The Curry-Howard Isomorphism

Software Formal Verification

Maria Jo3ao Frade

Departmento de Informatica
Universidade do Minho

2009/2010

Maria Jo3o Frade (DI-UM) The Curry-Howard Isomorphism MFES 2009/10 1/30

Classical versus intuitionistic logic

@ Classical logic is based on the notion of truth.

» The truth of a statement is “absolute”: statements are either true or
false.

Here “false” means the same as “not true”.

¢ V —¢ must hold no matter what the meaning of ¢ is.

Information contained in the claim ¢ V —¢ is quite limited.

Proofs using the excluded middle law, ¢ V —¢, or the double negation
law, =—¢ — ¢ (proof by contradiction), are not constructive.

vV v. v Yy

@ Intuitionistic (or constructive) logic is based on the notion of proof.

Rejects the guiding principle of “absolute” truth.

¢ is “true” if we can prove it.

¢ is “false” if we can show that if we have a proof of ¢ we get a
contradiction.

To show “¢ VvV —¢" one have to show ¢ or —¢. (If neither of these can
be shown, then the putative truth of the disjunction has no
justification.)

v

v

v

v

Maria Jo3o Frade (DI-UM) The Curry-Howard Isomorphism MFES 2009/10 2 /30

Intuitionistic (or constructive) logic

Judgements about statements are based on the existence of a proof or

“construction” of that statement.

Informal constructive semantics of connectives (BHK-interpretation)

@ A proof of ¢ A ¢ is given by presenting a proof of ¢ and a proof of .

@ A proof of ¢ \V 9 is given by presenting either a proof of ¢ or a proof of
(plus the stipulation that we want to regard the proof presented as evidence

for ¢ V 1).

@ A proof ¢ — 1 is a construction which permits us to transform any proof of

¢ into a proof of .

@ Absurdity | (contradiction) has no proof; a proof of —¢ is a construction
which transforms any hypothetical proof of ¢ into a proof of a contradiction.

@ A proof of Vx. ¢(x) is a construction which transforms a proof of d € D (D
the intended range of the variable) into a proof of ¢(d).

@ A proof of Jx. ¢(x) is given by providing d € D, and a proof of ¢(d).

Maria Jo3o Frade (DI-UM) The Curry-Howard Isomorphism

Intuitionistic logic

MFES 2009/10

Some classical tautologies that are not intuitionistically valid

¢V o

g — ¢

(¢ —=9) —¢) = ¢

(¢ =)V (Y —9)

(¢ — ¢) = (o V)
“(PAY) = (mpV)
(m¢ — ¢) = (¢ — ¢)
(=¢ —) — (Y — ¢)
—Vz. 2¢(z) — Jx. ¢(x)
—dz. ~¢p(z) — V. ¢(x)
—Vz.¢(x) — Jx. ~¢(x)

excluded middle law
double negation law
Pierce’s law

3/30

The constructive independence of the logical connectives contrast with the

classical situation.

Maria Jo3o Frade (DI-UM) The Curry-Howard Isomorphism

MFES 2009/10

4/30

Semantics of intuitionistic logic

The semantics of intuitionistic logic are rather more complicated than for
the classical case. A model theory can be given by

@ Heyting algebras or,

@ Kripke semantics.

Maria Jo3o Frade (DI-UM) The Curry-Howard Isomorphism MFES 2009/10 5/ 30

Proof systems for intuitionistic logic

@ A natural deduction system for intuitionistic propositional logic or
intuitionistic first-order logic are given by the set of rules presented for
PL or FOL, respectively, except the rule for the elimination of double
negation (——g).

e Traditionally, classical logic is defined by extending intuitionistic logic
with the double negation law, the excluded middle law or with
Pierce's law.

Maria Jo3o Frade (DI-UM) The Curry-Howard Isomorphism MFES 2009/10 6 / 30

The Curry-Howard isomorphism

The Curry-Howard isomorphism establishes a correspondence between natural
deduction for intuitionistic logic and A-calculus.

Observe the analogy between the implicational fragment of intuitionistic
propositional logic and A —

v

oel (assumption) @:d el (var)
TF o > T F z:¢
ok z:¢o - ey
LA "= (abs)
TFo— o T - (\z:gee):p—p
'Eop— I’i—qb() I'-a:9p—9Y Fl—b:qb()
—
T F 2 T - ab:o PP
Maria Jo3o Frade (DI-UM) The Curry-Howard Isomorphism MFES 2009/10 7 /30

The Curry-Howard isomorphism

The connection of type theory to logic is via the proposition-as-types

principle that establishes a precise relation between intuitionistic logic and

A-calculus.

@ a proposition A can be seen as a type (the type of its proofs);

@ and a proof of A as a term of type A.

Hence: A is provable <= A is inhabited

Therefore, the formalization of mathematics in type theory becomes

+t¢:A4 which is equivalent to | Typep(t) = A

Proof checking boils down to type checking.

Maria Jo3o Frade (DI-UM) The Curry-Howard Isomorphism MFES 2009/10

8/ 30

Type-theoretic notions for proof-checking

In the practice of an interactive proof assistant based on type theory, the user
types in tactics, guiding the proof development system to construct a proof-term.
At the end, this term is type checked and the type is compared with the original
goal.

In connection to proof checking there are some decision problems:

Type Checking Problem (TCP) L Ht:A 7
Type Synthesis Problem (TSP) I+ ¢:7?
Type Inhabitation Problem (TIP) r-7:4

TIP is usually undecidable for type theories of interest.

TCP and TSP are decidable for a large class of interesting type theories.

Maria Jo3o Frade (DI-UM) The Curry-Howard Isomorphism MFES 2009/10 9 /30

The reliability of machine checked proofs

Why would one believe a system that says it has verified a proof ?

The proof checker should be a very small program that can be verified by hand,
giving the highest possible reliability to the proof checker.

de Bruijn criterion

A proof assistant satisfies the de Bruijn criterion if it generates
proof-objects (of some form) that can be checked by an 'easy’
algorithm.

Proof-objects may be large but they are self-evident. This means that a small
program can verify them. The program just follows whether locally the correct
steps are being made.

Maria Jo3o Frade (DI-UM) The Curry-Howard Isomorphism MFES 2009/10 10 / 30

Type-theoretic approach to interactive theorem proving

provability of formula A <= inhabitation of type A
proof checking <= type checking
interactive theorem proving <= interactive construction of a term
of a given type

So, decidability of type checking is at the core of the type-theoretic
approach to theorem proving.

Maria Jo3o Frade (DI-UM) The Curry-Howard Isomorphism MFES 2009/10 11 / 30

Proof assistants based on type theory

The first systems of proof checking (type checking) based on the
propositions-as-types principle were the systems of the AUTOMATH project.

Modern proof assistants, aggregate to the proof checker a proof-development
system for helping the user to develop the proofs interactively.

Examples of proof assistants based on type theory:
@ Coq - based on the Calculus of Inductive Constructions
@ Lego - based on the Extended Calculus of Constructions

@ Agda - based on Martin-Lof's type theory

@ Nuprl - based on extensional Martin-Lof's type theory

Maria Jo3o Frade (DI-UM) The Curry-Howard Isomorphism MFES 2009/10 12 / 30

Higher-Order Logic and Type Theory)

Maria Jo3o Frade (DI-UM) The Curry-Howard Isomorphism MFES 2009/10 13 / 30

Higher-order logic and type theory

@ Following Church’s original definition of higher-order logic, simply typed A-calculus
is used to describe the language of HOL.

@ Recall the basic constructive core (V,=-) of HOL:

(axiom) Al ¢ if o€ A
Ao

(=1) A o=
AFp=v¢v AlF¢

(=E) At

AF

(V1) AFVz:o. if v:0¢&FV(A)
AFVz:o.1

(VE) A+ ple/x] if e:o
AkE

(conversion) A ¢ if ¢ =p

Maria Jo3o Frade (DI-UM) The Curry-Howard Isomorphism MFES 2009/10 14 / 30

Higher-order logic and type theory

Following the Curry-Howard isomorphism, why not introduce a \-term notation for
proofs ?

(axiom) AbFrz:¢ if x:9p€ A
Ayz:opbre:
(=1) Abr Ar:g.e: =1
Abrra:¢o=1v% Atrb:o¢
(=E) Abrrab:vy
A |_F,m:a' e . ¢
(V1) Abr Az:oe:Vr:io.1 if z:0¢FV(A)
AbFrt:Vr:o.v
(VE) Atbr te:ple/x] if Tke:o
A Frt: ¢
(conversion) Alrt:¢ if ¢=31
Maria Jo3o Frade (DI-UM) The Curry-Howard Isomorphism MFES 2009/10 15 / 30

Higher-order logic and type theory

Here we have two “levels” of types theories:
@ the (simple) type theory describing the language of HOL
@ the type theory for the proof-terms of HOL

These levels can be put together into one type theory: AHOL.

Maria Jo3o Frade (DI-UM) The Curry-Howard Isomorphism MFES 2009/10 16 / 30

AHOL

@ Instead of having two separate categories of expressions (terms and types)
we have a unique category of expressions, which are called pseudo-terms.

@ Pseudo-terms The set 7 of pseudo-terms is defined by
A B,M,N := Prop | Type | Type' | x| M N | \z:A.M | llx: A. B

We assume a countable set of variables: x,y, z, ...

o S {Prop, Type, Type'} is the set of sorts (constants that denote the
universes of the type system). We let s range over S.

@ Both Il and)\ bind variables. We have the usual notation for free and bound
variables.

@ Both = and V are generalized by a single construction II.
We write A— B instead of Ilz: A. B whenever z ¢ FV(B).

Maria Jo3o Frade (DI-UM) The Curry-Howard Isomorphism MFES 2009/10 17 / 30

AHOL

Contexts and judgments

@ C(Contexts are used to declare free variables.
@ The set of contexts is given by the abstract syntax: TI':= () | T,z : A

@ The domain of a context is defined by the clause
dom(x1: A1, ...,z Apn) = {21, ..., xpn}

@ A judgment is a triple of the foorm I' - A : B where A, B€ 7 and I is a
context.

@ A judgment is derivable if it can be inferred from the typing rules of next
slide.

» fI'F A: BthenT', Aand B are legal.
» IfI'- A: s for s €S we say that A is a type.

The typing rules are parametrized.

Maria Jo3o Frade (DI-UM) The Curry-Howard Isomorphism MFES 2009/10 18 / 30

AHOL - typing rules

(axioms) () + Prop: Type () = Type: Type
(var) a JI;; :1 a:s y) if x & dom(T")
(weak) L-M:A T FEDB:s if x ¢ dom(T")

B+ M:A

' A:s1 T''a:AF B:so

IT if (s1,s2) € {(Type, Type),

(1I) T F (A B) 5 (s1,s2) € {(Type, Type)
(Prop, Prop), (Type, Prop) }

' - M:(Ilz:A.B) ' - N: A
(app)
' = MN : B[N/z]
) e:AF M:B T'F (IIz:A.B) :s
'+ Az:AM: (Ilx: A. B)
(conv) ' M:A I' B:s if A= B
' - M:B
Maria Jo3o Frade (DI-UM) The Curry-Howard Isomorphism MFES 2009/10 19 / 30

AHOL - dependencies

' A:s1 TI''v:AF B:so

(1) I' = (Ilz:A.B) : s2

if (81, 82) € {(Type, Type), (Prop7 Prop), (Type, Prop)}

@ (Type, Type) forms the function type A— B for A : Type and B : Type; predicate
types. This comprises

» unary or binary predicates like: A — Prop or A — A — Prop;
> higher-order predicates like: (A — A — Prop) — Prop.

@ (Prop, Prop) forms the propositional type ¢ — 1 for ¢ : Prop and v : Prop;
propositional formulas.

@ (Type, Prop) forms the dependent propositional type (I1x: A.) for A : Type and
1 : Prop; universally quantified formulas.

Maria Jo3o Frade (DI-UM) The Curry-Howard Isomorphism MFES 2009/10 20 / 30

Dependent types

Type constructor II captures in the type theory the set-theoretic notion of generic
or dependent function space.

Dependent functions

The type of this kind of functions is IIz: A. B, the product of a family {B(x)},.a
of types. Intuitively

[lzx:A.B(x) = {f:A—>UB(x) | Va:A. fa:B(a)}
z:A

i.e., a type of functions f where the range-set depends on the input value.

If f:1lx:A. B(x), then f is a function with domain A and such that fa : B(a)
for every a : A.

Maria Jo3o Frade (DI-UM) The Curry-Howard Isomorphism MFES 2009/10 21 / 30

Dependent types

A dependent type is a type that may depend on a value, typically like:

a predicate, which depends on its domain. For instance, the predicate even over
natural numbers
even : nat— Prop

Universal quantification is a dependent function. For instance, Vz : nat.evenx is
encoded by

Ilz:nat.even x

an array type (or vector), which depends on its length. For instance, the
polymorphic dependent type constructor

Vec : Type—nat— Type
Here is an example of a dependent function in a Haskell like syntax:

gen :: Ily:nat.a—Vecay
gen 0z = ||
gen(n+1)x = z:(gennx)

Maria Jo3o Frade (DI-UM) The Curry-Howard Isomorphism MFES 2009/10 22 /30

AHOL - examples

Recall the Leibniz equality. For A:Type, x: A, y: A,

(r =1 y) dof I[IP:A— Prop. Px— Py

LetI‘défA:Type,x:A

Reflexivity A : Type,x: A + (AP:A — Prop.A\q: Px.q) : (v =L x)
(3)
I', P:A — Prop = Pz : Prop (2)
a
T P A PropaPo - a.Ps) T PiA S Prop F Pa — Pu: Prop R (1)
I'P:A— Prop - \q:Pxz.q: Px — Pz %) ' v (z =g x): Prop)
I' = (AP:A — Prop.\q: Px.q) : (x = x)
y
(1)
(4) (4)
' H A— Prop: Type I' - A — Prop : Type . (2)
', P:A — Prop = A — Prop : Type (weak) ', P:A — Prop - Px — Px : Prop -
I' v IIP:A— Prop. Pt — Px : Prop (ID)
4
Maria Jo3o Frade (DI-UM) The Curry-Howard Isomorphism MFES 2009/10 23 / 30
AHOL - examples
(2)
(3) (3)
(3) I'P:A — Prop - Pz :Prop I',)P:A — Prop - Pz : Prop .
ea
I'P:A — Prop - Px : Prop I'yP:A — Prop,z: Px + Px : Prop - (weak)
I'yP:A — Prop - Px — Px : Prop (I1)
y
(3)
—— (axiom)
F Type : Type’
(var)
(4) A:Type = A : Type (4)
' = A — Prop : Type ' x: A (var) ' v A — Prop: Type
(var) (weak)
I'P:A— Prop - P: A — Prop I',P:A— Prop - z: A
I'yP:A — Prop = Px : Prop (app)
y

Maria Jo3o Frade (DI-UM) The Curry-Howard Isomorphism MFES 2009/10 24 / 30

AHOL - examples

(4)
= Prop : Type (axiom) F Type : Type’ Ea):::)]) (5)
A :Type F Prop : Type E ' v A: Type . (5)
(5) I" = Prop: Type (weak) ' = A: Type .
' v A: Type T',z: A F Prop: Type - (weak)
I' H A — Prop: Type (1D
(5)
—_— (axiom) —_— (axiom)
= Type : Type var) F Type : Type (var)
A:Type F A : Type 2 A:Type = A : Type ’
' - A: Type (weak)
Maria Jo3o Frade (DI-UM) The Curry-Howard Isomorphism MFES 2009/10 25 / 30
AHOL - examples
Recall the Leibniz equality. For A:Type, x: A, y: A,
(r =1 y) dof I[1P:A— Prop. Px— Py
Let us now prove symmetry for the Leibniz equality.
Let I & A:Type,x: A, y: A t:(x =L y)
Symmetry T' F t(Az:A.z = x)(AP: A—Prop.\q: Px.q) : (y =1 x)
r + t:.(:sz y) I F ()\z:A.zz.L xz): A — Prop
' E t(Az:A.z=p z): (Az:A.z=p z)z — (Az:A. z = z)y . (cony) :
' E t(Az:A.z=p z): (x = z) — (y =L z) ' - w:(z=)
I' 5 t(Az:A.z=p z)w: (y =1 x)
where w is the proof-term of reflexivity (AP: X — Prop. A\q: Px. q)
y

Maria Jo3o Frade (DI-UM) The Curry-Howard Isomorphism MFES 2009/10 26 / 30

Properties of \HOL

There is a formulas-as-types isomorphism between intuitionistic HOL and AHOL J

Uniqueness of types
It ' - M:A and I' - M : B ,then A=3B. J

Subject reduction
It ' - M:A and M —-g N ,then I' - N:A. J

Strong normalization
If I' = M : A, then all B-reductions from M terminate.

Confluence
It M =3 N ,then M-—»g R and N-—»g R , for some term R .

v

Maria Jo3o Frade (DI-UM) The Curry-Howard Isomorphism MFES 2009/10 27 / 30

Properties of \HOL

Recall the decidability problems:

Type Checking Problem (TCP) T M:A ?
Type Synthesis Problem (TSP) T + M :?
Type Inhabitation Problem (TIP) T F ?7: A

For \HOL:
@ TIP is undecidable.
@ TCP and TSP are decidable.

Remark

Normalization and type checking are intimately connected due to (conv) rule.

Deciding equality of dependent types, and hence deciding the well-typedness of a
dependent typed terms, requires to perform computations. If non-normalizing
terms are allowed in types, then TCP and TSP become undecidable.

v

Maria Jo3o Frade (DI-UM) The Curry-Howard Isomorphism MFES 2009/10 28 / 30

Encoding of logic in type theory

Direct encoding.

@ Each logical construction have a counterpart in the type theory.

@ Theorem proving consists of the (interactive) construction of a proof-term,
which can be easily checked independently.

@ Examples:

Coq - based on the Calculus of Inductive Constructions
Agda - based on Martin-Lof's type theory

Lego - based on the Extended Calculus of Constructions
Nuprl - based on extensional Martin-Lof's type theory

Maria Jo3o Frade (DI-UM) The Curry-Howard Isomorphism MFES 2009/10 29 / 30

Encoding of logic in type theory

Shallow encoding (Logical Frameworks).

@ The type theory is used as a logical framework, a meta system for encoding
a specific logic one wants to work with.

@ The encoding of a logic L is done by choosing an appropriate context I';,, in
which the language of L and the proof rules are declared.

@ Usually, the proof-assistants based on this kind of encoding do not produce
standard proof-objects, just proof-scripts.

@ Examples:

HOL, based on the Church's simple type theory. This is a classical
higher-order logic.

Isabelle, based on intuitionistic simple type theory (used as the meta
logic). Various logics (FOL, HOL, sequent calculi,...) are described.

Maria Jo3o Frade (DI-UM) The Curry-Howard Isomorphism MFES 2009/10 30 / 30

