a
contradiction.

Completeness

If Γ |= φ, then Γ � φ.

Compactness

A (possible infinite) set of sentences Γ is satisfiable if and only if every
finite subset of Γ is satisfiable.
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Exercises

Prove that the following sequents hold

� ¬∀x.ψ(x) → ∃x.¬ψ(x) (classical)

(∀x.φ(x)) ∨ (∀x.ψ(x)) � ∀x.φ(x) ∨ ψ(x)

∃x.∃y.φ(x, y) � ∃y.∃x.φ(x, y)
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Proof checking mathematical statements

Mathematics is usually presented in an informal but precise way.

In situation Γ we have ψ.
Proof. p. QED

In Logic, Γ, ψ become formal objects and proofs can be formalized as
a derivation (following some precisely given set of rules).

Γ �L ψ
Proof. p. QED
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Proof-assistants

A proof-assistant is the combination of a proof-checker with a
proof-development system to help on the formalization process and the
interactive development of proofs.

In a proof-assistant, after formalizing the primitive notions of the theory
(under study), the user develops the proofs interactively by means of
(proof) tactics, and when a proof is finished a “proof-term” is created.

Machine assisted theorem proving:

helps to deal with large problems;

prevents us from overseeing details;

does the bookkeeping of the proofs.
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Proof-assistants

There are many proof-assistants for many different logics: fist-order logic,
higher-order logic, modal logic, ...

We can mention as examples:

Coq - http://coq.inria.fr/

Isabelle - http://isabelle.in.tum.de/

HOL - http://www.cl.cam.ac.uk/research/hvg/HOL

Agda - http://wiki.portal.chalmers.se/agda/

PVS - http://pvs.csl.sri.com/

...
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The Coq proof-assistant

Demo

http://coq.inria.fr/
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