
Beyond Pure Type Systems

Maria João Frade
Departamento de Informática

Universidade do Minho
2007

Program Semantics, Verification, and Construction

MAP-i, Braga 2007

Program Semantics, Verification, and Construction

Maria João Frade

Departamento de Informática

Universidade do Minho

Beyond Pure Type Systems

MAP-i, Braga 2007

1

Part II - Program Verification

• Proof assistants based on type theory

• Type System and Logics

- Pure Type Systems
- The Lambda Cube
- The Logic Cube

• Extensions of Pure Type Systems

- Sigma Types
- Inductive Types
- The Calculus of Inductive Constructions
- Introduction to the Coq proof assistant

• The Coq proof assistant

• Axiomatic semantics of imperative programs: Hoare Logic

• Tool support for the specification, verification, and certification of programs

2

Bibliography

• Henk Barendregt. Lambda calculi with types. In S. Abramsky, D. Gabbay,
and T. Maibaum, editors, Handbook of Logic in Computer Science, volume 2,
pages 117–309. Oxford Science Publications, 1992.

• Henk Barendregt and Herman Geuvers. Proof-assistants using dependent
type systems. In John Alan Robinson and Andrei Voronkov, editors, Handbook
of Automated Reasoning, pages 1149–1238. Elsevier and MIT Press, 2001.

• Gilles Barthe and Thierry Coquand. An introduction to dependent type
theory. In Gilles Barthe, Peter Dybjer, Luís Pinto, and João Saraiva, editors,
APPSEM, volume 2395 of Lecture Notes in Computer Science, pages 1–41.
Springer, 2000.

• Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program
Development. Coq’Art: The Calculus of Inductive Constructions, volume XXV
of Texts in Theoretical Com- puter Science. An EATCS Series. Springer
Verlag, 2004.

• http://coq.inria.fr/. Documentation of the coq proof assistant (version 8.1).

3

Extensions of Pure Type Systems

4

Extensions of PTS

• It is possible to define data types but one does not get induction over these data
types for free. (It is possible to define functions by recursion, but induction has to
be assumed as an axiom.)

Inductive types are an extra feature which are present in all widely used type-
theoretic theorem provers, like Coq, Lego or Agda.

• Another feature that is not present in PTS, is the notion of (strong) sigma type.
A !-type is a “dependent product type” and therefore a generalization of product
type in the same way that a "-type is a generalization of the arrow type.

!x:A. B represents the type of pairs (a, b) with a : A and b : B[x := a].

(If x ! FV(B) we just end up with A # B.)

Note that products can be defined inside PTS with polymorphism, but !-type cannot.

PTS are minimal languages and lack type-theoretical constructs to carry out practical
programming. Several features are not present in PTS. For example:

5

Sigma types

Note that pairs are labeled with their types, so as to ensure uniqueness of types
and decidability of type checking.

Besides the paring construction to create elements of a !-type, one also has
projections to take a pair apart.

• The set of pseudo-terms is extended as follows:

• !-reduction is defined by the contraction rules

Chapter 3

Extensions of Pure Type Systems

• PTS are minimal languages and lack type-theoretical constructs to carry out practical pro-
gramming.

• Several features are not present in PTS. For example:

– It is possible to define data types but one does not get induction over these data types
for free. (It is possible to define functions by recursion, but induction has to be assumed
as an axiom.)
Inductive types are an extra feature which are present in all widely used type-theoretic
theorem provers, like Coq, Lego or Agda.

– Another feature that is not present in PTS, is the notion of (strong) Σ-type. A Σ-type
is a “dependent product type” and therefore a generalization of product type in the same
way that a Π-type is a generalization of the arrow type.
Σx :A.B represents the type of pairs (a, b) with a : A and b : B[x := a]. (If x !∈ FV(B)
we just end up with A×B.)
Note that products can be defined inside PTS with polymorphism, but Σ-type cannot.

3.1 Sigma Types

A Σ-type is a “dependent product type”. Σx :A.B is the type of pairs 〈a, b〉Σx:A. B such that a : A

and b : B[x := a]. Note that pairs are labeled with their types, so as to ensure uniqueness of types
and decidability of type checking.

Besides the paring construction to create elements of a Σ-type, on also has projections to take
a pair apart.

Extending PTS with Σ-types

• The set of pseudo-terms is extended as follows:

T ::= . . . | ΣV :T . T | 〈T , T 〉T | fst T | snd T

• π-reduction is defined by the contraction rules

fst 〈M,N〉Σx:A. B →π M

snd 〈M,N〉Σx:A. B →π N

23

Chapter 3

Extensions of Pure Type Systems

• PTS are minimal languages and lack type-theoretical constructs to carry out practical pro-
gramming.

• Several features are not present in PTS. For example:

– It is possible to define data types but one does not get induction over these data types
for free. (It is possible to define functions by recursion, but induction has to be assumed
as an axiom.)
Inductive types are an extra feature which are present in all widely used type-theoretic
theorem provers, like Coq, Lego or Agda.

– Another feature that is not present in PTS, is the notion of (strong) Σ-type. A Σ-type
is a “dependent product type” and therefore a generalization of product type in the same
way that a Π-type is a generalization of the arrow type.
Σx :A.B represents the type of pairs (a, b) with a : A and b : B[x := a]. (If x !∈ FV(B)
we just end up with A×B.)
Note that products can be defined inside PTS with polymorphism, but Σ-type cannot.

3.1 Sigma Types

A Σ-type is a “dependent product type”. Σx :A.B is the type of pairs 〈a, b〉Σx:A. B such that a : A

and b : B[x := a]. Note that pairs are labeled with their types, so as to ensure uniqueness of types
and decidability of type checking.

Besides the paring construction to create elements of a Σ-type, on also has projections to take
a pair apart.

Extending PTS with Σ-types

• The set of pseudo-terms is extended as follows:

T ::= . . . | ΣV :T . T | 〈T , T 〉T | fst T | snd T

• π-reduction is defined by the contraction rules

fst 〈M,N〉Σx:A. B →π M

snd 〈M,N〉Σx:A. B →π N

23

Extending PTS with !-types

(cont.)

 is the type of pairs such that and .

Chapter 3

Extensions of Pure Type Systems

• PTS are minimal languages and lack type-theoretical constructs to carry out practical pro-
gramming.

• Several features are not present in PTS. For example:

– It is possible to define data types but one does not get induction over these data types
for free. (It is possible to define functions by recursion, but induction has to be assumed
as an axiom.)
Inductive types are an extra feature which are present in all widely used type-theoretic
theorem provers, like Coq, Lego or Agda.

– Another feature that is not present in PTS, is the notion of (strong) Σ-type. A Σ-type
is a “dependent product type” and therefore a generalization of product type in the same
way that a Π-type is a generalization of the arrow type.
Σx :A.B represents the type of pairs (a, b) with a : A and b : B[x := a]. (If x !∈ FV(B)
we just end up with A×B.)
Note that products can be defined inside PTS with polymorphism, but Σ-type cannot.

3.1 Sigma Types

A Σ-type is a “dependent product type”. Σx :A.B is the type of pairs 〈a, b〉Σx:A. B such that a : A

and b : B[x := a]. Note that pairs are labeled with their types, so as to ensure uniqueness of types
and decidability of type checking.

Besides the paring construction to create elements of a Σ-type, on also has projections to take
a pair apart.

Extending PTS with Σ-types

• The set of pseudo-terms is extended as follows:

T ::= . . . | ΣV :T . T | 〈T , T 〉T | fst T | snd T

• π-reduction is defined by the contraction rules

fst 〈M,N〉Σx:A. B →π M

snd 〈M,N〉Σx:A. B →π N

23

Chapter 3

Extensions of Pure Type Systems

• PTS are minimal languages and lack type-theoretical constructs to carry out practical pro-
gramming.

• Several features are not present in PTS. For example:

– It is possible to define data types but one does not get induction over these data types
for free. (It is possible to define functions by recursion, but induction has to be assumed
as an axiom.)
Inductive types are an extra feature which are present in all widely used type-theoretic
theorem provers, like Coq, Lego or Agda.

– Another feature that is not present in PTS, is the notion of (strong) Σ-type. A Σ-type
is a “dependent product type” and therefore a generalization of product type in the same
way that a Π-type is a generalization of the arrow type.
Σx :A.B represents the type of pairs (a, b) with a : A and b : B[x := a]. (If x !∈ FV(B)
we just end up with A×B.)
Note that products can be defined inside PTS with polymorphism, but Σ-type cannot.

3.1 Sigma Types

A Σ-type is a “dependent product type”. Σx :A.B is the type of pairs 〈a, b〉Σx:A. B such that a : A

and b : B[x := a]. Note that pairs are labeled with their types, so as to ensure uniqueness of types
and decidability of type checking.

Besides the paring construction to create elements of a Σ-type, on also has projections to take
a pair apart.

Extending PTS with Σ-types

• The set of pseudo-terms is extended as follows:

T ::= . . . | ΣV :T . T | 〈T , T 〉T | fst T | snd T

• π-reduction is defined by the contraction rules

fst 〈M,N〉Σx:A. B →π M

snd 〈M,N〉Σx:A. B →π N

23

Chapter 3

Extensions of Pure Type Systems

• PTS are minimal languages and lack type-theoretical constructs to carry out practical pro-
gramming.

• Several features are not present in PTS. For example:

– It is possible to define data types but one does not get induction over these data types
for free. (It is possible to define functions by recursion, but induction has to be assumed
as an axiom.)
Inductive types are an extra feature which are present in all widely used type-theoretic
theorem provers, like Coq, Lego or Agda.

– Another feature that is not present in PTS, is the notion of (strong) Σ-type. A Σ-type
is a “dependent product type” and therefore a generalization of product type in the same
way that a Π-type is a generalization of the arrow type.
Σx :A.B represents the type of pairs (a, b) with a : A and b : B[x := a]. (If x !∈ FV(B)
we just end up with A×B.)
Note that products can be defined inside PTS with polymorphism, but Σ-type cannot.

3.1 Sigma Types

A Σ-type is a “dependent product type”. Σx :A.B is the type of pairs 〈a, b〉Σx:A. B such that a : A

and b : B[x := a]. Note that pairs are labeled with their types, so as to ensure uniqueness of types
and decidability of type checking.

Besides the paring construction to create elements of a Σ-type, on also has projections to take
a pair apart.

Extending PTS with Σ-types

• The set of pseudo-terms is extended as follows:

T ::= . . . | ΣV :T . T | 〈T , T 〉T | fst T | snd T

• π-reduction is defined by the contraction rules

fst 〈M,N〉Σx:A. B →π M

snd 〈M,N〉Σx:A. B →π N

23

Chapter 3

Extensions of Pure Type Systems

• PTS are minimal languages and lack type-theoretical constructs to carry out practical pro-
gramming.

• Several features are not present in PTS. For example:

– It is possible to define data types but one does not get induction over these data types
for free. (It is possible to define functions by recursion, but induction has to be assumed
as an axiom.)
Inductive types are an extra feature which are present in all widely used type-theoretic
theorem provers, like Coq, Lego or Agda.

– Another feature that is not present in PTS, is the notion of (strong) Σ-type. A Σ-type
is a “dependent product type” and therefore a generalization of product type in the same
way that a Π-type is a generalization of the arrow type.
Σx :A.B represents the type of pairs (a, b) with a : A and b : B[x := a]. (If x !∈ FV(B)
we just end up with A×B.)
Note that products can be defined inside PTS with polymorphism, but Σ-type cannot.

3.1 Sigma Types

A Σ-type is a “dependent product type”. Σx :A.B is the type of pairs 〈a, b〉Σx:A. B such that a : A

and b : B[x := a]. Note that pairs are labeled with their types, so as to ensure uniqueness of types
and decidability of type checking.

Besides the paring construction to create elements of a Σ-type, on also has projections to take
a pair apart.

Extending PTS with Σ-types

• The set of pseudo-terms is extended as follows:

T ::= . . . | ΣV :T . T | 〈T , T 〉T | fst T | snd T

• π-reduction is defined by the contraction rules

fst 〈M,N〉Σx:A. B →π M

snd 〈M,N〉Σx:A. B →π N

23

6

Sigma types

• The notion of specification is extended with a set U ⊆ S " S " S of rules

for !-types.
As usual, we use (s1,s2) as an abbreviation for (s1,s2,s2).

• The typing system is extended with the rules in the next slide. Moreover,
the conversion rule is modified so as to include $-conversion.

Extending PTS with !-types (cont.)

24 CHAPTER 3. EXTENSIONS OF PURE TYPE SYSTEMS

(sigma)
Γ ! A : s1 Γ, x :A ! B : s2

Γ ! (Σx :A.B) : s3

if (s1, s2, s3) ∈ U

(pair)
Γ ! M : A Γ ! N : B[x := M] Γ ! (Σx :A.B) : s

Γ ! 〈M,N〉Σx:A. B : (Σx :A.B)

(proj1)
Γ ! M : (Σx :A.B)

Γ ! fst M : A

(proj2)
Γ ! M : (Σx :A.B)

Γ ! sndM : B[x := fst M]

(conversion) Γ ! M : A Γ ! B : s
Γ ! M : B

if A =βπ B

Figure 3.1: Typing rules for Sigam-types

• The notion of specification is extended with a set U ⊆ S × S × S of rules for Σ-types. As
usual, we use (s1, s2) as an abbreviation for (s1, s2, s2).

• The typing system is extended with the rules of Figure 3.1. Moreover, the convertion rule
is modified so as to include π-convertion.

3.2 Inductive Types

24 CHAPTER 3. EXTENSIONS OF PURE TYPE SYSTEMS

(sigma)
Γ ! A : s1 Γ, x :A ! B : s2

Γ ! (Σx :A.B) : s3

if (s1, s2, s3) ∈ U

(pair)
Γ ! M : A Γ ! N : B[x := M] Γ ! (Σx :A.B) : s

Γ ! 〈M,N〉Σx:A. B : (Σx :A.B)

(proj1)
Γ ! M : (Σx :A.B)

Γ ! fst M : A

(proj2)
Γ ! M : (Σx :A.B)

Γ ! sndM : B[x := fst M]

(conversion) Γ ! M : A Γ ! B : s
Γ ! M : B

if A =βπ B

Figure 3.1: Typing rules for Sigam-types

• The notion of specification is extended with a set U ⊆ S × S × S of rules for Σ-types. As
usual, we use (s1, s2) as an abbreviation for (s1, s2, s2).

• The typing system is extended with the rules of Figure 3.1. Moreover, the convertion rule
is modified so as to include π-convertion.

3.2 Inductive Types

24 CHAPTER 3. EXTENSIONS OF PURE TYPE SYSTEMS

(sigma)
Γ ! A : s1 Γ, x :A ! B : s2

Γ ! (Σx :A.B) : s3

if (s1, s2, s3) ∈ U

(pair)
Γ ! M : A Γ ! N : B[x := M] Γ ! (Σx :A.B) : s

Γ ! 〈M,N〉Σx:A. B : (Σx :A.B)

(proj1)
Γ ! M : (Σx :A.B)

Γ ! fst M : A

(proj2)
Γ ! M : (Σx :A.B)

Γ ! sndM : B[x := fst M]

(conversion) Γ ! M : A Γ ! B : s
Γ ! M : B

if A =βπ B

Figure 3.1: Typing rules for Sigam-types

• The notion of specification is extended with a set U ⊆ S × S × S of rules for Σ-types. As
usual, we use (s1, s2) as an abbreviation for (s1, s2, s2).

• The typing system is extended with the rules of Figure 3.1. Moreover, the convertion rule
is modified so as to include π-convertion.

3.2 Inductive Types

(cont.)

7

24 CHAPTER 3. EXTENSIONS OF PURE TYPE SYSTEMS

(sigma)
Γ ! A : s1 Γ, x :A ! B : s2

Γ ! (Σx :A.B) : s3

if (s1, s2, s3) ∈ U

(pair)
Γ ! M : A Γ ! N : B[x := M] Γ ! (Σx :A.B) : s

Γ ! 〈M,N〉Σx:A. B : (Σx :A.B)

(proj1)
Γ ! M : (Σx :A.B)

Γ ! fst M : A

(proj2)
Γ ! M : (Σx :A.B)

Γ ! sndM : B[x := fst M]

(conversion) Γ ! M : A Γ ! B : s
Γ ! M : B

if A =βπ B

Figure 3.1: Typing rules for Sigam-types

• The notion of specification is extended with a set U ⊆ S × S × S of rules for Σ-types. As
usual, we use (s1, s2) as an abbreviation for (s1, s2, s2).

• The typing system is extended with the rules of Figure 3.1. Moreover, the convertion rule
is modified so as to include π-convertion.

3.2 Inductive Types

24 CHAPTER 3. EXTENSIONS OF PURE TYPE SYSTEMS

(sigma)
Γ ! A : s1 Γ, x :A ! B : s2

Γ ! (Σx :A.B) : s3

if (s1, s2, s3) ∈ U

(pair)
Γ ! M : A Γ ! N : B[x := M] Γ ! (Σx :A.B) : s

Γ ! 〈M,N〉Σx:A. B : (Σx :A.B)

(proj1)
Γ ! M : (Σx :A.B)

Γ ! fst M : A

(proj2)
Γ ! M : (Σx :A.B)

Γ ! sndM : B[x := fst M]

(conversion) Γ ! M : A Γ ! B : s
Γ ! M : B

if A =βπ B

Figure 3.1: Typing rules for Sigam-types

• The notion of specification is extended with a set U ⊆ S × S × S of rules for Σ-types. As
usual, we use (s1, s2) as an abbreviation for (s1, s2, s2).

• The typing system is extended with the rules of Figure 3.1. Moreover, the convertion rule
is modified so as to include π-convertion.

3.2 Inductive Types

24 CHAPTER 3. EXTENSIONS OF PURE TYPE SYSTEMS

(sigma)
Γ ! A : s1 Γ, x :A ! B : s2

Γ ! (Σx :A.B) : s3

if (s1, s2, s3) ∈ U

(pair)
Γ ! M : A Γ ! N : B[x := M] Γ ! (Σx :A.B) : s

Γ ! 〈M,N〉Σx:A. B : (Σx :A.B)

(proj1)
Γ ! M : (Σx :A.B)

Γ ! fst M : A

(proj2)
Γ ! M : (Σx :A.B)

Γ ! sndM : B[x := fst M]

(conversion) Γ ! M : A Γ ! B : s
Γ ! M : B

if A =βπ B

Figure 3.1: Typing rules for Sigam-types

• The notion of specification is extended with a set U ⊆ S × S × S of rules for Σ-types. As
usual, we use (s1, s2) as an abbreviation for (s1, s2, s2).

• The typing system is extended with the rules of Figure 3.1. Moreover, the convertion rule
is modified so as to include π-convertion.

3.2 Inductive Types

Sigma types

Extending PTS with !-types (cont.)

8

A !-type as an existential quantification

Let us consider an extension of !PRED" with !-types.

This rule captures a form of existential quantification:

We can extract from a proof p of ! n:N. Prime n, read as “there exists a
prime number n”, both a witness (fst p) of type N and a proof (snd p) that
(fst p) is prime.

Assume we have the rule (Set, Prop, Prop) for !-types.
One can have

24 CHAPTER 3. EXTENSIONS OF PURE TYPE SYSTEMS

(sigma)
Γ ! A : s1 Γ, x :A ! B : s2

Γ ! (Σx :A.B) : s3

if (s1, s2, s3) ∈ U

(pair)
Γ ! M : A Γ ! N : B[x := M] Γ ! (Σx :A.B) : s

Γ ! 〈M,N〉Σx:A. B : (Σx :A.B)

(proj1)
Γ ! M : (Σx :A.B)

Γ ! fst M : A

(proj2)
Γ ! M : (Σx :A.B)

Γ ! sndM : B[x := fst M]

(conversion) Γ ! M : A Γ ! B : s
Γ ! M : B

if A =βπ B

Figure 3.1: Typing rules for Sigam-types

• The notion of specification is extended with a set U ⊆ S × S × S of rules for Σ-types. As
usual, we use (s1, s2) as an abbreviation for (s1, s2, s2).

• The typing system is extended with the rules of Figure 3.1. Moreover, the conversion rule
is modified so as to include π-conversion.

3.1.1 Examples

Let us consider an extension of λPREDω with Σ-types.

• Assume we have the rule (Set,Prop,Prop) for Σ-types (i.e (Set,Prop,Prop) ∈ U). So, one
can have

N : Set,Prime : N→Prop ! (Σn :N.Prime n) : Prop

This rule captures a form of existential quantification:

We can extract from a proof p of Σ n :N.Primen, read as “there exists a prime
number n”, both a witness (fst p) of type N and a proof (snd p) that (fst p) is
prime.

• Assume we have the rule (Set,Prop,Typep) for Σ-types. This rule allows to form “subsets”
of kinds. Combined with the rule (Set,Typep,Typep) this rule allows to introduce types of
algebraic structures. For example, given a set A : Set, a monoid over A is a tuple consisting
of
◦ : A→A→A , a binary operator
e : A , the neutral element

such that the following types are inhabited

Π x, y, z : A. (x ◦ y) ◦ z =L x ◦ (y ◦ z)
Π x : A. e ◦ x =L x

Example:

9

This rule allows to form “subsets” of kinds. Combined with the rule (Set,Type#,Type#)

this rule allows to introduce types of algebraic structures.

24 CHAPTER 3. EXTENSIONS OF PURE TYPE SYSTEMS

(sigma)
Γ ! A : s1 Γ, x :A ! B : s2

Γ ! (Σx :A.B) : s3

if (s1, s2, s3) ∈ U

(pair)
Γ ! M : A Γ ! N : B[x := M] Γ ! (Σx :A.B) : s

Γ ! 〈M,N〉Σx:A. B : (Σx :A.B)

(proj1)
Γ ! M : (Σx :A.B)

Γ ! fst M : A

(proj2)
Γ ! M : (Σx :A.B)

Γ ! sndM : B[x := fst M]

(conversion) Γ ! M : A Γ ! B : s
Γ ! M : B

if A =βπ B

Figure 3.1: Typing rules for Sigam-types

• The notion of specification is extended with a set U ⊆ S × S × S of rules for Σ-types. As
usual, we use (s1, s2) as an abbreviation for (s1, s2, s2).

• The typing system is extended with the rules of Figure 3.1. Moreover, the conversion rule
is modified so as to include π-conversion.

3.1.1 Examples

Let us consider an extension of λPREDω with Σ-types.

• Assume we have the rule (Set,Prop,Prop) for Σ-types (i.e (Set,Prop,Prop) ∈ U). So, one
can have

N : Set,Prime : N→Prop ! (Σn :N.Prime n) : Prop

This rule captures a form of existential quantification:

We can extract from a proof p of Σ n :N.Primen, read as “there exists a prime
number n”, both a witness (fst p) of type N and a proof (snd p) that (fst p) is
prime.

• Assume we have the rule (Set,Prop,Typep) for Σ-types. This rule allows to form “subsets”
of kinds. Combined with the rule (Set,Typep,Typep) this rule allows to introduce types of
algebraic structures. For example, given a set A : Set, a monoid over A is a tuple consisting
of
◦ : A→A→A , a binary operator
e : A , the neutral element

such that the following types are inhabited

Π x, y, z : A. (x ◦ y) ◦ z =L x ◦ (y ◦ z)
Π x : A. e ◦ x =L x

, a binary operator

, the neutral element

24 CHAPTER 3. EXTENSIONS OF PURE TYPE SYSTEMS

(sigma)
Γ ! A : s1 Γ, x :A ! B : s2

Γ ! (Σx :A.B) : s3

if (s1, s2, s3) ∈ U

(pair)
Γ ! M : A Γ ! N : B[x := M] Γ ! (Σx :A.B) : s

Γ ! 〈M,N〉Σx:A. B : (Σx :A.B)

(proj1)
Γ ! M : (Σx :A.B)

Γ ! fst M : A

(proj2)
Γ ! M : (Σx :A.B)

Γ ! sndM : B[x := fst M]

(conversion) Γ ! M : A Γ ! B : s
Γ ! M : B

if A =βπ B

Figure 3.1: Typing rules for Sigam-types

• The notion of specification is extended with a set U ⊆ S × S × S of rules for Σ-types. As
usual, we use (s1, s2) as an abbreviation for (s1, s2, s2).

• The typing system is extended with the rules of Figure 3.1. Moreover, the conversion rule
is modified so as to include π-conversion.

3.1.1 Examples

Let us consider an extension of λPREDω with Σ-types.

• Assume we have the rule (Set,Prop,Prop) for Σ-types (i.e (Set,Prop,Prop) ∈ U). So, one
can have

N : Set,Prime : N→Prop ! (Σn :N.Prime n) : Prop

This rule captures a form of existential quantification:

We can extract from a proof p of Σ n :N.Primen, read as “there exists a prime
number n”, both a witness (fst p) of type N and a proof (snd p) that (fst p) is
prime.

• Assume we have the rule (Set,Prop,Typep) for Σ-types. This rule allows to form “subsets”
of kinds. Combined with the rule (Set,Typep,Typep) this rule allows to introduce types of
algebraic structures. For example, given a set A : Set, a monoid over A is a tuple consisting
of
◦ : A→A→A , a binary operator
e : A , the neutral element

such that the following types are inhabited

Π x, y, z : A. (x ◦ y) ◦ z =L x ◦ (y ◦ z)
Π x : A. e ◦ x =L x

A !-type as a “subset”

Example: Given a set A : Set, a monoid over A is a tuple consisting of

Assume we have the rule (Set, Prop, Type#) for !-types.

such that the following types are inhabited

10

Conjunction and equality are define as described before.

A !-type as a “subset” (cont.)

assuming

The type of monoids over A, Monoid(A), can be defined by

If m : Monoid(A), we can extract the elements of the monoid structure by
projections

3.2. INDUCTIVE TYPES 25

The type of monoids over A, Monoid(A), can be defined by

Monoid(A) := Σ ◦ :A→A→A.Σe : A.

(Πx, y, z :A. (x ◦ y) ◦ z =L x ◦ (y ◦ z)) ∧
(Πx :A. e ◦ x =L x)

Conjunction and equality are define as described before.

If m : Monoid(A), we can extract the elements of the monoid structure by projections

fst m : A→A→A

fst (sndm) : A

snd (sndm) : MLaws A (fst m) (fst (sndm))

assuming

MLaws := λA :Set.λ◦ :A→A→A.λ e :A. (Π x, y, z :A.(x◦y)◦z =L x◦(y◦z)) ∧ (Πx :A. e◦x =L x)

MLaws := λ A :Set.λ ◦ :A→A→A.λ e :A.

(Πx, y, z :A. (x ◦ y) ◦ z =L x ◦ (y ◦ z)) ∧ (Π x :A. e ◦ x =L x)

3.1.2 Extended Calculus of Constructions

Extended Calculus of Constructions (ECC) is the type theory supporting the Lego proof assistant.
ECC can be described by the following specification:

S = Prop, Typei , i ∈ N
A = (Prop : Type), (Typei : Typei+1) , i ∈ N
R = (Prop,Prop), (Prop,Typei), (Typei,Prop), (Typei,Typej ,Typemax(i,j)) , i, j ∈ N
U = (Prop,Prop,Prop), (Typei,Typej ,Typemax(i,j)) , i, j ∈ N

Cumulativity: Prop ⊆ Type0 ⊆ Type1 ⊆ . . .

ECC

S = Prop, Typei , i ∈ N
A = (Prop : Type), (Typei : Typei+1) , i ∈ N
R = (Prop,Prop), (Prop,Typei), (Typei,Prop), (Typei,Typej ,Typemax(i,j)) , i, j ∈ N
U = (Prop,Prop,Prop), (Typei,Typej ,Typemax(i,j)) , i, j ∈ N

In the current version of the Coq proof assistant, based on the Calculus of Inductive Construc-
tions (CIC), the notion of Σ-type is implemented as an inductive type.

3.2 Inductive Types

Induction is a basic notion in logic and set theory.

• When a set is defined inductively we understand it as being “built up from the bottom” by
a set of basic constructors.

• Elements of such a set can be decomposed in “smaller elements” in a well-founded manner.

3.2. INDUCTIVE TYPES 25

The type of monoids over A, Monoid(A), can be defined by

Monoid(A) := Σ ◦ :A→A→A.Σe : A.

(Πx, y, z :A. (x ◦ y) ◦ z =L x ◦ (y ◦ z)) ∧
(Πx :A. e ◦ x =L x)

Conjunction and equality are define as described before.

If m : Monoid(A), we can extract the elements of the monoid structure by projections

fst m : A→A→A

fst (sndm) : A

snd (sndm) : MLaws A (fst m) (fst (sndm))

assuming

MLaws := λA :Set.λ◦ :A→A→A.λ e :A. (Π x, y, z :A.(x◦y)◦z =L x◦(y◦z)) ∧ (Πx :A. e◦x =L x)

MLaws := λ A :Set.λ ◦ :A→A→A.λ e :A.

(Πx, y, z :A. (x ◦ y) ◦ z =L x ◦ (y ◦ z)) ∧ (Π x :A. e ◦ x =L x)

3.1.2 Extended Calculus of Constructions

Extended Calculus of Constructions (ECC) is the type theory supporting the Lego proof assistant.
ECC can be described by the following specification:

S = Prop, Typei , i ∈ N
A = (Prop : Type), (Typei : Typei+1) , i ∈ N
R = (Prop,Prop), (Prop,Typei), (Typei,Prop), (Typei,Typej ,Typemax(i,j)) , i, j ∈ N
U = (Prop,Prop,Prop), (Typei,Typej ,Typemax(i,j)) , i, j ∈ N

Cumulativity: Prop ⊆ Type0 ⊆ Type1 ⊆ . . .

ECC

S = Prop, Typei , i ∈ N
A = (Prop : Type), (Typei : Typei+1) , i ∈ N
R = (Prop,Prop), (Prop,Typei), (Typei,Prop), (Typei,Typej ,Typemax(i,j)) , i, j ∈ N
U = (Prop,Prop,Prop), (Typei,Typej ,Typemax(i,j)) , i, j ∈ N

In the current version of the Coq proof assistant, based on the Calculus of Inductive Construc-
tions (CIC), the notion of Σ-type is implemented as an inductive type.

3.2 Inductive Types

Induction is a basic notion in logic and set theory.

• When a set is defined inductively we understand it as being “built up from the bottom” by
a set of basic constructors.

• Elements of such a set can be decomposed in “smaller elements” in a well-founded manner.

3.2. INDUCTIVE TYPES 25

The type of monoids over A, Monoid(A), can be defined by

Monoid(A) := Σ ◦ :A→A→A.Σe : A.

(Πx, y, z :A. (x ◦ y) ◦ z =L x ◦ (y ◦ z)) ∧
(Πx :A. e ◦ x =L x)

Conjunction and equality are define as described before.

If m : Monoid(A), we can extract the elements of the monoid structure by projections

fst m : A→A→A

fst (sndm) : A

snd (sndm) : MLaws A (fst m) (fst (sndm))

assuming

MLaws := λA :Set.λ◦ :A→A→A.λ e :A. (Π x, y, z :A.(x◦y)◦z =L x◦(y◦z)) ∧ (Πx :A. e◦x =L x)

MLaws := λ A :Set.λ ◦ :A→A→A.λ e :A.

(Πx, y, z :A. (x ◦ y) ◦ z =L x ◦ (y ◦ z)) ∧ (Π x :A. e ◦ x =L x)

3.1.2 Extended Calculus of Constructions

Extended Calculus of Constructions (ECC) is the type theory supporting the Lego proof assistant.
ECC can be described by the following specification:

S = Prop, Typei , i ∈ N
A = (Prop : Type), (Typei : Typei+1) , i ∈ N
R = (Prop,Prop), (Prop,Typei), (Typei,Prop), (Typei,Typej ,Typemax(i,j)) , i, j ∈ N
U = (Prop,Prop,Prop), (Typei,Typej ,Typemax(i,j)) , i, j ∈ N

Cumulativity: Prop ⊆ Type0 ⊆ Type1 ⊆ . . .

ECC

S = Prop, Typei , i ∈ N
A = (Prop : Type), (Typei : Typei+1) , i ∈ N
R = (Prop,Prop), (Prop,Typei), (Typei,Prop), (Typei,Typej ,Typemax(i,j)) , i, j ∈ N
U = (Prop,Prop,Prop), (Typei,Typej ,Typemax(i,j)) , i, j ∈ N

In the current version of the Coq proof assistant, based on the Calculus of Inductive Construc-
tions (CIC), the notion of Σ-type is implemented as an inductive type.

3.2 Inductive Types

Induction is a basic notion in logic and set theory.

• When a set is defined inductively we understand it as being “built up from the bottom” by
a set of basic constructors.

• Elements of such a set can be decomposed in “smaller elements” in a well-founded manner.

11

Extended Calculus of Constructions

Extended Calculus of Constructions (ECC) is the underlying type theory of Lego proof
assistant. It can be described by the follows

In the current version of the Coq proof assistant, based on the Calculus of Inductive
Constructions (CIC), the notion of !-type is implemented as an inductive type.

Extended Calculus of Constructions

3.2. INDUCTIVE TYPES 25

The type of monoids over A, Monoid(A), can be defined by

Monoid(A) := Σ ◦ :A→A→A.Σe : A.

(Πx, y, z :A. (x ◦ y) ◦ z =L x ◦ (y ◦ z)) ∧
(Πx :A. e ◦ x =L x)

Conjunction and equality are define as described before.

If m : Monoid(A), we can extract the elements of the monoid structure by projections

fst m : A→A→A

fst (sndm) : A

snd (sndm) : MLaws A (fst m) (fst (sndm))

assuming

MLaws := λA :Set.λ◦ :A→A→A.λ e :A. (Π x, y, z :A.(x◦y)◦z =L x◦(y◦z)) ∧ (Πx :A. e◦x =L x)

MLaws := λ A :Set.λ ◦ :A→A→A.λ e :A.

(Πx, y, z :A. (x ◦ y) ◦ z =L x ◦ (y ◦ z)) ∧ (Π x :A. e ◦ x =L x)

3.1.2 Extended Calculus of Constructions

Extended Calculus of Constructions (ECC) is the type theory supporting the Lego proof assistant.
ECC can be described by the following specification:

S = Prop, Typei , i ∈ N
A = (Prop : Type), (Typei : Typei+1) , i ∈ N
R = (Prop,Prop), (Prop,Typei), (Typei,Prop), (Typei,Typej ,Typemax(i,j)) , i, j ∈ N
U = (Prop,Prop,Prop), (Typei,Typej ,Typemax(i,j)) , i, j ∈ N

Cumulativity: Prop ⊆ Type0 ⊆ Type1 ⊆ . . .

ECC

S = Prop, Typei , i ∈ N
A = (Prop : Type), (Typei : Typei+1) , i ∈ N
R = (Prop,Prop), (Prop,Typei), (Typei,Prop), (Typei,Typej ,Typemax(i,j)) , i, j ∈ N
U = (Prop,Prop,Prop), (Typei,Typej ,Typemax(i,j)) , i, j ∈ N

In the current version of the Coq proof assistant, based on the Calculus of Inductive Construc-
tions (CIC), the notion of Σ-type is implemented as an inductive type.

3.2 Inductive Types

Induction is a basic notion in logic and set theory.

• When a set is defined inductively we understand it as being “built up from the bottom” by
a set of basic constructors.

• Elements of such a set can be decomposed in “smaller elements” in a well-founded manner.

Cumulativity:

3.2. INDUCTIVE TYPES 25

The type of monoids over A, Monoid(A), can be defined by

Monoid(A) := Σ ◦ :A→A→A.Σe : A.

(Πx, y, z :A. (x ◦ y) ◦ z =L x ◦ (y ◦ z)) ∧
(Πx :A. e ◦ x =L x)

Conjunction and equality are define as described before.

If m : Monoid(A), we can extract the elements of the monoid structure by projections

fst m : A→A→A

fst (sndm) : A

snd (sndm) : MLaws A (fst m) (fst (sndm))

assuming

MLaws := λA :Set.λ◦ :A→A→A.λ e :A. (Π x, y, z :A.(x◦y)◦z =L x◦(y◦z)) ∧ (Πx :A. e◦x =L x)

MLaws := λ A :Set.λ ◦ :A→A→A.λ e :A.

(Πx, y, z :A. (x ◦ y) ◦ z =L x ◦ (y ◦ z)) ∧ (Π x :A. e ◦ x =L x)

3.1.2 Extended Calculus of Constructions

Extended Calculus of Constructions (ECC) is the type theory supporting the Lego proof assistant.
ECC can be described by the following specification:

S = Prop, Typei , i ∈ N
A = (Prop : Type), (Typei : Typei+1) , i ∈ N
R = (Prop,Prop), (Prop,Typei), (Typei,Prop), (Typei,Typej ,Typemax(i,j)) , i, j ∈ N
U = (Prop,Prop,Prop), (Typei,Typej ,Typemax(i,j)) , i, j ∈ N

Cumulativity: Prop ⊆ Type0 ⊆ Type1 ⊆ . . .

ECC

S = Prop, Typei , i ∈ N
A = (Prop : Type), (Typei : Typei+1) , i ∈ N
R = (Prop,Prop), (Prop,Typei), (Typei,Prop), (Typei,Typej ,Typemax(i,j)) , i, j ∈ N
U = (Prop,Prop,Prop), (Typei,Typej ,Typemax(i,j)) , i, j ∈ N

In the current version of the Coq proof assistant, based on the Calculus of Inductive Construc-
tions (CIC), the notion of Σ-type is implemented as an inductive type.

3.2 Inductive Types

Induction is a basic notion in logic and set theory.

• When a set is defined inductively we understand it as being “built up from the bottom” by
a set of basic constructors.

• Elements of such a set can be decomposed in “smaller elements” in a well-founded manner.

Specification:

12

Inductive Types

• When a set is defined inductively we understand it as being “built up from the
bottom” by a set of basic constructors.

• Elements of such a set can be decomposed in “smaller elements” in a well-founded
manner.

• This gives us principles of:

Induction is a basic notion in logic and set theory.

• “proof by induction” and

• “function definition by recursion”.

13

Inductive Types

• Constructors (which are the introduction rules of the type I) give the canonical
ways of constructing one element of the new type .

• I defined is the smallest set (of objects) closed under its introduction rules.

• The inhabitants of type I are the objects that can be obtained by a finite
number of applications of the type constructors.

We can define a new type I inductively by giving its constructors together with their
types which must be of the form

26 CHAPTER 3. EXTENSIONS OF PURE TYPE SYSTEMS

• This gives us principles of “proof by induction” and “function definition by recursion”.

We can define a new type I inductively by giving its constructors together with their types
which must be of the form

τ1→ . . .→τn→I , with n ≥ 0

• Constructors (which are the introduction rules of the type I) give the canonical ways of
constructing one element of the new type I.

• The type I defined id the smallest set (of objects) closed under its introduction rules.

• The inhabitants of type I are the objects that can be obtained by a finite number of appli-
cations of the type constructors.

For instance, the inductive type N : Set of natural numbers has two constructors

0 : N
S : N→ N

3.2.1 Case analysis

To program and reason about an inductive type we must have means to analyze its inhabitants.
The elimination rules for the inductive types express ways to use the objects of the inductive

type in order to define objects of other types, and are associated to new computational rules.

The first elimination rule for indutive types one can consider is case analyses.
For instance, n : N means that n was introduced using either 0 or S, so we may define an

object case n of {0⇒ b1 | S⇒ b2} in another type σ depending on which constructor was used to
introduce n. A typing rule for this construction is

Γ $ n : N Γ $ b1 : σ Γ $ b2 : N→σ

Γ $ case n of {0⇒ b1 | S⇒ b2} : σ

and the associated computing rules are

case 0 of {0⇒ b1 | S⇒ b2} → b1

case (Sx) of {0⇒ b1 | S⇒ b2} → b2 x

The case analysis rule is very useful but it does not give a mechanism to define recursive functions.

3.2.2 Recursors

When an inductive type is defined in a type theory the theory should automatically generate a
scheme for proof-by-induction and a scheme for primitive recursion.

The inductive type comes equiped with a recursor that can be used to define functions and
prove properties on that type.

The recursor is a constant RI that represents the structural induction principle for the ele-
ments of the inductive type I, and the computation rule associated to it defines a safe recursive
scheme for programming.

Type I can occur in any of the “domains” of its constructors. However, the

occurrences of I in must be in positive positions in order to assure the
well-foundedness of the datatype.

26 CHAPTER 3. EXTENSIONS OF PURE TYPE SYSTEMS

• This gives us principles of “proof by induction” and “function definition by recursion”.

We can define a new type I inductively by giving its constructors together with their types
which must be of the form

τ1→ . . .→τn→I , with n ≥ 0

• Constructors (which are the introduction rules of the type I) give the canonical ways of
constructing one element of the new type I.

• The type I defined is the smallest set (of objects) closed under its introduction rules.

• The inhabitants of type I are the objects that can be obtained by a finite number of appli-
cations of the type constructors.

• Note that the type I (under definition) can occur in any of the “domains” of its constructors.
However, the occurrences of I in τi must be in positive positions in order to assure the well-
foundedness of the datatype.

For instance, assuming that I does not occur in types A and B, I→B→ I, A→ (B→ I)→ I

or ((I→A)→B)→A→ I are valid types for a contructor of I, but (I→A)→ I or ((A→ I)→
B)→A→I are not.

3.2.1 Examples

For instance, the inductive type N : Set of natural numbers has two constructors

0 : N
S : N→ N

Notice that the positivity condition still permits functional recursive arguments in the construc-
tors. A well-known example of a higher-order datatype is the type O : Set of ordinal notations
which has three constructors

S : O
Succ : O→ O
Lim : (N→ O)→ O

To program and reason about an inductive type we must have means to analyze its inhabitants.
The elimination rules for the inductive types express ways to use the objects of the inductive

type in order to define objects of other types, and are associated to new computational rules.

3.2.2 Case analysis

The first elimination rule for indutive types one can consider is case analyses.
For instance, n : N means that n was introduced using either 0 or S, so we may define an

object case n of {0⇒ b1 | S⇒ b2} in another type σ depending on which constructor was used to
introduce n. A typing rule for this construction is

Γ $ n : N Γ $ b1 : σ Γ $ b2 : N→σ

Γ $ case n of {0⇒ b1 | S⇒ b2} : σ

and the associated computing rules are

case 0 of {0⇒ b1 | S⇒ b2} → b1

case (Sx) of {0⇒ b1 | S⇒ b2} → b2 x

The case analysis rule is very useful but it does not give a mechanism to define recursive functions.

NOTE:

 (I $ A) $ I

((A $ I) $ B) $ A $ I

Wrong !I $ B $ I

A $ (B $I) $ I

((I $ A) $ B) $ A $ I

OK

14

26 CHAPTER 3. EXTENSIONS OF PURE TYPE SYSTEMS

• This gives us principles of “proof by induction” and “function definition by recursion”.

We can define a new type I inductively by giving its constructors together with their types
which must be of the form

τ1→ . . .→τn→I , with n ≥ 0

• Constructors (which are the introduction rules of the type I) give the canonical ways of
constructing one element of the new type I.

• The type I defined id the smallest set (of objects) closed under its introduction rules.

• The inhabitants of type I are the objects that can be obtained by a finite number of appli-
cations of the type constructors.

For instance, the inductive type N : Set of natural numbers has two constructors

0 : N
S : N→ N

3.2.1 Case analysis

To program and reason about an inductive type we must have means to analyze its inhabitants.
The elimination rules for the inductive types express ways to use the objects of the inductive

type in order to define objects of other types, and are associated to new computational rules.

The first elimination rule for indutive types one can consider is case analyses.
For instance, n : N means that n was introduced using either 0 or S, so we may define an

object case n of {0⇒ b1 | S⇒ b2} in another type σ depending on which constructor was used to
introduce n. A typing rule for this construction is

Γ $ n : N Γ $ b1 : σ Γ $ b2 : N→σ

Γ $ case n of {0⇒ b1 | S⇒ b2} : σ

and the associated computing rules are

case 0 of {0⇒ b1 | S⇒ b2} → b1

case (Sx) of {0⇒ b1 | S⇒ b2} → b2 x

The case analysis rule is very useful but it does not give a mechanism to define recursive functions.

3.2.2 Recursors

When an inductive type is defined in a type theory the theory should automatically generate a
scheme for proof-by-induction and a scheme for primitive recursion.

The inductive type comes equiped with a recursor that can be used to define functions and
prove properties on that type.

The recursor is a constant RI that represents the structural induction principle for the ele-
ments of the inductive type I, and the computation rule associated to it defines a safe recursive
scheme for programming.

Examples

To program and reason about an inductive type we must have means to analyze its
inhabitants.

The elimination rules for the inductive types express ways to use the objects of the
inductive type in order to define objects of other types, and are associated to new
computational rules.

• A well-known example of a higher-order datatype is the type of
ordinal notations which has three constructors

26 CHAPTER 3. EXTENSIONS OF PURE TYPE SYSTEMS

• This gives us principles of “proof by induction” and “function definition by recursion”.

We can define a new type I inductively by giving its constructors together with their types
which must be of the form

τ1→ . . .→τn→I , with n ≥ 0

• Constructors (which are the introduction rules of the type I) give the canonical ways of
constructing one element of the new type I.

• The type I defined is the smallest set (of objects) closed under its introduction rules.

• The inhabitants of type I are the objects that can be obtained by a finite number of appli-
cations of the type constructors.

• Note that the type I (under definition) can occur in any of the “domains” of its constructors.
However, the occurrences of I in τi must be in positive positions in order to assure the well-
foundedness of the datatype.

For instance, assuming that I does not occur in types A and B, I→B→ I, A→ (B→ I)→ I

or ((I→A)→B)→A→ I are valid types for a contructor of I, but (I→A)→ I or ((A→ I)→
B)→A→I are not.

3.2.1 Examples

For instance, the inductive type N : Set of natural numbers has two constructors

0 : N
S : N→ N

Notice that the positivity condition still permits functional recursive arguments in the construc-
tors. A well-known example of a higher-order datatype is the type O : Set of ordinal notations
which has three constructors

S : O
Succ : O→ O
Lim : (N→ O)→ O

To program and reason about an inductive type we must have means to analyze its inhabitants.
The elimination rules for the inductive types express ways to use the objects of the inductive

type in order to define objects of other types, and are associated to new computational rules.

3.2.2 Case analysis

The first elimination rule for indutive types one can consider is case analyses.
For instance, n : N means that n was introduced using either 0 or S, so we may define an

object case n of {0⇒ b1 | S⇒ b2} in another type σ depending on which constructor was used to
introduce n. A typing rule for this construction is

Γ $ n : N Γ $ b1 : σ Γ $ b2 : N→σ

Γ $ case n of {0⇒ b1 | S⇒ b2} : σ

and the associated computing rules are

case 0 of {0⇒ b1 | S⇒ b2} → b1

case (Sx) of {0⇒ b1 | S⇒ b2} → b2 x

The case analysis rule is very useful but it does not give a mechanism to define recursive functions.

• The inductive type of natural numbers has two constructors

26 CHAPTER 3. EXTENSIONS OF PURE TYPE SYSTEMS

• This gives us principles of “proof by induction” and “function definition by recursion”.

We can define a new type I inductively by giving its constructors together with their types
which must be of the form

τ1→ . . .→τn→I , with n ≥ 0

• Constructors (which are the introduction rules of the type I) give the canonical ways of
constructing one element of the new type I.

• The type I defined is the smallest set (of objects) closed under its introduction rules.

• The inhabitants of type I are the objects that can be obtained by a finite number of appli-
cations of the type constructors.

• Note that the type I (under definition) can occur in any of the “domains” of its constructors.
However, the occurrences of I in τi must be in positive positions in order to assure the well-
foundedness of the datatype.

For instance, assuming that I does not occur in types A and B, I→B→ I, A→ (B→ I)→ I

or ((I→A)→B)→A→ I are valid types for a contructor of I, but (I→A)→ I or ((A→ I)→
B)→A→I are not.

3.2.1 Examples

For instance, the inductive type N : Set of natural numbers has two constructors

0 : N
S : N→ N

Notice that the positivity condition still permits functional recursive arguments in the construc-
tors. A well-known example of a higher-order datatype is the type O : Set of ordinal notations
which has three constructors

S : O
Succ : O→ O
Lim : (N→ O)→ O

To program and reason about an inductive type we must have means to analyze its inhabitants.
The elimination rules for the inductive types express ways to use the objects of the inductive

type in order to define objects of other types, and are associated to new computational rules.

3.2.2 Case analysis

The first elimination rule for indutive types one can consider is case analyses.
For instance, n : N means that n was introduced using either 0 or S, so we may define an

object case n of {0⇒ b1 | S⇒ b2} in another type σ depending on which constructor was used to
introduce n. A typing rule for this construction is

Γ $ n : N Γ $ b1 : σ Γ $ b2 : N→σ

Γ $ case n of {0⇒ b1 | S⇒ b2} : σ

and the associated computing rules are

case 0 of {0⇒ b1 | S⇒ b2} → b1

case (Sx) of {0⇒ b1 | S⇒ b2} → b2 x

The case analysis rule is very useful but it does not give a mechanism to define recursive functions.

26 CHAPTER 3. EXTENSIONS OF PURE TYPE SYSTEMS

• This gives us principles of “proof by induction” and “function definition by recursion”.

We can define a new type I inductively by giving its constructors together with their types
which must be of the form

τ1→ . . .→τn→I , with n ≥ 0

• Constructors (which are the introduction rules of the type I) give the canonical ways of
constructing one element of the new type I.

• The type I defined is the smallest set (of objects) closed under its introduction rules.

• The inhabitants of type I are the objects that can be obtained by a finite number of appli-
cations of the type constructors.

• Note that the type I (under definition) can occur in any of the “domains” of its constructors.
However, the occurrences of I in τi must be in positive positions in order to assure the well-
foundedness of the datatype.

For instance, assuming that I does not occur in types A and B, I→B→ I, A→ (B→ I)→ I

or ((I→A)→B)→A→ I are valid types for a contructor of I, but (I→A)→ I or ((A→ I)→
B)→A→I are not.

3.2.1 Examples

For instance, the inductive type N : Set of natural numbers has two constructors

0 : N
S : N→ N

Notice that the positivity condition still permits functional recursive arguments in the construc-
tors. A well-known example of a higher-order datatype is the type O : Set of ordinal notations
which has three constructors

Zero : O
Succ : O→ O
Lim : (N→ O)→ O

To program and reason about an inductive type we must have means to analyze its inhabitants.
The elimination rules for the inductive types express ways to use the objects of the inductive

type in order to define objects of other types, and are associated to new computational rules.

3.2.2 Case analysis

The first elimination rule for indutive types one can consider is case analyses.
For instance, n : N means that n was introduced using either 0 or S, so we may define an

object case n of {0⇒ b1 | S⇒ b2} in another type σ depending on which constructor was used to
introduce n. A typing rule for this construction is

Γ $ n : N Γ $ b1 : σ Γ $ b2 : N→σ

Γ $ case n of {0⇒ b1 | S⇒ b2} : σ

and the associated computing rules are

case 0 of {0⇒ b1 | S⇒ b2} → b1

case (Sx) of {0⇒ b1 | S⇒ b2} → b2 x

The case analysis rule is very useful but it does not give a mechanism to define recursive functions.

15

Case analysis

The first elimination rule for inductive types one can consider is case analyses.

The case analysis rule is very useful but it does not give a mechanism to define
recursive functions.

and the associated computing rules are

A typing rule for this construction is

26 CHAPTER 3. EXTENSIONS OF PURE TYPE SYSTEMS

• This gives us principles of “proof by induction” and “function definition by recursion”.

We can define a new type I inductively by giving its constructors together with their types
which must be of the form

τ1→ . . .→τn→I , with n ≥ 0

• Constructors (which are the introduction rules of the type I) give the canonical ways of
constructing one element of the new type I.

• The type I defined is the smallest set (of objects) closed under its introduction rules.

• The inhabitants of type I are the objects that can be obtained by a finite number of appli-
cations of the type constructors.

• Note that the type I (under definition) can occur in any of the “domains” of its constructors.
However, the occurrences of I in τi must be in positive positions in order to assure the well-
foundedness of the datatype.

For instance, assuming that I does not occur in types A and B, I→B→ I, A→ (B→ I)→ I

or ((I→A)→B)→A→ I are valid types for a contructor of I, but (I→A)→ I or ((A→ I)→
B)→A→I are not.

3.2.1 Examples

For instance, the inductive type N : Set of natural numbers has two constructors

0 : N
S : N→ N

Notice that the positivity condition still permits functional recursive arguments in the construc-
tors. A well-known example of a higher-order datatype is the type O : Set of ordinal notations
which has three constructors

Zero : O
Succ : O→ O
Lim : (N→ O)→ O

To program and reason about an inductive type we must have means to analyze its inhabitants.
The elimination rules for the inductive types express ways to use the objects of the inductive

type in order to define objects of other types, and are associated to new computational rules.

3.2.2 Case analysis

The first elimination rule for indutive types one can consider is case analyses.
For instance, n : N means that n was introduced using either 0 or S, so we may define an

object case n of {0⇒ b1 | S⇒ b2} in another type σ depending on which constructor was used to
introduce n. A typing rule for this construction is

Γ $ n : N Γ $ b1 : σ Γ $ b2 : N→σ

Γ $ case n of {0⇒ b1 | S⇒ b2} : σ

and the associated computing rules are

case 0 of {0⇒ b1 | S⇒ b2} → b1

case (Sx) of {0⇒ b1 | S⇒ b2} → b2 x

The case analysis rule is very useful but it does not give a mechanism to define recursive functions.

26 CHAPTER 3. EXTENSIONS OF PURE TYPE SYSTEMS

• This gives us principles of “proof by induction” and “function definition by recursion”.

We can define a new type I inductively by giving its constructors together with their types
which must be of the form

τ1→ . . .→τn→I , with n ≥ 0

• Constructors (which are the introduction rules of the type I) give the canonical ways of
constructing one element of the new type I.

• The type I defined is the smallest set (of objects) closed under its introduction rules.

• The inhabitants of type I are the objects that can be obtained by a finite number of appli-
cations of the type constructors.

• Note that the type I (under definition) can occur in any of the “domains” of its constructors.
However, the occurrences of I in τi must be in positive positions in order to assure the well-
foundedness of the datatype.

For instance, assuming that I does not occur in types A and B, I→B→ I, A→ (B→ I)→ I

or ((I→A)→B)→A→ I are valid types for a contructor of I, but (I→A)→ I or ((A→ I)→
B)→A→I are not.

3.2.1 Examples

For instance, the inductive type N : Set of natural numbers has two constructors

0 : N
S : N→ N

Notice that the positivity condition still permits functional recursive arguments in the construc-
tors. A well-known example of a higher-order datatype is the type O : Set of ordinal notations
which has three constructors

Zero : O
Succ : O→ O
Lim : (N→ O)→ O

To program and reason about an inductive type we must have means to analyze its inhabitants.
The elimination rules for the inductive types express ways to use the objects of the inductive

type in order to define objects of other types, and are associated to new computational rules.

3.2.2 Case analysis

The first elimination rule for indutive types one can consider is case analyses.
For instance, n : N means that n was introduced using either 0 or S, so we may define an

object case n of {0⇒ b1 | S⇒ b2} in another type σ depending on which constructor was used to
introduce n. A typing rule for this construction is

Γ $ n : N Γ $ b1 : σ Γ $ b2 : N→σ

Γ $ case n of {0⇒ b1 | S⇒ b2} : σ

and the associated computing rules are

case 0 of {0⇒ b1 | S⇒ b2} → b1

case (Sx) of {0⇒ b1 | S⇒ b2} → b2 x

The case analysis rule is very useful but it does not give a mechanism to define recursive functions.

For instance, means that was introduced using either 0 or S, so we
may define an object in another type depending
on which constructor was used to introduce .

26 CHAPTER 3. EXTENSIONS OF PURE TYPE SYSTEMS

• This gives us principles of “proof by induction” and “function definition by recursion”.

We can define a new type I inductively by giving its constructors together with their types
which must be of the form

τ1→ . . .→τn→I , with n ≥ 0

• Constructors (which are the introduction rules of the type I) give the canonical ways of
constructing one element of the new type I.

• The type I defined is the smallest set (of objects) closed under its introduction rules.

• The inhabitants of type I are the objects that can be obtained by a finite number of appli-
cations of the type constructors.

• Note that the type I (under definition) can occur in any of the “domains” of its constructors.
However, the occurrences of I in τi must be in positive positions in order to assure the well-
foundedness of the datatype.

For instance, assuming that I does not occur in types A and B, I→B→ I, A→ (B→ I)→ I

or ((I→A)→B)→A→ I are valid types for a contructor of I, but (I→A)→ I or ((A→ I)→
B)→A→I are not.

3.2.1 Examples

For instance, the inductive type N : Set of natural numbers has two constructors

0 : N
S : N→ N

Notice that the positivity condition still permits functional recursive arguments in the construc-
tors. A well-known example of a higher-order datatype is the type O : Set of ordinal notations
which has three constructors

Zero : O
Succ : O→ O
Lim : (N→ O)→ O

To program and reason about an inductive type we must have means to analyze its inhabitants.
The elimination rules for the inductive types express ways to use the objects of the inductive

type in order to define objects of other types, and are associated to new computational rules.

3.2.2 Case analysis

The first elimination rule for indutive types one can consider is case analyses.
For instance, n : N means that n was introduced using either 0 or S, so we may define an

object case n of {0⇒ b1 | S⇒ b2} in another type σ depending on which constructor was used to
introduce n. A typing rule for this construction is

Γ $ n : N Γ $ b1 : σ Γ $ b2 : N→σ

Γ $ case n of {0⇒ b1 | S⇒ b2} : σ

and the associated computing rules are

case 0 of {0⇒ b1 | S⇒ b2} → b1

case (Sx) of {0⇒ b1 | S⇒ b2} → b2 x

The case analysis rule is very useful but it does not give a mechanism to define recursive functions.

26 CHAPTER 3. EXTENSIONS OF PURE TYPE SYSTEMS

• This gives us principles of “proof by induction” and “function definition by recursion”.

We can define a new type I inductively by giving its constructors together with their types
which must be of the form

τ1→ . . .→τn→I , with n ≥ 0

• Constructors (which are the introduction rules of the type I) give the canonical ways of
constructing one element of the new type I.

• The type I defined is the smallest set (of objects) closed under its introduction rules.

• The inhabitants of type I are the objects that can be obtained by a finite number of appli-
cations of the type constructors.

• Note that the type I (under definition) can occur in any of the “domains” of its constructors.
However, the occurrences of I in τi must be in positive positions in order to assure the well-
foundedness of the datatype.

For instance, assuming that I does not occur in types A and B, I→B→ I, A→ (B→ I)→ I

or ((I→A)→B)→A→ I are valid types for a contructor of I, but (I→A)→ I or ((A→ I)→
B)→A→I are not.

3.2.1 Examples

For instance, the inductive type N : Set of natural numbers has two constructors

0 : N
S : N→ N

Notice that the positivity condition still permits functional recursive arguments in the construc-
tors. A well-known example of a higher-order datatype is the type O : Set of ordinal notations
which has three constructors

Zero : O
Succ : O→ O
Lim : (N→ O)→ O

To program and reason about an inductive type we must have means to analyze its inhabitants.
The elimination rules for the inductive types express ways to use the objects of the inductive

type in order to define objects of other types, and are associated to new computational rules.

3.2.2 Case analysis

The first elimination rule for indutive types one can consider is case analyses.
For instance, n : N means that n was introduced using either 0 or S, so we may define an

object case n of {0⇒ b1 | S⇒ b2} in another type σ depending on which constructor was used to
introduce n. A typing rule for this construction is

Γ $ n : N Γ $ b1 : σ Γ $ b2 : N→σ

Γ $ case n of {0⇒ b1 | S⇒ b2} : σ

and the associated computing rules are

case 0 of {0⇒ b1 | S⇒ b2} → b1

case (Sx) of {0⇒ b1 | S⇒ b2} → b2 x

The case analysis rule is very useful but it does not give a mechanism to define recursive functions.

26 CHAPTER 3. EXTENSIONS OF PURE TYPE SYSTEMS

• This gives us principles of “proof by induction” and “function definition by recursion”.

We can define a new type I inductively by giving its constructors together with their types
which must be of the form

τ1→ . . .→τn→I , with n ≥ 0

• Constructors (which are the introduction rules of the type I) give the canonical ways of
constructing one element of the new type I.

• The type I defined is the smallest set (of objects) closed under its introduction rules.

• The inhabitants of type I are the objects that can be obtained by a finite number of appli-
cations of the type constructors.

• Note that the type I (under definition) can occur in any of the “domains” of its constructors.
However, the occurrences of I in τi must be in positive positions in order to assure the well-
foundedness of the datatype.

For instance, assuming that I does not occur in types A and B, I→B→ I, A→ (B→ I)→ I

or ((I→A)→B)→A→ I are valid types for a contructor of I, but (I→A)→ I or ((A→ I)→
B)→A→I are not.

3.2.1 Examples

For instance, the inductive type N : Set of natural numbers has two constructors

0 : N
S : N→ N

Notice that the positivity condition still permits functional recursive arguments in the construc-
tors. A well-known example of a higher-order datatype is the type O : Set of ordinal notations
which has three constructors

Zero : O
Succ : O→ O
Lim : (N→ O)→ O

To program and reason about an inductive type we must have means to analyze its inhabitants.
The elimination rules for the inductive types express ways to use the objects of the inductive

type in order to define objects of other types, and are associated to new computational rules.

3.2.2 Case analysis

The first elimination rule for indutive types one can consider is case analyses.
For instance, n : N means that n was introduced using either 0 or S, so we may define an

object case n of {0⇒ b1 | S⇒ b2} in another type σ depending on which constructor was used to
introduce n. A typing rule for this construction is

Γ $ n : N Γ $ b1 : σ Γ $ b2 : N→σ

Γ $ case n of {0⇒ b1 | S⇒ b2} : σ

and the associated computing rules are

case 0 of {0⇒ b1 | S⇒ b2} → b1

case (Sx) of {0⇒ b1 | S⇒ b2} → b2 x

The case analysis rule is very useful but it does not give a mechanism to define recursive functions.

26 CHAPTER 3. EXTENSIONS OF PURE TYPE SYSTEMS

• This gives us principles of “proof by induction” and “function definition by recursion”.

We can define a new type I inductively by giving its constructors together with their types
which must be of the form

τ1→ . . .→τn→I , with n ≥ 0

• Constructors (which are the introduction rules of the type I) give the canonical ways of
constructing one element of the new type I.

• The type I defined is the smallest set (of objects) closed under its introduction rules.

• The inhabitants of type I are the objects that can be obtained by a finite number of appli-
cations of the type constructors.

• Note that the type I (under definition) can occur in any of the “domains” of its constructors.
However, the occurrences of I in τi must be in positive positions in order to assure the well-
foundedness of the datatype.

For instance, assuming that I does not occur in types A and B, I→B→ I, A→ (B→ I)→ I

or ((I→A)→B)→A→ I are valid types for a contructor of I, but (I→A)→ I or ((A→ I)→
B)→A→I are not.

3.2.1 Examples

For instance, the inductive type N : Set of natural numbers has two constructors

0 : N
S : N→ N

Notice that the positivity condition still permits functional recursive arguments in the construc-
tors. A well-known example of a higher-order datatype is the type O : Set of ordinal notations
which has three constructors

Zero : O
Succ : O→ O
Lim : (N→ O)→ O

To program and reason about an inductive type we must have means to analyze its inhabitants.
The elimination rules for the inductive types express ways to use the objects of the inductive

type in order to define objects of other types, and are associated to new computational rules.

3.2.2 Case analysis

The first elimination rule for indutive types one can consider is case analyses.
For instance, n : N means that n was introduced using either 0 or S, so we may define an

object case n of {0⇒ b1 | S⇒ b2} in another type σ depending on which constructor was used to
introduce n. A typing rule for this construction is

Γ $ n : N Γ $ b1 : σ Γ $ b2 : N→σ

Γ $ case n of {0⇒ b1 | S⇒ b2} : σ

and the associated computing rules are

case 0 of {0⇒ b1 | S⇒ b2} → b1

case (Sx) of {0⇒ b1 | S⇒ b2} → b2 x

The case analysis rule is very useful but it does not give a mechanism to define recursive functions.

26 CHAPTER 3. EXTENSIONS OF PURE TYPE SYSTEMS

• This gives us principles of “proof by induction” and “function definition by recursion”.

We can define a new type I inductively by giving its constructors together with their types
which must be of the form

τ1→ . . .→τn→I , with n ≥ 0

• Constructors (which are the introduction rules of the type I) give the canonical ways of
constructing one element of the new type I.

• The type I defined is the smallest set (of objects) closed under its introduction rules.

• The inhabitants of type I are the objects that can be obtained by a finite number of appli-
cations of the type constructors.

• Note that the type I (under definition) can occur in any of the “domains” of its constructors.
However, the occurrences of I in τi must be in positive positions in order to assure the well-
foundedness of the datatype.

For instance, assuming that I does not occur in types A and B, I→B→ I, A→ (B→ I)→ I

or ((I→A)→B)→A→ I are valid types for a contructor of I, but (I→A)→ I or ((A→ I)→
B)→A→I are not.

3.2.1 Examples

For instance, the inductive type N : Set of natural numbers has two constructors

0 : N
S : N→ N

Notice that the positivity condition still permits functional recursive arguments in the construc-
tors. A well-known example of a higher-order datatype is the type O : Set of ordinal notations
which has three constructors

Zero : O
Succ : O→ O
Lim : (N→ O)→ O

To program and reason about an inductive type we must have means to analyze its inhabitants.
The elimination rules for the inductive types express ways to use the objects of the inductive

type in order to define objects of other types, and are associated to new computational rules.

3.2.2 Case analysis

The first elimination rule for indutive types one can consider is case analyses.
For instance, n : N means that n was introduced using either 0 or S, so we may define an

object case n of {0⇒ b1 | S⇒ b2} in another type σ depending on which constructor was used to
introduce n. A typing rule for this construction is

Γ $ n : N Γ $ b1 : σ Γ $ b2 : N→σ

Γ $ case n of {0⇒ b1 | S⇒ b2} : σ

and the associated computing rules are

case 0 of {0⇒ b1 | S⇒ b2} → b1

case (Sx) of {0⇒ b1 | S⇒ b2} → b2 x

The case analysis rule is very useful but it does not give a mechanism to define recursive functions.

16

Recursors
When an inductive type is defined in a type theory the theory should automatically
generate a scheme for proof-by-induction and a scheme for primitive recursion.

and its reduction rules are

• The inductive type comes equipped with a recursor that can be used to define
functions and prove properties on that type.

• The recursor is a constant that represents the structural induction principle
for the elements of the inductive type I , and the computation rule associated to
it defines a safe recursive scheme for programming.

3.2. INDUCTIVE TYPES 27

3.2.3 Recursors

When an inductive type is defined in a type theory the theory should automatically generate a
scheme for proof-by-induction and a scheme for primitive recursion.

The inductive type comes equiped with a recursor that can be used to define functions and
prove properties on that type.

The recursor is a constant RI that represents the structural induction principle for the ele-
ments of the inductive type I, and the computation rule associated to it defines a safe recursive
scheme for programming.

For example, RN, the recursor for N, has the following typing rule:

Γ ! P : N→Type Γ ! a : P 0 Γ ! a′ : Πx :N. P x→P (Sx)
Γ ! RN P a a′ : Πn :N. P n

and its reduction rules are

RN P aa′ 0 → a

RN P aa′ (Sx) → a′ x (RN P aa′ x)

Observe that:

• The proof-by-induction scheme can be recoverd by setting P to be of type N→Prop.

Let indN := λ P :N→Prop.RN P we obtain the following rule

Γ ! P : N→Prop Γ ! a : P 0 Γ ! a′ : Πx :N. P x→P (Sx)
Γ ! indN P aa′ : Πn :N. P n

This is the well known structural induction principle over natural numbers. It allows to
prove some universal property of natural numbers (∀n :N. Pn) by induction on n.

• The primitive recursion scheme (allowing dependent types) can be recoverd by setting P :
N→Set.

Let recN := λ P :N→Set.RN P we obtain the following rule

Γ ! T : N→Set Γ ! a : T 0 Γ ! a′ : Πx :N. T x→T (Sx)
Γ ! recN T a a′ : Πn :N. T n

We can define functions using the recursors. For instance, a function that doubles a natural
number can be defined as follows:

double := recN (λn :N. N) 0 (λx :N.λy :N.S (S y))

This approach gives safe way to express recursion without introducing non-normalizable ob-
jects. However, codifying recursive functions in terms of elimination constants can be rather
difficult, and is quite far from the way we are used to program.

For example, , the recursor for , has the following typing rule:

3.2. INDUCTIVE TYPES 27

3.2.3 Recursors

When an inductive type is defined in a type theory the theory should automatically generate a
scheme for proof-by-induction and a scheme for primitive recursion.

The inductive type comes equiped with a recursor that can be used to define functions and
prove properties on that type.

The recursor is a constant RI that represents the structural induction principle for the ele-
ments of the inductive type I, and the computation rule associated to it defines a safe recursive
scheme for programming.

For example, RN, the recursor for N, has the following typing rule:

Γ ! P : N→Type Γ ! a : P 0 Γ ! a′ : Πx :N. P x→P (Sx)
Γ ! RN P a a′ : Πn :N. P n

and its reduction rules are

RN P aa′ 0 → a

RN P aa′ (Sx) → a′ x (RN P aa′ x)

Observe that:

• The proof-by-induction scheme can be recoverd by setting P to be of type N→Prop.

Let indN := λ P :N→Prop.RN P we obtain the following rule

Γ ! P : N→Prop Γ ! a : P 0 Γ ! a′ : Πx :N. P x→P (Sx)
Γ ! indN P aa′ : Πn :N. P n

This is the well known structural induction principle over natural numbers. It allows to
prove some universal property of natural numbers (∀n :N. Pn) by induction on n.

• The primitive recursion scheme (allowing dependent types) can be recoverd by setting P :
N→Set.

Let recN := λ P :N→Set.RN P we obtain the following rule

Γ ! T : N→Set Γ ! a : T 0 Γ ! a′ : Πx :N. T x→T (Sx)
Γ ! recN T a a′ : Πn :N. T n

We can define functions using the recursors. For instance, a function that doubles a natural
number can be defined as follows:

double := recN (λn :N. N) 0 (λx :N.λy :N.S (S y))

This approach gives safe way to express recursion without introducing non-normalizable ob-
jects. However, codifying recursive functions in terms of elimination constants can be rather
difficult, and is quite far from the way we are used to program.

3.2. INDUCTIVE TYPES 27

3.2.3 Recursors

When an inductive type is defined in a type theory the theory should automatically generate a
scheme for proof-by-induction and a scheme for primitive recursion.

The inductive type comes equiped with a recursor that can be used to define functions and
prove properties on that type.

The recursor is a constant RI that represents the structural induction principle for the ele-
ments of the inductive type I, and the computation rule associated to it defines a safe recursive
scheme for programming.

For example, RN, the recursor for N, has the following typing rule:

Γ ! P : N→Type Γ ! a : P 0 Γ ! a′ : Πx :N. P x→P (Sx)
Γ ! RN P a a′ : Πn :N. P n

and its reduction rules are

RN P aa′ 0 → a

RN P aa′ (Sx) → a′ x (RN P aa′ x)

Observe that:

• The proof-by-induction scheme can be recoverd by setting P to be of type N→Prop.

Let indN := λ P :N→Prop.RN P we obtain the following rule

Γ ! P : N→Prop Γ ! a : P 0 Γ ! a′ : Πx :N. P x→P (Sx)
Γ ! indN P aa′ : Πn :N. P n

This is the well known structural induction principle over natural numbers. It allows to
prove some universal property of natural numbers (∀n :N. Pn) by induction on n.

• The primitive recursion scheme (allowing dependent types) can be recoverd by setting P :
N→Set.

Let recN := λ P :N→Set.RN P we obtain the following rule

Γ ! T : N→Set Γ ! a : T 0 Γ ! a′ : Πx :N. T x→T (Sx)
Γ ! recN T a a′ : Πn :N. T n

We can define functions using the recursors. For instance, a function that doubles a natural
number can be defined as follows:

double := recN (λn :N. N) 0 (λx :N.λy :N.S (S y))

This approach gives safe way to express recursion without introducing non-normalizable ob-
jects. However, codifying recursive functions in terms of elimination constants can be rather
difficult, and is quite far from the way we are used to program.

3.2. INDUCTIVE TYPES 27

3.2.3 Recursors

When an inductive type is defined in a type theory the theory should automatically generate a
scheme for proof-by-induction and a scheme for primitive recursion.

The inductive type comes equiped with a recursor that can be used to define functions and
prove properties on that type.

The recursor is a constant RI that represents the structural induction principle for the ele-
ments of the inductive type I, and the computation rule associated to it defines a safe recursive
scheme for programming.

For example, RN, the recursor for N, has the following typing rule:

Γ ! P : N→Type Γ ! a : P 0 Γ ! a′ : Πx :N. P x→P (Sx)
Γ ! RN P a a′ : Πn :N. P n

and its reduction rules are

RN P aa′ 0 → a

RN P aa′ (Sx) → a′ x (RN P aa′ x)

Observe that:

• The proof-by-induction scheme can be recoverd by setting P to be of type N→Prop.

Let indN := λ P :N→Prop.RN P we obtain the following rule

Γ ! P : N→Prop Γ ! a : P 0 Γ ! a′ : Πx :N. P x→P (Sx)
Γ ! indN P aa′ : Πn :N. P n

This is the well known structural induction principle over natural numbers. It allows to
prove some universal property of natural numbers (∀n :N. Pn) by induction on n.

• The primitive recursion scheme (allowing dependent types) can be recoverd by setting P :
N→Set.

Let recN := λ P :N→Set.RN P we obtain the following rule

Γ ! T : N→Set Γ ! a : T 0 Γ ! a′ : Πx :N. T x→T (Sx)
Γ ! recN T a a′ : Πn :N. T n

We can define functions using the recursors. For instance, a function that doubles a natural
number can be defined as follows:

double := recN (λn :N. N) 0 (λx :N.λy :N.S (S y))

This approach gives safe way to express recursion without introducing non-normalizable ob-
jects. However, codifying recursive functions in terms of elimination constants can be rather
difficult, and is quite far from the way we are used to program.

3.2. INDUCTIVE TYPES 27

3.2.3 Recursors

When an inductive type is defined in a type theory the theory should automatically generate a
scheme for proof-by-induction and a scheme for primitive recursion.

The inductive type comes equiped with a recursor that can be used to define functions and
prove properties on that type.

The recursor is a constant RI that represents the structural induction principle for the ele-
ments of the inductive type I, and the computation rule associated to it defines a safe recursive
scheme for programming.

For example, RN, the recursor for N, has the following typing rule:

Γ ! P : N→Type Γ ! a : P 0 Γ ! a′ : Πx :N. P x→P (Sx)
Γ ! RN P a a′ : Πn :N. P n

and its reduction rules are

RN P aa′ 0 → a

RN P aa′ (Sx) → a′ x (RN P aa′ x)

Observe that:

• The proof-by-induction scheme can be recoverd by setting P to be of type N→Prop.

Let indN := λ P :N→Prop.RN P we obtain the following rule

Γ ! P : N→Prop Γ ! a : P 0 Γ ! a′ : Πx :N. P x→P (Sx)
Γ ! indN P aa′ : Πn :N. P n

This is the well known structural induction principle over natural numbers. It allows to
prove some universal property of natural numbers (∀n :N. Pn) by induction on n.

• The primitive recursion scheme (allowing dependent types) can be recoverd by setting P :
N→Set.

Let recN := λ P :N→Set.RN P we obtain the following rule

Γ ! T : N→Set Γ ! a : T 0 Γ ! a′ : Πx :N. T x→T (Sx)
Γ ! recN T a a′ : Πn :N. T n

We can define functions using the recursors. For instance, a function that doubles a natural
number can be defined as follows:

double := recN (λn :N. N) 0 (λx :N.λy :N.S (S y))

This approach gives safe way to express recursion without introducing non-normalizable ob-
jects. However, codifying recursive functions in terms of elimination constants can be rather
difficult, and is quite far from the way we are used to program.

17

Proof-by-induction scheme

3.2. INDUCTIVE TYPES 27

3.2.3 Recursors

When an inductive type is defined in a type theory the theory should automatically generate a
scheme for proof-by-induction and a scheme for primitive recursion.

The inductive type comes equiped with a recursor that can be used to define functions and
prove properties on that type.

The recursor is a constant RI that represents the structural induction principle for the ele-
ments of the inductive type I, and the computation rule associated to it defines a safe recursive
scheme for programming.

For example, RN, the recursor for N, has the following typing rule:

Γ ! P : N→Type Γ ! a : P 0 Γ ! a′ : Πx :N. P x→P (Sx)
Γ ! RN P a a′ : Πn :N. P n

and its reduction rules are

RN P aa′ 0 → a

RN P aa′ (Sx) → a′ x (RN P aa′ x)

Observe that:

• The proof-by-induction scheme can be recoverd by setting P to be of type N→Prop.

Let indN := λ P :N→Prop.RN P we obtain the following rule

Γ ! P : N→Prop Γ ! a : P 0 Γ ! a′ : Πx :N. P x→P (Sx)
Γ ! indN P aa′ : Πn :N. P n

This is the well known structural induction principle over natural numbers. It allows to
prove some universal property of natural numbers (∀n :N. Pn) by induction on n.

• The primitive recursion scheme (allowing dependent types) can be recoverd by setting P :
N→Set.

Let recN := λ P :N→Set.RN P we obtain the following rule

Γ ! T : N→Set Γ ! a : T 0 Γ ! a′ : Πx :N. T x→T (Sx)
Γ ! recN T a a′ : Πn :N. T n

We can define functions using the recursors. For instance, a function that doubles a natural
number can be defined as follows:

double := recN (λn :N. N) 0 (λx :N.λy :N.S (S y))

This approach gives safe way to express recursion without introducing non-normalizable ob-
jects. However, codifying recursive functions in terms of elimination constants can be rather
difficult, and is quite far from the way we are used to program.

3.2. INDUCTIVE TYPES 27

3.2.3 Recursors

When an inductive type is defined in a type theory the theory should automatically generate a
scheme for proof-by-induction and a scheme for primitive recursion.

The inductive type comes equiped with a recursor that can be used to define functions and
prove properties on that type.

The recursor is a constant RI that represents the structural induction principle for the ele-
ments of the inductive type I, and the computation rule associated to it defines a safe recursive
scheme for programming.

For example, RN, the recursor for N, has the following typing rule:

Γ ! P : N→Type Γ ! a : P 0 Γ ! a′ : Πx :N. P x→P (Sx)
Γ ! RN P a a′ : Πn :N. P n

and its reduction rules are

RN P aa′ 0 → a

RN P aa′ (Sx) → a′ x (RN P aa′ x)

Observe that:

• The proof-by-induction scheme can be recoverd by setting P to be of type N→Prop.

Let indN := λ P :N→Prop.RN P we obtain the following rule

Γ ! P : N→Prop Γ ! a : P 0 Γ ! a′ : Πx :N. P x→P (Sx)
Γ ! indN P aa′ : Πn :N. P n

This is the well known structural induction principle over natural numbers. It allows to
prove some universal property of natural numbers (∀n :N. Pn) by induction on n.

• The primitive recursion scheme (allowing dependent types) can be recoverd by setting P :
N→Set.

Let recN := λ P :N→Set.RN P we obtain the following rule

Γ ! T : N→Set Γ ! a : T 0 Γ ! a′ : Πx :N. T x→T (Sx)
Γ ! recN T a a′ : Πn :N. T n

We can define functions using the recursors. For instance, a function that doubles a natural
number can be defined as follows:

double := recN (λn :N. N) 0 (λx :N.λy :N.S (S y))

This approach gives safe way to express recursion without introducing non-normalizable ob-
jects. However, codifying recursive functions in terms of elimination constants can be rather
difficult, and is quite far from the way we are used to program.

Let . We obtain the following rule

This is the well known structural induction principle over natural numbers. It
allows to prove some universal property of natural numbers by

induction on n.

3.2. INDUCTIVE TYPES 27

3.2.3 Recursors

When an inductive type is defined in a type theory the theory should automatically generate a
scheme for proof-by-induction and a scheme for primitive recursion.

The inductive type comes equiped with a recursor that can be used to define functions and
prove properties on that type.

The recursor is a constant RI that represents the structural induction principle for the ele-
ments of the inductive type I, and the computation rule associated to it defines a safe recursive
scheme for programming.

For example, RN, the recursor for N, has the following typing rule:

Γ ! P : N→Type Γ ! a : P 0 Γ ! a′ : Πx :N. P x→P (Sx)
Γ ! RN P a a′ : Πn :N. P n

and its reduction rules are

RN P aa′ 0 → a

RN P aa′ (Sx) → a′ x (RN P aa′ x)

Observe that:

• The proof-by-induction scheme can be recoverd by setting P to be of type N→Prop.

Let indN := λ P :N→Prop.RN P we obtain the following rule

Γ ! P : N→Prop Γ ! a : P 0 Γ ! a′ : Πx :N. P x→P (Sx)
Γ ! indN P aa′ : Πn :N. P n

This is the well known structural induction principle over natural numbers. It allows to
prove some universal property of natural numbers (∀n :N. Pn) by induction on n.

• The primitive recursion scheme (allowing dependent types) can be recoverd by setting P :
N→Set.

Let recN := λ P :N→Set.RN P we obtain the following rule

Γ ! T : N→Set Γ ! a : T 0 Γ ! a′ : Πx :N. T x→T (Sx)
Γ ! recN T a a′ : Πn :N. T n

We can define functions using the recursors. For instance, a function that doubles a natural
number can be defined as follows:

double := recN (λn :N. N) 0 (λx :N.λy :N.S (S y))

This approach gives safe way to express recursion without introducing non-normalizable ob-
jects. However, codifying recursive functions in terms of elimination constants can be rather
difficult, and is quite far from the way we are used to program.

3.2. INDUCTIVE TYPES 27

3.2.3 Recursors

When an inductive type is defined in a type theory the theory should automatically generate a
scheme for proof-by-induction and a scheme for primitive recursion.

The inductive type comes equiped with a recursor that can be used to define functions and
prove properties on that type.

The recursor is a constant RI that represents the structural induction principle for the ele-
ments of the inductive type I, and the computation rule associated to it defines a safe recursive
scheme for programming.

For example, RN, the recursor for N, has the following typing rule:

Γ ! P : N→Type Γ ! a : P 0 Γ ! a′ : Πx :N. P x→P (Sx)
Γ ! RN P a a′ : Πn :N. P n

and its reduction rules are

RN P aa′ 0 → a

RN P aa′ (Sx) → a′ x (RN P aa′ x)

Observe that:

• The proof-by-induction scheme can be recoverd by setting P to be of type N→Prop.

Let indN := λ P :N→Prop.RN P we obtain the following rule

Γ ! P : N→Prop Γ ! a : P 0 Γ ! a′ : Πx :N. P x→P (Sx)
Γ ! indN P aa′ : Πn :N. P n

This is the well known structural induction principle over natural numbers. It allows to
prove some universal property of natural numbers (∀n :N. Pn) by induction on n.

• The primitive recursion scheme (allowing dependent types) can be recoverd by setting P :
N→Set.

Let recN := λ P :N→Set.RN P we obtain the following rule

Γ ! T : N→Set Γ ! a : T 0 Γ ! a′ : Πx :N. T x→T (Sx)
Γ ! recN T a a′ : Πn :N. T n

We can define functions using the recursors. For instance, a function that doubles a natural
number can be defined as follows:

double := recN (λn :N. N) 0 (λx :N.λy :N.S (S y))

This approach gives safe way to express recursion without introducing non-normalizable ob-
jects. However, codifying recursive functions in terms of elimination constants can be rather
difficult, and is quite far from the way we are used to program.

The proof-by-induction scheme can be recovered from by setting P to be of
type

3.2. INDUCTIVE TYPES 27

3.2.3 Recursors

When an inductive type is defined in a type theory the theory should automatically generate a
scheme for proof-by-induction and a scheme for primitive recursion.

The inductive type comes equiped with a recursor that can be used to define functions and
prove properties on that type.

The recursor is a constant RI that represents the structural induction principle for the ele-
ments of the inductive type I, and the computation rule associated to it defines a safe recursive
scheme for programming.

For example, RN, the recursor for N, has the following typing rule:

Γ ! P : N→Type Γ ! a : P 0 Γ ! a′ : Πx :N. P x→P (Sx)
Γ ! RN P a a′ : Πn :N. P n

and its reduction rules are

RN P aa′ 0 → a

RN P aa′ (Sx) → a′ x (RN P aa′ x)

Observe that:

• The proof-by-induction scheme can be recoverd by setting P to be of type N→Prop.

Let indN := λ P :N→Prop.RN P we obtain the following rule

Γ ! P : N→Prop Γ ! a : P 0 Γ ! a′ : Πx :N. P x→P (Sx)
Γ ! indN P aa′ : Πn :N. P n

This is the well known structural induction principle over natural numbers. It allows to
prove some universal property of natural numbers (∀n :N. Pn) by induction on n.

• The primitive recursion scheme (allowing dependent types) can be recoverd by setting P :
N→Set.

Let recN := λ P :N→Set.RN P we obtain the following rule

Γ ! T : N→Set Γ ! a : T 0 Γ ! a′ : Πx :N. T x→T (Sx)
Γ ! recN T a a′ : Πn :N. T n

We can define functions using the recursors. For instance, a function that doubles a natural
number can be defined as follows:

double := recN (λn :N. N) 0 (λx :N.λy :N.S (S y))

This approach gives safe way to express recursion without introducing non-normalizable ob-
jects. However, codifying recursive functions in terms of elimination constants can be rather
difficult, and is quite far from the way we are used to program.

18

Primitive recursion scheme

Let . We obtain the following rule

3.2. INDUCTIVE TYPES 27

3.2.3 Recursors

When an inductive type is defined in a type theory the theory should automatically generate a
scheme for proof-by-induction and a scheme for primitive recursion.

The inductive type comes equiped with a recursor that can be used to define functions and
prove properties on that type.

The recursor is a constant RI that represents the structural induction principle for the ele-
ments of the inductive type I, and the computation rule associated to it defines a safe recursive
scheme for programming.

For example, RN, the recursor for N, has the following typing rule:

Γ ! P : N→Type Γ ! a : P 0 Γ ! a′ : Πx :N. P x→P (Sx)
Γ ! RN P a a′ : Πn :N. P n

and its reduction rules are

RN P aa′ 0 → a

RN P aa′ (Sx) → a′ x (RN P aa′ x)

Observe that:

• The proof-by-induction scheme can be recoverd by setting P to be of type N→Prop.

Let indN := λ P :N→Prop.RN P we obtain the following rule

Γ ! P : N→Prop Γ ! a : P 0 Γ ! a′ : Πx :N. P x→P (Sx)
Γ ! indN P aa′ : Πn :N. P n

This is the well known structural induction principle over natural numbers. It allows to
prove some universal property of natural numbers (∀n :N. Pn) by induction on n.

• The primitive recursion scheme (allowing dependent types) can be recoverd by setting P :
N→Set.

Let recN := λ P :N→Set.RN P we obtain the following rule

Γ ! T : N→Set Γ ! a : T 0 Γ ! a′ : Πx :N. T x→T (Sx)
Γ ! recN T a a′ : Πn :N. T n

We can define functions using the recursors. For instance, a function that doubles a natural
number can be defined as follows:

double := recN (λn :N. N) 0 (λx :N.λy :N.S (S y))

This approach gives safe way to express recursion without introducing non-normalizable ob-
jects. However, codifying recursive functions in terms of elimination constants can be rather
difficult, and is quite far from the way we are used to program.

3.2. INDUCTIVE TYPES 27

3.2.3 Recursors

When an inductive type is defined in a type theory the theory should automatically generate a
scheme for proof-by-induction and a scheme for primitive recursion.

The inductive type comes equiped with a recursor that can be used to define functions and
prove properties on that type.

The recursor is a constant RI that represents the structural induction principle for the ele-
ments of the inductive type I, and the computation rule associated to it defines a safe recursive
scheme for programming.

For example, RN, the recursor for N, has the following typing rule:

Γ ! P : N→Type Γ ! a : P 0 Γ ! a′ : Πx :N. P x→P (Sx)
Γ ! RN P a a′ : Πn :N. P n

and its reduction rules are

RN P aa′ 0 → a

RN P aa′ (Sx) → a′ x (RN P aa′ x)

Observe that:

• The proof-by-induction scheme can be recoverd by setting P to be of type N→Prop.

Let indN := λ P :N→Prop.RN P we obtain the following rule

Γ ! P : N→Prop Γ ! a : P 0 Γ ! a′ : Πx :N. P x→P (Sx)
Γ ! indN P aa′ : Πn :N. P n

This is the well known structural induction principle over natural numbers. It allows to
prove some universal property of natural numbers (∀n :N. Pn) by induction on n.

• The primitive recursion scheme (allowing dependent types) can be recoverd by setting P :
N→Set.

Let recN := λ P :N→Set.RN P we obtain the following rule

Γ ! T : N→Set Γ ! a : T 0 Γ ! a′ : Πx :N. T x→T (Sx)
Γ ! recN T a a′ : Πn :N. T n

We can define functions using the recursors. For instance, a function that doubles a natural
number can be defined as follows:

double := recN (λn :N. N) 0 (λx :N.λy :N.S (S y))

This approach gives safe way to express recursion without introducing non-normalizable ob-
jects. However, codifying recursive functions in terms of elimination constants can be rather
difficult, and is quite far from the way we are used to program.

We can define functions using the recursors.

A function that doubles a natural number can be defined as follows

3.2. INDUCTIVE TYPES 27

3.2.3 Recursors

When an inductive type is defined in a type theory the theory should automatically generate a
scheme for proof-by-induction and a scheme for primitive recursion.

The inductive type comes equiped with a recursor that can be used to define functions and
prove properties on that type.

The recursor is a constant RI that represents the structural induction principle for the ele-
ments of the inductive type I, and the computation rule associated to it defines a safe recursive
scheme for programming.

For example, RN, the recursor for N, has the following typing rule:

Γ ! P : N→Type Γ ! a : P 0 Γ ! a′ : Πx :N. P x→P (Sx)
Γ ! RN P a a′ : Πn :N. P n

and its reduction rules are

RN P aa′ 0 → a

RN P aa′ (Sx) → a′ x (RN P aa′ x)

Observe that:

• The proof-by-induction scheme can be recoverd by setting P to be of type N→Prop.

Let indN := λ P :N→Prop.RN P we obtain the following rule

Γ ! P : N→Prop Γ ! a : P 0 Γ ! a′ : Πx :N. P x→P (Sx)
Γ ! indN P aa′ : Πn :N. P n

This is the well known structural induction principle over natural numbers. It allows to
prove some universal property of natural numbers (∀n :N. Pn) by induction on n.

• The primitive recursion scheme (allowing dependent types) can be recoverd by setting P :
N→Set.

Let recN := λ P :N→Set.RN P we obtain the following rule

Γ ! T : N→Set Γ ! a : T 0 Γ ! a′ : Πx :N. T x→T (Sx)
Γ ! recN T a a′ : Πn :N. T n

We can define functions using the recursors. For instance, a function that doubles a natural
number can be defined as follows:

double := recN (λn :N. N) 0 (λx :N.λy :N.S (S y))

This approach gives safe way to express recursion without introducing non-normalizable ob-
jects. However, codifying recursive functions in terms of elimination constants can be rather
difficult, and is quite far from the way we are used to program.

This gives us a safe way to express recursion without introducing non-normalizable
objects. However, codifying recursive functions in terms of elimination constants can
be rather difficult, and is quite far from the way we are used to program.

Example:

The primitive recursion scheme (allowing dependent types) can be recovered from
 by setting P to be of type

3.2. INDUCTIVE TYPES 27

3.2.3 Recursors

When an inductive type is defined in a type theory the theory should automatically generate a
scheme for proof-by-induction and a scheme for primitive recursion.

The inductive type comes equiped with a recursor that can be used to define functions and
prove properties on that type.

The recursor is a constant RI that represents the structural induction principle for the ele-
ments of the inductive type I, and the computation rule associated to it defines a safe recursive
scheme for programming.

For example, RN, the recursor for N, has the following typing rule:

Γ ! P : N→Type Γ ! a : P 0 Γ ! a′ : Πx :N. P x→P (Sx)
Γ ! RN P a a′ : Πn :N. P n

and its reduction rules are

RN P aa′ 0 → a

RN P aa′ (Sx) → a′ x (RN P aa′ x)

Observe that:

• The proof-by-induction scheme can be recoverd by setting P to be of type N→Prop.

Let indN := λ P :N→Prop.RN P we obtain the following rule

Γ ! P : N→Prop Γ ! a : P 0 Γ ! a′ : Πx :N. P x→P (Sx)
Γ ! indN P aa′ : Πn :N. P n

This is the well known structural induction principle over natural numbers. It allows to
prove some universal property of natural numbers (∀n :N. Pn) by induction on n.

• The primitive recursion scheme (allowing dependent types) can be recoverd by setting P :
N→Set.

Let recN := λ P :N→Set.RN P we obtain the following rule

Γ ! T : N→Set Γ ! a : T 0 Γ ! a′ : Πx :N. T x→T (Sx)
Γ ! recN T a a′ : Πn :N. T n

We can define functions using the recursors. For instance, a function that doubles a natural
number can be defined as follows:

double := recN (λn :N. N) 0 (λx :N.λy :N.S (S y))

This approach gives safe way to express recursion without introducing non-normalizable ob-
jects. However, codifying recursive functions in terms of elimination constants can be rather
difficult, and is quite far from the way we are used to program.

3.2. INDUCTIVE TYPES 27

3.2.3 Recursors

When an inductive type is defined in a type theory the theory should automatically generate a
scheme for proof-by-induction and a scheme for primitive recursion.

The inductive type comes equiped with a recursor that can be used to define functions and
prove properties on that type.

The recursor is a constant RI that represents the structural induction principle for the ele-
ments of the inductive type I, and the computation rule associated to it defines a safe recursive
scheme for programming.

For example, RN, the recursor for N, has the following typing rule:

Γ ! P : N→Type Γ ! a : P 0 Γ ! a′ : Πx :N. P x→P (Sx)
Γ ! RN P a a′ : Πn :N. P n

and its reduction rules are

RN P aa′ 0 → a

RN P aa′ (Sx) → a′ x (RN P aa′ x)

Observe that:

• The proof-by-induction scheme can be recoverd by setting P to be of type N→Prop.

Let indN := λ P :N→Prop.RN P we obtain the following rule

Γ ! P : N→Prop Γ ! a : P 0 Γ ! a′ : Πx :N. P x→P (Sx)
Γ ! indN P aa′ : Πn :N. P n

This is the well known structural induction principle over natural numbers. It allows to
prove some universal property of natural numbers (∀n :N. Pn) by induction on n.

• The primitive recursion scheme (allowing dependent types) can be recoverd by setting P :
N→Set.

Let recN := λ P :N→Set.RN P we obtain the following rule

Γ ! T : N→Set Γ ! a : T 0 Γ ! a′ : Πx :N. T x→T (Sx)
Γ ! recN T a a′ : Πn :N. T n

We can define functions using the recursors. For instance, a function that doubles a natural
number can be defined as follows:

double := recN (λn :N. N) 0 (λx :N.λy :N.S (S y))

This approach gives safe way to express recursion without introducing non-normalizable ob-
jects. However, codifying recursive functions in terms of elimination constants can be rather
difficult, and is quite far from the way we are used to program.

19

General recursion

Using this, the function that doubles a natural number can be defined by

But, this approach opens the door to the introduction of non-normalizable objects.

Functional programming languages feature general recursion, allowing recursive
functions to be defined by means of pattern-matching and a general fixpoint operator
to encode recursive calls.

and the associated computation rules are

28 CHAPTER 3. EXTENSIONS OF PURE TYPE SYSTEMS

3.2.4 General recursion

Functional programming languages feature general recursion, allowing recursive functions to be
defined by means of pattern-matching and a general fixpoint operator to encode recursive calls.
The typing rule for N fixpoint expressions is

Γ ! N→θ : s Γ, f : N→θ ! e : N→θ

Γ ! (fix f = e) : N→θ

and the associated computation rules are

(fix f = e) 0 → e[f := (fix f = e)] 0
(fix f = e) (Sx) → e[f := (fix f = e)] (Sx)

Using this, the function that doubles a natural number can be defined by

(fix double = λ n. case n of {0⇒ 0 | S⇒ (λx.S (S (double x)})

Of course, this approach opens the door to the introduction of non-normalizable objects, but
it raises the level of expressiveness of the language.

3.2.5 About termination

Checking convertability between types may require computing with recursive functions. So, the
combination of non-normalization with dependent types leads to undecidable type checking.

To enforce decidability of type checking, proof assistants either require recursive functions to
be encoded in terms of recursors or allow restricted forms of fixpoint expressions.

A usual way to ensure termination of fixpoint expressions is to impose syntatical restrictions
through a predicate Gf on untyped terms. This predicate enforces termination by constraining
all recursive calls to be applied to terms structurally smaller than the formal argument of the
function.

The restricted typing rule for fixpoint expressions hence becomes:

Γ ! N→θ : s Γ, f : N→θ ! e : N→θ

Γ ! (fix f = e) : N→θ
if Gf (e)

3.2.6 On positivity

As illustrated above, general recursion permits the definition of non-terminating functions. So does
the possibility of declaring non well-founded datatypes, as illustrated by the following example.

Consider a datatype d defined by a single introduction rule C : (d→ θ)→ d, where θ may be
any type (even the empty type). Let app ≡ λx.λy. case x of {C ⇒ λf. f y}, t ≡ (λz. app z z) and
Ω ≡ app (C t) (C t). We have app : d→ d→ θ, t : d→ θ and Ω : θ. However, Ω is a looping term
which has no canonical form

Ω ! case (C t) of {C⇒ λf. f (C t)} → (λf. f (C t)) t → t (C t) → Ω

What enables to construct a non-normalizing term in θ is the negative occurrence of d in the
domain of C.

In order to banish non-well-founded elements from the language, proof assistants usually impose
a positivity condition on the possible forms of the introduction rules of the inductive datatypes.

28 CHAPTER 3. EXTENSIONS OF PURE TYPE SYSTEMS

3.2.4 General recursion

Functional programming languages feature general recursion, allowing recursive functions to be
defined by means of pattern-matching and a general fixpoint operator to encode recursive calls.
The typing rule for N fixpoint expressions is

Γ ! N→θ : s Γ, f : N→θ ! e : N→θ

Γ ! (fix f = e) : N→θ

and the associated computation rules are

(fix f = e) 0 → e[f := (fix f = e)] 0
(fix f = e) (Sx) → e[f := (fix f = e)] (Sx)

Using this, the function that doubles a natural number can be defined by

(fix double = λ n. case n of {0⇒ 0 | S⇒ (λx.S (S (double x)})

Of course, this approach opens the door to the introduction of non-normalizable objects, but
it raises the level of expressiveness of the language.

3.2.5 About termination

Checking convertability between types may require computing with recursive functions. So, the
combination of non-normalization with dependent types leads to undecidable type checking.

To enforce decidability of type checking, proof assistants either require recursive functions to
be encoded in terms of recursors or allow restricted forms of fixpoint expressions.

A usual way to ensure termination of fixpoint expressions is to impose syntatical restrictions
through a predicate Gf on untyped terms. This predicate enforces termination by constraining
all recursive calls to be applied to terms structurally smaller than the formal argument of the
function.

The restricted typing rule for fixpoint expressions hence becomes:

Γ ! N→θ : s Γ, f : N→θ ! e : N→θ

Γ ! (fix f = e) : N→θ
if Gf (e)

3.2.6 On positivity

As illustrated above, general recursion permits the definition of non-terminating functions. So does
the possibility of declaring non well-founded datatypes, as illustrated by the following example.

Consider a datatype d defined by a single introduction rule C : (d→ θ)→ d, where θ may be
any type (even the empty type). Let app ≡ λx.λy. case x of {C ⇒ λf. f y}, t ≡ (λz. app z z) and
Ω ≡ app (C t) (C t). We have app : d→ d→ θ, t : d→ θ and Ω : θ. However, Ω is a looping term
which has no canonical form

Ω ! case (C t) of {C⇒ λf. f (C t)} → (λf. f (C t)) t → t (C t) → Ω

What enables to construct a non-normalizing term in θ is the negative occurrence of d in the
domain of C.

In order to banish non-well-founded elements from the language, proof assistants usually impose
a positivity condition on the possible forms of the introduction rules of the inductive datatypes.

The typing rule for fixpoint expressions is

28 CHAPTER 3. EXTENSIONS OF PURE TYPE SYSTEMS

3.2.4 General recursion

Functional programming languages feature general recursion, allowing recursive functions to be
defined by means of pattern-matching and a general fixpoint operator to encode recursive calls.
The typing rule for N fixpoint expressions is

Γ ! N→θ : s Γ, f : N→θ ! e : N→θ

Γ ! (fix f = e) : N→θ

and the associated computation rules are

(fix f = e) 0 → e[f := (fix f = e)] 0
(fix f = e) (Sx) → e[f := (fix f = e)] (Sx)

Using this, the function that doubles a natural number can be defined by

(fix double = λ n. case n of {0⇒ 0 | S⇒ (λx.S (S (double x)})

Of course, this approach opens the door to the introduction of non-normalizable objects, but
it raises the level of expressiveness of the language.

3.2.5 About termination

Checking convertability between types may require computing with recursive functions. So, the
combination of non-normalization with dependent types leads to undecidable type checking.

To enforce decidability of type checking, proof assistants either require recursive functions to
be encoded in terms of recursors or allow restricted forms of fixpoint expressions.

A usual way to ensure termination of fixpoint expressions is to impose syntatical restrictions
through a predicate Gf on untyped terms. This predicate enforces termination by constraining
all recursive calls to be applied to terms structurally smaller than the formal argument of the
function.

The restricted typing rule for fixpoint expressions hence becomes:

Γ ! N→θ : s Γ, f : N→θ ! e : N→θ

Γ ! (fix f = e) : N→θ
if Gf (e)

3.2.6 On positivity

As illustrated above, general recursion permits the definition of non-terminating functions. So does
the possibility of declaring non well-founded datatypes, as illustrated by the following example.

Consider a datatype d defined by a single introduction rule C : (d→ θ)→ d, where θ may be
any type (even the empty type). Let app ≡ λx.λy. case x of {C ⇒ λf. f y}, t ≡ (λz. app z z) and
Ω ≡ app (C t) (C t). We have app : d→ d→ θ, t : d→ θ and Ω : θ. However, Ω is a looping term
which has no canonical form

Ω ! case (C t) of {C⇒ λf. f (C t)} → (λf. f (C t)) t → t (C t) → Ω

What enables to construct a non-normalizing term in θ is the negative occurrence of d in the
domain of C.

In order to banish non-well-founded elements from the language, proof assistants usually impose
a positivity condition on the possible forms of the introduction rules of the inductive datatypes.

28 CHAPTER 3. EXTENSIONS OF PURE TYPE SYSTEMS

3.2.4 General recursion

Functional programming languages feature general recursion, allowing recursive functions to be
defined by means of pattern-matching and a general fixpoint operator to encode recursive calls.
The typing rule for N fixpoint expressions is

Γ ! N→θ : s Γ, f : N→θ ! e : N→θ

Γ ! (fix f = e) : N→θ

and the associated computation rules are

(fix f = e) 0 → e[f := (fix f = e)] 0
(fix f = e) (Sx) → e[f := (fix f = e)] (Sx)

Using this, the function that doubles a natural number can be defined by

(fix double = λn : N. case n of {0⇒ 0 | S⇒ (λx : N.S (S (double x)))})

Of course, this approach opens the door to the introduction of non-normalizable objects, but
it raises the level of expressiveness of the language.

3.2.5 About termination

Checking convertibility between types may require computing with recursive functions. So, the
combination of non-normalization with dependent types leads to undecidable type checking.

To enforce decidability of type checking, proof assistants either require recursive functions to
be encoded in terms of recursors or allow restricted forms of fixpoint expressions.

A usual way to ensure termination of fixpoint expressions is to impose syntatical restrictions
through a predicate Gf on untyped terms. This predicate enforces termination by constraining
all recursive calls to be applied to terms structurally smaller than the formal argument of the
function.

The restricted typing rule for fixpoint expressions hence becomes:

Γ ! N→θ : s Γ, f : N→θ ! e : N→θ

Γ ! (fix f = e) : N→θ
if Gf (e)

3.2.6 On positivity

Unrestricted general recursion permits the definition of non-terminating functions. So does the
possibility of declaring non well-founded datatypes, as illustrated by the following example.

Consider a datatype d defined by a single introduction rule C : (d→ θ)→ d, where θ may be
any type (even the empty type). Let app ≡ λx.λy. case x of {C ⇒ λf. f y}, t ≡ (λz. app z z) and
Ω ≡ app (C t) (C t). We have app : d→ d→ θ, t : d→ θ and Ω : θ. However, Ω is a looping term
which has no canonical form

Ω ! case (C t) of {C⇒ λf. f (C t)} → (λf. f (C t)) t → t (C t) → Ω

What enables to construct a non-normalizing term in θ is the negative occurrence of d in the
domain of C.

In order to banish non-well-founded elements from the language, proof assistants usually impose
a positivity condition on the possible forms of the introduction rules of the inductive datatypes.

20

About termination

The restricted typing rule for fixpoint expressions hence becomes:

28 CHAPTER 3. EXTENSIONS OF PURE TYPE SYSTEMS

3.2.4 General recursion

Functional programming languages feature general recursion, allowing recursive functions to be
defined by means of pattern-matching and a general fixpoint operator to encode recursive calls.
The typing rule for N fixpoint expressions is

Γ ! N→θ : s Γ, f : N→θ ! e : N→θ

Γ ! (fix f = e) : N→θ

and the associated computation rules are

(fix f = e) 0 → e[f := (fix f = e)] 0
(fix f = e) (Sx) → e[f := (fix f = e)] (Sx)

Using this, the function that doubles a natural number can be defined by

(fix double = λ n. case n of {0⇒ 0 | S⇒ (λx.S (S (double x)})

Of course, this approach opens the door to the introduction of non-normalizable objects, but
it raises the level of expressiveness of the language.

3.2.5 About termination

Checking convertibility between types may require computing with recursive functions. So, the
combination of non-normalization with dependent types leads to undecidable type checking.

To enforce decidability of type checking, proof assistants either require recursive functions to
be encoded in terms of recursors or allow restricted forms of fixpoint expressions.

A usual way to ensure termination of fixpoint expressions is to impose syntatical restrictions
through a predicate Gf on untyped terms. This predicate enforces termination by constraining
all recursive calls to be applied to terms structurally smaller than the formal argument of the
function.

The restricted typing rule for fixpoint expressions hence becomes:

Γ ! N→θ : s Γ, f : N→θ ! e : N→θ

Γ ! (fix f = e) : N→θ
if Gf (e)

3.2.6 On positivity

As illustrated above, general recursion permits the definition of non-terminating functions. So does
the possibility of declaring non well-founded datatypes, as illustrated by the following example.

Consider a datatype d defined by a single introduction rule C : (d→ θ)→ d, where θ may be
any type (even the empty type). Let app ≡ λx.λy. case x of {C ⇒ λf. f y}, t ≡ (λz. app z z) and
Ω ≡ app (C t) (C t). We have app : d→ d→ θ, t : d→ θ and Ω : θ. However, Ω is a looping term
which has no canonical form

Ω ! case (C t) of {C⇒ λf. f (C t)} → (λf. f (C t)) t → t (C t) → Ω

What enables to construct a non-normalizing term in θ is the negative occurrence of d in the
domain of C.

In order to banish non-well-founded elements from the language, proof assistants usually impose
a positivity condition on the possible forms of the introduction rules of the inductive datatypes.

• Checking convertibility between types may require computing with recursive
functions. So, the combination of non-normalization with dependent types leads to
undecidable type checking.

• To enforce decidability of type checking, proof assistants either require recursive
functions to be encoded in terms of recursors or allow restricted forms of
fixpoint expressions.

• A usual way to ensure termination of fixpoint expressions is to impose syntactical
restrictions through a predicate on untyped terms. This predicate enforces
termination by constraining all recursive calls to be applied to terms structurally
smaller than the formal argument of the function.

28 CHAPTER 3. EXTENSIONS OF PURE TYPE SYSTEMS

3.2.4 General recursion

Functional programming languages feature general recursion, allowing recursive functions to be
defined by means of pattern-matching and a general fixpoint operator to encode recursive calls.
The typing rule for N fixpoint expressions is

Γ ! N→θ : s Γ, f : N→θ ! e : N→θ

Γ ! (fix f = e) : N→θ

and the associated computation rules are

(fix f = e) 0 → e[f := (fix f = e)] 0
(fix f = e) (Sx) → e[f := (fix f = e)] (Sx)

Using this, the function that doubles a natural number can be defined by

(fix double = λ n. case n of {0⇒ 0 | S⇒ (λx.S (S (double x)})

Of course, this approach opens the door to the introduction of non-normalizable objects, but
it raises the level of expressiveness of the language.

3.2.5 About termination

Checking convertibility between types may require computing with recursive functions. So, the
combination of non-normalization with dependent types leads to undecidable type checking.

To enforce decidability of type checking, proof assistants either require recursive functions to
be encoded in terms of recursors or allow restricted forms of fixpoint expressions.

A usual way to ensure termination of fixpoint expressions is to impose syntatical restrictions
through a predicate Gf on untyped terms. This predicate enforces termination by constraining
all recursive calls to be applied to terms structurally smaller than the formal argument of the
function.

The restricted typing rule for fixpoint expressions hence becomes:

Γ ! N→θ : s Γ, f : N→θ ! e : N→θ

Γ ! (fix f = e) : N→θ
if Gf (e)

3.2.6 On positivity

As illustrated above, general recursion permits the definition of non-terminating functions. So does
the possibility of declaring non well-founded datatypes, as illustrated by the following example.

Consider a datatype d defined by a single introduction rule C : (d→ θ)→ d, where θ may be
any type (even the empty type). Let app ≡ λx.λy. case x of {C ⇒ λf. f y}, t ≡ (λz. app z z) and
Ω ≡ app (C t) (C t). We have app : d→ d→ θ, t : d→ θ and Ω : θ. However, Ω is a looping term
which has no canonical form

Ω ! case (C t) of {C⇒ λf. f (C t)} → (λf. f (C t)) t → t (C t) → Ω

What enables to construct a non-normalizing term in θ is the negative occurrence of d in the
domain of C.

In order to banish non-well-founded elements from the language, proof assistants usually impose
a positivity condition on the possible forms of the introduction rules of the inductive datatypes.

21

On positivity

In order to banish non-well-founded elements from the language, proof assistants

usually impose a positivity condition on the possible forms of the introduction rules
of the inductive types.

Unrestricted general recursion permits the definition of non-terminating functions.
So does the possibility of declaring non well-founded datatypes

28 CHAPTER 3. EXTENSIONS OF PURE TYPE SYSTEMS

3.2.4 General recursion

Functional programming languages feature general recursion, allowing recursive functions to be
defined by means of pattern-matching and a general fixpoint operator to encode recursive calls.
The typing rule for N fixpoint expressions is

Γ ! N→θ : s Γ, f : N→θ ! e : N→θ

Γ ! (fix f = e) : N→θ

and the associated computation rules are

(fix f = e) 0 → e[f := (fix f = e)] 0
(fix f = e) (Sx) → e[f := (fix f = e)] (Sx)

Using this, the function that doubles a natural number can be defined by

(fix double = λ n. case n of {0⇒ 0 | S⇒ (λx.S (S (double x)})

Of course, this approach opens the door to the introduction of non-normalizable objects, but
it raises the level of expressiveness of the language.

3.2.5 About termination

Checking convertibility between types may require computing with recursive functions. So, the
combination of non-normalization with dependent types leads to undecidable type checking.

To enforce decidability of type checking, proof assistants either require recursive functions to
be encoded in terms of recursors or allow restricted forms of fixpoint expressions.

A usual way to ensure termination of fixpoint expressions is to impose syntatical restrictions
through a predicate Gf on untyped terms. This predicate enforces termination by constraining
all recursive calls to be applied to terms structurally smaller than the formal argument of the
function.

The restricted typing rule for fixpoint expressions hence becomes:

Γ ! N→θ : s Γ, f : N→θ ! e : N→θ

Γ ! (fix f = e) : N→θ
if Gf (e)

3.2.6 On positivity

As illustrated above, general recursion permits the definition of non-terminating functions. So does
the possibility of declaring non well-founded datatypes, as illustrated by the following example.

Consider a datatype d defined by a single introduction rule C : (d→ θ)→ d, where θ may be
any type (even the empty type). Let app ≡ λx.λy. case x of {C ⇒ λf. f y}, t ≡ (λz. app z z) and
Ω ≡ app (C t) (C t). We have app : d→ d→ θ, t : d→ θ and Ω : θ. However, Ω is a looping term
which has no canonical form

Ω ! case (C t) of {C⇒ λf. f (C t)} → (λf. f (C t)) t → t (C t) → Ω

What enables to construct a non-normalizing term in θ is the negative occurrence of d in the
domain of C.

In order to banish non-well-founded elements from the language, proof assistants usually impose
a positivity condition on the possible forms of the introduction rules of the inductive datatypes.

Consider a datatype d defined by a single introduction rule ,
where ! may be any type (even the empty type).

28 CHAPTER 3. EXTENSIONS OF PURE TYPE SYSTEMS

3.2.4 General recursion

Functional programming languages feature general recursion, allowing recursive functions to be
defined by means of pattern-matching and a general fixpoint operator to encode recursive calls.
The typing rule for N fixpoint expressions is

Γ ! N→θ : s Γ, f : N→θ ! e : N→θ

Γ ! (fix f = e) : N→θ

and the associated computation rules are

(fix f = e) 0 → e[f := (fix f = e)] 0
(fix f = e) (Sx) → e[f := (fix f = e)] (Sx)

Using this, the function that doubles a natural number can be defined by

(fix double = λ n. case n of {0⇒ 0 | S⇒ (λx.S (S (double x)})

Of course, this approach opens the door to the introduction of non-normalizable objects, but
it raises the level of expressiveness of the language.

3.2.5 About termination

Checking convertibility between types may require computing with recursive functions. So, the
combination of non-normalization with dependent types leads to undecidable type checking.

To enforce decidability of type checking, proof assistants either require recursive functions to
be encoded in terms of recursors or allow restricted forms of fixpoint expressions.

A usual way to ensure termination of fixpoint expressions is to impose syntatical restrictions
through a predicate Gf on untyped terms. This predicate enforces termination by constraining
all recursive calls to be applied to terms structurally smaller than the formal argument of the
function.

The restricted typing rule for fixpoint expressions hence becomes:

Γ ! N→θ : s Γ, f : N→θ ! e : N→θ

Γ ! (fix f = e) : N→θ
if Gf (e)

3.2.6 On positivity

As illustrated above, general recursion permits the definition of non-terminating functions. So does
the possibility of declaring non well-founded datatypes, as illustrated by the following example.

Consider a datatype d defined by a single introduction rule C : (d→ θ)→ d, where θ may be
any type (even the empty type). Let app ≡ λx.λy. case x of {C ⇒ λf. f y}, t ≡ (λz. app z z) and
Ω ≡ app (C t) (C t). We have app : d→ d→ θ, t : d→ θ and Ω : θ. However, Ω is a looping term
which has no canonical form

Ω ! case (C t) of {C⇒ λf. f (C t)} → (λf. f (C t)) t → t (C t) → Ω

What enables to construct a non-normalizing term in θ is the negative occurrence of d in the
domain of C.

In order to banish non-well-founded elements from the language, proof assistants usually impose
a positivity condition on the possible forms of the introduction rules of the inductive datatypes.

28 CHAPTER 3. EXTENSIONS OF PURE TYPE SYSTEMS

3.2.4 General recursion

Functional programming languages feature general recursion, allowing recursive functions to be
defined by means of pattern-matching and a general fixpoint operator to encode recursive calls.
The typing rule for N fixpoint expressions is

Γ ! N→θ : s Γ, f : N→θ ! e : N→θ

Γ ! (fix f = e) : N→θ

and the associated computation rules are

(fix f = e) 0 → e[f := (fix f = e)] 0
(fix f = e) (Sx) → e[f := (fix f = e)] (Sx)

Using this, the function that doubles a natural number can be defined by

(fix double = λ n. case n of {0⇒ 0 | S⇒ (λx.S (S (double x)})

Of course, this approach opens the door to the introduction of non-normalizable objects, but
it raises the level of expressiveness of the language.

3.2.5 About termination

Checking convertibility between types may require computing with recursive functions. So, the
combination of non-normalization with dependent types leads to undecidable type checking.

To enforce decidability of type checking, proof assistants either require recursive functions to
be encoded in terms of recursors or allow restricted forms of fixpoint expressions.

A usual way to ensure termination of fixpoint expressions is to impose syntatical restrictions
through a predicate Gf on untyped terms. This predicate enforces termination by constraining
all recursive calls to be applied to terms structurally smaller than the formal argument of the
function.

The restricted typing rule for fixpoint expressions hence becomes:

Γ ! N→θ : s Γ, f : N→θ ! e : N→θ

Γ ! (fix f = e) : N→θ
if Gf (e)

3.2.6 On positivity

As illustrated above, general recursion permits the definition of non-terminating functions. So does
the possibility of declaring non well-founded datatypes, as illustrated by the following example.

Consider a datatype d defined by a single introduction rule C : (d→ θ)→ d, where θ may be
any type (even the empty type). Let app ≡ λx.λy. case x of {C ⇒ λf. f y}, t ≡ (λz. app z z) and
Ω ≡ app (C t) (C t). We have app : d→ d→ θ, t : d→ θ and Ω : θ. However, Ω is a looping term
which has no canonical form

Ω ! case (C t) of {C⇒ λf. f (C t)} → (λf. f (C t)) t → t (C t) → Ω

What enables to construct a non-normalizing term in θ is the negative occurrence of d in the
domain of C.

In order to banish non-well-founded elements from the language, proof assistants usually impose
a positivity condition on the possible forms of the introduction rules of the inductive datatypes.

28 CHAPTER 3. EXTENSIONS OF PURE TYPE SYSTEMS

3.2.4 General recursion

Functional programming languages feature general recursion, allowing recursive functions to be
defined by means of pattern-matching and a general fixpoint operator to encode recursive calls.
The typing rule for N fixpoint expressions is

Γ ! N→θ : s Γ, f : N→θ ! e : N→θ

Γ ! (fix f = e) : N→θ

and the associated computation rules are

(fix f = e) 0 → e[f := (fix f = e)] 0
(fix f = e) (Sx) → e[f := (fix f = e)] (Sx)

Using this, the function that doubles a natural number can be defined by

(fix double = λ n. case n of {0⇒ 0 | S⇒ (λx.S (S (double x)})

Of course, this approach opens the door to the introduction of non-normalizable objects, but
it raises the level of expressiveness of the language.

3.2.5 About termination

Checking convertibility between types may require computing with recursive functions. So, the
combination of non-normalization with dependent types leads to undecidable type checking.

To enforce decidability of type checking, proof assistants either require recursive functions to
be encoded in terms of recursors or allow restricted forms of fixpoint expressions.

A usual way to ensure termination of fixpoint expressions is to impose syntatical restrictions
through a predicate Gf on untyped terms. This predicate enforces termination by constraining
all recursive calls to be applied to terms structurally smaller than the formal argument of the
function.

The restricted typing rule for fixpoint expressions hence becomes:

Γ ! N→θ : s Γ, f : N→θ ! e : N→θ

Γ ! (fix f = e) : N→θ
if Gf (e)

3.2.6 On positivity

As illustrated above, general recursion permits the definition of non-terminating functions. So does
the possibility of declaring non well-founded datatypes, as illustrated by the following example.

Consider a datatype d defined by a single introduction rule C : (d→ θ)→ d, where θ may be
any type (even the empty type). Let app ≡ λx.λy. case x of {C ⇒ λf. f y}, t ≡ (λz. app z z) and
Ω ≡ app (C t) (C t). We have app : d→ d→ θ, t : d→ θ and Ω : θ. However, Ω is a looping term
which has no canonical form

Ω ! case (C t) of {C⇒ λf. f (C t)} → (λf. f (C t)) t → t (C t) → Ω

What enables to construct a non-normalizing term in θ is the negative occurrence of d in the
domain of C.

In order to banish non-well-founded elements from the language, proof assistants usually impose
a positivity condition on the possible forms of the introduction rules of the inductive datatypes.

28 CHAPTER 3. EXTENSIONS OF PURE TYPE SYSTEMS

3.2.4 General recursion

Functional programming languages feature general recursion, allowing recursive functions to be
defined by means of pattern-matching and a general fixpoint operator to encode recursive calls.
The typing rule for N fixpoint expressions is

Γ ! N→θ : s Γ, f : N→θ ! e : N→θ

Γ ! (fix f = e) : N→θ

and the associated computation rules are

(fix f = e) 0 → e[f := (fix f = e)] 0
(fix f = e) (Sx) → e[f := (fix f = e)] (Sx)

Using this, the function that doubles a natural number can be defined by

(fix double = λ n. case n of {0⇒ 0 | S⇒ (λx.S (S (double x)})

Of course, this approach opens the door to the introduction of non-normalizable objects, but
it raises the level of expressiveness of the language.

3.2.5 About termination

Checking convertibility between types may require computing with recursive functions. So, the
combination of non-normalization with dependent types leads to undecidable type checking.

To enforce decidability of type checking, proof assistants either require recursive functions to
be encoded in terms of recursors or allow restricted forms of fixpoint expressions.

A usual way to ensure termination of fixpoint expressions is to impose syntatical restrictions
through a predicate Gf on untyped terms. This predicate enforces termination by constraining
all recursive calls to be applied to terms structurally smaller than the formal argument of the
function.

The restricted typing rule for fixpoint expressions hence becomes:

Γ ! N→θ : s Γ, f : N→θ ! e : N→θ

Γ ! (fix f = e) : N→θ
if Gf (e)

3.2.6 On positivity

As illustrated above, general recursion permits the definition of non-terminating functions. So does
the possibility of declaring non well-founded datatypes, as illustrated by the following example.

Consider a datatype d defined by a single introduction rule C : (d→ θ)→ d, where θ may be
any type (even the empty type). Let app ≡ λx.λy. case x of {C ⇒ λf. f y}, t ≡ (λz. app z z) and
Ω ≡ app (C t) (C t). We have app : d→ d→ θ, t : d→ θ and Ω : θ. However, Ω is a looping term
which has no canonical form

Ω ! case (C t) of {C⇒ λf. f (C t)} → (λf. f (C t)) t → t (C t) → Ω

What enables to construct a non-normalizing term in θ is the negative occurrence of d in the
domain of C.

In order to banish non-well-founded elements from the language, proof assistants usually impose
a positivity condition on the possible forms of the introduction rules of the inductive datatypes.

28 CHAPTER 3. EXTENSIONS OF PURE TYPE SYSTEMS

3.2.4 General recursion

Functional programming languages feature general recursion, allowing recursive functions to be
defined by means of pattern-matching and a general fixpoint operator to encode recursive calls.
The typing rule for N fixpoint expressions is

Γ ! N→θ : s Γ, f : N→θ ! e : N→θ

Γ ! (fix f = e) : N→θ

and the associated computation rules are

(fix f = e) 0 → e[f := (fix f = e)] 0
(fix f = e) (Sx) → e[f := (fix f = e)] (Sx)

Using this, the function that doubles a natural number can be defined by

(fix double = λ n. case n of {0⇒ 0 | S⇒ (λx.S (S (double x)})

Of course, this approach opens the door to the introduction of non-normalizable objects, but
it raises the level of expressiveness of the language.

3.2.5 About termination

Checking convertibility between types may require computing with recursive functions. So, the
combination of non-normalization with dependent types leads to undecidable type checking.

To enforce decidability of type checking, proof assistants either require recursive functions to
be encoded in terms of recursors or allow restricted forms of fixpoint expressions.

A usual way to ensure termination of fixpoint expressions is to impose syntatical restrictions
through a predicate Gf on untyped terms. This predicate enforces termination by constraining
all recursive calls to be applied to terms structurally smaller than the formal argument of the
function.

The restricted typing rule for fixpoint expressions hence becomes:

Γ ! N→θ : s Γ, f : N→θ ! e : N→θ

Γ ! (fix f = e) : N→θ
if Gf (e)

3.2.6 On positivity

As illustrated above, general recursion permits the definition of non-terminating functions. So does
the possibility of declaring non well-founded datatypes, as illustrated by the following example.

Consider a datatype d defined by a single introduction rule C : (d→ θ)→ d, where θ may be
any type (even the empty type). Let app ≡ λx.λy. case x of {C ⇒ λf. f y}, t ≡ (λz. app z z) and
Ω ≡ app (C t) (C t). We have app : d→ d→ θ, t : d→ θ and Ω : θ. However, Ω is a looping term
which has no canonical form

Ω ! case (C t) of {C⇒ λf. f (C t)} → (λf. f (C t)) t → t (C t) → Ω

What enables to construct a non-normalizing term in θ is the negative occurrence of d in the
domain of C.

In order to banish non-well-founded elements from the language, proof assistants usually impose
a positivity condition on the possible forms of the introduction rules of the inductive datatypes.

28 CHAPTER 3. EXTENSIONS OF PURE TYPE SYSTEMS

3.2.4 General recursion

Functional programming languages feature general recursion, allowing recursive functions to be
defined by means of pattern-matching and a general fixpoint operator to encode recursive calls.
The typing rule for N fixpoint expressions is

Γ ! N→θ : s Γ, f : N→θ ! e : N→θ

Γ ! (fix f = e) : N→θ

and the associated computation rules are

(fix f = e) 0 → e[f := (fix f = e)] 0
(fix f = e) (Sx) → e[f := (fix f = e)] (Sx)

Using this, the function that doubles a natural number can be defined by

(fix double = λ n. case n of {0⇒ 0 | S⇒ (λx.S (S (double x)})

Of course, this approach opens the door to the introduction of non-normalizable objects, but
it raises the level of expressiveness of the language.

3.2.5 About termination

Checking convertibility between types may require computing with recursive functions. So, the
combination of non-normalization with dependent types leads to undecidable type checking.

To enforce decidability of type checking, proof assistants either require recursive functions to
be encoded in terms of recursors or allow restricted forms of fixpoint expressions.

A usual way to ensure termination of fixpoint expressions is to impose syntatical restrictions
through a predicate Gf on untyped terms. This predicate enforces termination by constraining
all recursive calls to be applied to terms structurally smaller than the formal argument of the
function.

The restricted typing rule for fixpoint expressions hence becomes:

Γ ! N→θ : s Γ, f : N→θ ! e : N→θ

Γ ! (fix f = e) : N→θ
if Gf (e)

3.2.6 On positivity

As illustrated above, general recursion permits the definition of non-terminating functions. So does
the possibility of declaring non well-founded datatypes, as illustrated by the following example.

Consider a datatype d defined by a single introduction rule C : (d→ θ)→ d, where θ may be
any type (even the empty type). Let app ≡ λx.λy. case x of {C ⇒ λf. f y}, t ≡ (λz. app z z) and
Ω ≡ app (C t) (C t). We have app : d→ d→ θ, t : d→ θ and Ω : θ. However, Ω is a looping term
which has no canonical form

Ω ! case (C t) of {C⇒ λf. f (C t)} → (λf. f (C t)) t → t (C t) → Ω

What enables to construct a non-normalizing term in θ is the negative occurrence of d in the
domain of C.

In order to banish non-well-founded elements from the language, proof assistants usually impose
a positivity condition on the possible forms of the introduction rules of the inductive datatypes.

28 CHAPTER 3. EXTENSIONS OF PURE TYPE SYSTEMS

3.2.4 General recursion

Functional programming languages feature general recursion, allowing recursive functions to be
defined by means of pattern-matching and a general fixpoint operator to encode recursive calls.
The typing rule for N fixpoint expressions is

Γ ! N→θ : s Γ, f : N→θ ! e : N→θ

Γ ! (fix f = e) : N→θ

and the associated computation rules are

(fix f = e) 0 → e[f := (fix f = e)] 0
(fix f = e) (Sx) → e[f := (fix f = e)] (Sx)

Using this, the function that doubles a natural number can be defined by

(fix double = λ n. case n of {0⇒ 0 | S⇒ (λx.S (S (double x)})

Of course, this approach opens the door to the introduction of non-normalizable objects, but
it raises the level of expressiveness of the language.

3.2.5 About termination

Checking convertibility between types may require computing with recursive functions. So, the
combination of non-normalization with dependent types leads to undecidable type checking.

To enforce decidability of type checking, proof assistants either require recursive functions to
be encoded in terms of recursors or allow restricted forms of fixpoint expressions.

A usual way to ensure termination of fixpoint expressions is to impose syntatical restrictions
through a predicate Gf on untyped terms. This predicate enforces termination by constraining
all recursive calls to be applied to terms structurally smaller than the formal argument of the
function.

The restricted typing rule for fixpoint expressions hence becomes:

Γ ! N→θ : s Γ, f : N→θ ! e : N→θ

Γ ! (fix f = e) : N→θ
if Gf (e)

3.2.6 On positivity

As illustrated above, general recursion permits the definition of non-terminating functions. So does
the possibility of declaring non well-founded datatypes, as illustrated by the following example.

Consider a datatype d defined by a single introduction rule C : (d→ θ)→ d, where θ may be
any type (even the empty type). Let app ≡ λx.λy. case x of {C ⇒ λf. f y}, t ≡ (λz. app z z) and
Ω ≡ app (C t) (C t). We have app : d→ d→ θ, t : d→ θ and Ω : θ. However, Ω is a looping term
which has no canonical form

Ω ! case (C t) of {C⇒ λf. f (C t)} → (λf. f (C t)) t → t (C t) → Ω

What enables to construct a non-normalizing term in θ is the negative occurrence of d in the
domain of C.

In order to banish non-well-founded elements from the language, proof assistants usually impose
a positivity condition on the possible forms of the introduction rules of the inductive datatypes.

However, is a looping term which has no canonical form

28 CHAPTER 3. EXTENSIONS OF PURE TYPE SYSTEMS

3.2.4 General recursion

Functional programming languages feature general recursion, allowing recursive functions to be
defined by means of pattern-matching and a general fixpoint operator to encode recursive calls.
The typing rule for N fixpoint expressions is

Γ ! N→θ : s Γ, f : N→θ ! e : N→θ

Γ ! (fix f = e) : N→θ

and the associated computation rules are

(fix f = e) 0 → e[f := (fix f = e)] 0
(fix f = e) (Sx) → e[f := (fix f = e)] (Sx)

Using this, the function that doubles a natural number can be defined by

(fix double = λ n. case n of {0⇒ 0 | S⇒ (λx.S (S (double x)})

Of course, this approach opens the door to the introduction of non-normalizable objects, but
it raises the level of expressiveness of the language.

3.2.5 About termination

Checking convertibility between types may require computing with recursive functions. So, the
combination of non-normalization with dependent types leads to undecidable type checking.

To enforce decidability of type checking, proof assistants either require recursive functions to
be encoded in terms of recursors or allow restricted forms of fixpoint expressions.

A usual way to ensure termination of fixpoint expressions is to impose syntatical restrictions
through a predicate Gf on untyped terms. This predicate enforces termination by constraining
all recursive calls to be applied to terms structurally smaller than the formal argument of the
function.

The restricted typing rule for fixpoint expressions hence becomes:

Γ ! N→θ : s Γ, f : N→θ ! e : N→θ

Γ ! (fix f = e) : N→θ
if Gf (e)

3.2.6 On positivity

As illustrated above, general recursion permits the definition of non-terminating functions. So does
the possibility of declaring non well-founded datatypes, as illustrated by the following example.

Consider a datatype d defined by a single introduction rule C : (d→ θ)→ d, where θ may be
any type (even the empty type). Let app ≡ λx.λy. case x of {C ⇒ λf. f y}, t ≡ (λz. app z z) and
Ω ≡ app (C t) (C t). We have app : d→ d→ θ, t : d→ θ and Ω : θ. However, Ω is a looping term
which has no canonical form

Ω ! case (C t) of {C⇒ λf. f (C t)} → (λf. f (C t)) t → t (C t) → Ω

What enables to construct a non-normalizing term in θ is the negative occurrence of d in the
domain of C.

In order to banish non-well-founded elements from the language, proof assistants usually impose
a positivity condition on the possible forms of the introduction rules of the inductive datatypes.

Let We have

What enables to construct a non-normalizing term in ! is the negative occurrence
of d in the domain of C.

22

3.3. CALCULUS OF INDUCTIVE CONSTRUCTIONS 29

This condition states that the datatype under definition can only occur in the domain of its
constructors in a positive position.

Notice that the positivity condition still permits functional recursive arguments in the construc-
tors. A well-known example of a higher-order datatype is the type O : Set of ordinal notations
which has three constructors

Zero : O
Succ : O → O
Lim : (N → O) → O

and comes equiped with a recursor RO that can be used to define funcition and prove properties
on ordinals.

Γ " P : O→Type

Γ " a : P Zero

Γ " a′ : Πx :O. P x→P (Succ x)
Γ " a′′ : Πu :N→O. (Π x :N. P (u x))→P (Lim u)

Γ " RO P aa′ a′′ : Πn :O. P n

and its reduction rules are

RO P aa′ a′′ Zero → a

RO P aa′ a′′ (Succ x) → a′ x (RO P aa′ a′′ x)
RO P aa′ a′′ (Lim u) → a′′ u (λn :N.RO P aa′ a′′ (u n))

3.3 Calculus of Inductive Constructions

The Calculus of Inductive Constructions (CIC) is the underlying calculus of Coq.
CIC can be described by the following specification:

S = Set,Prop, Typei , i ∈ N
A = (Set : Type0), (Prop : Type0), (Typei : Typei+1) , i ∈ N
R = (Prop,Prop), (Set,Prop), (Typei,Prop), (Prop,Set), (Set,Set), (Typei,Set)

(Typei,Typej ,Typemax(i,j)) , i, j ∈ N

Cumulativity: Prop ⊆ Type0, Set ⊆ Type0 and Typei ⊆ Typei+1, i ∈ N. And one also has
Inductive Types and a restricted form of general recursion.

Note that in the Coq system, the user will never mention explicitly the index i when referring
to the universe Typei. One only writes Type. The system itself generates for each instance of Type

a new index for the universe and checks that the constraints between these indexes can be solved.
From the user point of view we consequently have Type : Type.

3.3.1 Impredicativity

In CIC, thanks to rules (Typei,Prop) and (Typei,Set), the following judgements are derivable:

Γ " (ΠA :Set. A→A) : Set

Γ " (Π A :Prop. A→A) : Prop

which means that:

• it is possible to construct a new element of type Prop by quantifying over all elements of
type Prop;

Example

3.3. CALCULUS OF INDUCTIVE CONSTRUCTIONS 29

This condition states that the datatype under definition can only occur in the domain of its
constructors in a positive position.

Notice that the positivity condition still permits functional recursive arguments in the construc-
tors. A well-known example of a higher-order datatype is the type O : Set of ordinal notations
which has three constructors

Zero : O
Succ : O → O
Lim : (N → O) → O

and comes equiped with a recursor RO that can be used to define funcition and prove properties
on ordinals.

Γ " P : O→Type

Γ " a : P Zero

Γ " a′ : Πx :O. P x→P (Succ x)
Γ " a′′ : Πu :N→O. (Π x :N. P (u x))→P (Lim u)

Γ " RO P aa′ a′′ : Πn :O. P n

and its reduction rules are

RO P aa′ a′′ Zero → a

RO P aa′ a′′ (Succ x) → a′ x (RO P aa′ a′′ x)
RO P aa′ a′′ (Lim u) → a′′ u (λn :N.RO P aa′ a′′ (u n))

3.3 Calculus of Inductive Constructions

The Calculus of Inductive Constructions (CIC) is the underlying calculus of Coq.
CIC can be described by the following specification:

S = Set,Prop, Typei , i ∈ N
A = (Set : Type0), (Prop : Type0), (Typei : Typei+1) , i ∈ N
R = (Prop,Prop), (Set,Prop), (Typei,Prop), (Prop,Set), (Set,Set), (Typei,Set)

(Typei,Typej ,Typemax(i,j)) , i, j ∈ N

Cumulativity: Prop ⊆ Type0, Set ⊆ Type0 and Typei ⊆ Typei+1, i ∈ N. And one also has
Inductive Types and a restricted form of general recursion.

Note that in the Coq system, the user will never mention explicitly the index i when referring
to the universe Typei. One only writes Type. The system itself generates for each instance of Type

a new index for the universe and checks that the constraints between these indexes can be solved.
From the user point of view we consequently have Type : Type.

3.3.1 Impredicativity

In CIC, thanks to rules (Typei,Prop) and (Typei,Set), the following judgements are derivable:

Γ " (ΠA :Set. A→A) : Set

Γ " (Π A :Prop. A→A) : Prop

which means that:

• it is possible to construct a new element of type Prop by quantifying over all elements of
type Prop;

and its reduction rules are

The higher-order datatype of ordinal notations has three constructors

3.3. CALCULUS OF INDUCTIVE CONSTRUCTIONS 29

This condition states that the datatype under definition can only occur in the domain of its
constructors in a positive position.

Notice that the positivity condition still permits functional recursive arguments in the construc-
tors. A well-known example of a higher-order datatype is the type O : Set of ordinal notations
which has three constructors

Zero : O
Succ : O → O
Lim : (N → O) → O

and comes equiped with a recursor RO that can be used to define funcition and prove properties
on ordinals.

Γ " P : O→Type

Γ " a : P Zero

Γ " a′ : Πx :O. P x→P (Succ x)
Γ " a′′ : Πu :N→O. (Π x :N. P (u x))→P (Lim u)

Γ " RO P aa′ a′′ : Πn :O. P n

and its reduction rules are

RO P aa′ a′′ Zero → a

RO P aa′ a′′ (Succ x) → a′ x (RO P aa′ a′′ x)
RO P aa′ a′′ (Lim u) → a′′ u (λn :N.RO P aa′ a′′ (u n))

3.3 Calculus of Inductive Constructions

The Calculus of Inductive Constructions (CIC) is the underlying calculus of Coq.
CIC can be described by the following specification:

S = Set,Prop, Typei , i ∈ N
A = (Set : Type0), (Prop : Type0), (Typei : Typei+1) , i ∈ N
R = (Prop,Prop), (Set,Prop), (Typei,Prop), (Prop,Set), (Set,Set), (Typei,Set)

(Typei,Typej ,Typemax(i,j)) , i, j ∈ N

Cumulativity: Prop ⊆ Type0, Set ⊆ Type0 and Typei ⊆ Typei+1, i ∈ N. And one also has
Inductive Types and a restricted form of general recursion.

Note that in the Coq system, the user will never mention explicitly the index i when referring
to the universe Typei. One only writes Type. The system itself generates for each instance of Type

a new index for the universe and checks that the constraints between these indexes can be solved.
From the user point of view we consequently have Type : Type.

3.3.1 Impredicativity

In CIC, thanks to rules (Typei,Prop) and (Typei,Set), the following judgements are derivable:

Γ " (ΠA :Set. A→A) : Set

Γ " (Π A :Prop. A→A) : Prop

which means that:

• it is possible to construct a new element of type Prop by quantifying over all elements of
type Prop;

and comes equipped with a recursor that can be used to define function and
prove properties on ordinals

3.3. CALCULUS OF INDUCTIVE CONSTRUCTIONS 29

This condition states that the datatype under definition can only occur in the domain of its
constructors in a positive position.

Notice that the positivity condition still permits functional recursive arguments in the construc-
tors. A well-known example of a higher-order datatype is the type O : Set of ordinal notations
which has three constructors

Zero : O
Succ : O → O
Lim : (N → O) → O

and comes equiped with a recursor RO that can be used to define funcition and prove properties
on ordinals.

Γ " P : O→Type

Γ " a : P Zero

Γ " a′ : Πx :O. P x→P (Succ x)
Γ " a′′ : Πu :N→O. (Π x :N. P (u x))→P (Lim u)

Γ " RO P aa′ a′′ : Πn :O. P n

and its reduction rules are

RO P aa′ a′′ Zero → a

RO P aa′ a′′ (Succ x) → a′ x (RO P aa′ a′′ x)
RO P aa′ a′′ (Lim u) → a′′ u (λn :N.RO P aa′ a′′ (u n))

3.3 Calculus of Inductive Constructions

The Calculus of Inductive Constructions (CIC) is the underlying calculus of Coq.
CIC can be described by the following specification:

S = Set,Prop, Typei , i ∈ N
A = (Set : Type0), (Prop : Type0), (Typei : Typei+1) , i ∈ N
R = (Prop,Prop), (Set,Prop), (Typei,Prop), (Prop,Set), (Set,Set), (Typei,Set)

(Typei,Typej ,Typemax(i,j)) , i, j ∈ N

Cumulativity: Prop ⊆ Type0, Set ⊆ Type0 and Typei ⊆ Typei+1, i ∈ N. And one also has
Inductive Types and a restricted form of general recursion.

Note that in the Coq system, the user will never mention explicitly the index i when referring
to the universe Typei. One only writes Type. The system itself generates for each instance of Type

a new index for the universe and checks that the constraints between these indexes can be solved.
From the user point of view we consequently have Type : Type.

3.3.1 Impredicativity

In CIC, thanks to rules (Typei,Prop) and (Typei,Set), the following judgements are derivable:

Γ " (ΠA :Set. A→A) : Set

Γ " (Π A :Prop. A→A) : Prop

which means that:

• it is possible to construct a new element of type Prop by quantifying over all elements of
type Prop;

3.3. CALCULUS OF INDUCTIVE CONSTRUCTIONS 29

This condition states that the datatype under definition can only occur in the domain of its
constructors in a positive position.

Notice that the positivity condition still permits functional recursive arguments in the construc-
tors. A well-known example of a higher-order datatype is the type O : Set of ordinal notations
which has three constructors

Zero : O
Succ : O → O
Lim : (N → O) → O

and comes equipped with a recursor RO that can be used to define funcitions and prove properties
on ordinals.

Γ " P : O→Type

Γ " a : P Zero

Γ " a′ : Πx :O. P x→P (Succ x)
Γ " a′′ : Πu :N→O. (Π x :N. P (u x))→P (Lim u)

Γ " RO P aa′ a′′ : Π o :O. P o

and its reduction rules are

RO P aa′ a′′ Zero → a

RO P aa′ a′′ (Succ x) → a′ x (RO P aa′ a′′ x)
RO P aa′ a′′ (Lim u) → a′′ u (λn :N.RO P aa′ a′′ (u n))

3.3 Calculus of Inductive Constructions

The Calculus of Inductive Constructions (CIC) is the underlying calculus of Coq.
CIC can be described by the following specification:

S = Set,Prop, Typei , i ∈ N
A = (Set : Type0), (Prop : Type0), (Typei : Typei+1) , i ∈ N
R = (Prop,Prop), (Set,Prop), (Typei,Prop), (Prop,Set), (Set,Set), (Typei,Set)

(Typei,Typej ,Typemax(i,j)) , i, j ∈ N

Cumulativity: Prop ⊆ Type0, Set ⊆ Type0 and Typei ⊆ Typei+1, i ∈ N. And one also has
Inductive Types and a restricted form of general recursion.

Note that in the Coq system, the user will never mention explicitly the index i when referring
to the universe Typei. One only writes Type. The system itself generates for each instance of Type

a new index for the universe and checks that the constraints between these indexes can be solved.
From the user point of view we consequently have Type : Type.

3.3.1 Impredicativity

In CIC, thanks to rules (Typei,Prop) and (Typei,Set), the following judgements are derivable:

Γ " (ΠA :Set. A→A) : Set

Γ " (Π A :Prop. A→A) : Prop

which means that:

• it is possible to construct a new element of type Prop by quantifying over all elements of
type Prop;

23

Calculus of Inductive Constructions

The CIC is the underlying calculus of Coq. It can be described as follows

Calculus of Inductive Constructions

3.3. CALCULUS OF INDUCTIVE CONSTRUCTIONS 29

This condition states that the datatype under definition can only occur in the domain of its
constructors in a positive position.

Notice that the positivity condition still permits functional recursive arguments in the construc-
tors. A well-known example of a higher-order datatype is the type O : Set of ordinal notations
which has three constructors

S : O
Succ : O → O
Lim : (N → O) → O

and comes equiped with a recursor RO that can be used to define funcition and prove properties
on ordinals.

Γ " P : O→Type

Γ " a : P Zero

Γ " a′ : Πx :O. P x→P (Succ x)
Γ " a′′ : Πu :N→O. (Π x :N. P (u x))→P (Lim u)

Γ " RO P aa′ a′′ : Πn :O. P n

and its reduction rules are

RO P aa′ a′′ Zero → a

RO P aa′ a′′ (Succ x) → a′ x (RO P aa′ a′′ x)
RO P aa′ a′′ (Lim u) → a′′ u (λn :N.RO P aa′ a′′ (u n))

3.3 Calculus of Inductive Constructions

The Calculus of Inductive Constructions (CIC) is the underlying calculus of Coq.
CIC can be described by the following specification:

S = Set,Prop, Typei , i ∈ N
A = (Set : Type0), (Prop : Type0), (Typei : Typei+1) , i ∈ N
R = (Prop,Prop), (Set,Prop), (Typei,Prop), (Prop,Set), (Set,Set), (Typei,Set)

(Typei,Typej ,Typemax(i,j)) , i, j ∈ N

Cumulativity: Prop ⊆ Type0, Set ⊆ Type0 and Typei ⊆ Typei+1, i ∈ N. And one also has
Inductive Types and a restricted form of general recursion.

Note that in the Coq system, the user will never mention explicitly the index i when referring
to the universe Typei. One only writes Type. The system itself generates for each instance of Type

a new index for the universe and checks that the constraints between these indexes can be solved.
From the user point of view we consequently have Type : Type.

3.3.1 Impredicativity

In CIC, thanks to rules (Typei,Prop) and (Typei,Set), the following judgements are derivable:

Γ " (ΠA :Set. A→A) : Set

Γ " (Π A :Prop. A→A) : Prop

which means that:

• it is possible to construct a new element of type Set by quantifying over all elements of type
Set;

• Specification:

• Cumulativity:

• Inductive types and a restricted form of general recursion.

3.3. CALCULUS OF INDUCTIVE CONSTRUCTIONS 29

This condition states that the datatype under definition can only occur in the domain of its
constructors in a positive position.

Notice that the positivity condition still permits functional recursive arguments in the construc-
tors. A well-known example of a higher-order datatype is the type O : Set of ordinal notations
which has three constructors

S : O
Succ : O → O
Lim : (N → O) → O

and comes equiped with a recursor RO that can be used to define funcition and prove properties
on ordinals.

Γ " P : O→Type

Γ " a : P Zero

Γ " a′ : Πx :O. P x→P (Succ x)
Γ " a′′ : Πu :N→O. (Π x :N. P (u x))→P (Lim u)

Γ " RO P aa′ a′′ : Πn :O. P n

and its reduction rules are

RO P aa′ a′′ Zero → a

RO P aa′ a′′ (Succ x) → a′ x (RO P aa′ a′′ x)
RO P aa′ a′′ (Lim u) → a′′ u (λn :N.RO P aa′ a′′ (u n))

3.3 Calculus of Inductive Constructions

The Calculus of Inductive Constructions (CIC) is the underlying calculus of Coq.
CIC can be described by the following specification:

S = Set,Prop, Typei , i ∈ N
A = (Set : Type0), (Prop : Type0), (Typei : Typei+1) , i ∈ N
R = (Prop,Prop), (Set,Prop), (Typei,Prop), (Prop,Set), (Set,Set), (Typei,Set)

(Typei,Typej ,Typemax(i,j)) , i, j ∈ N

Cumulativity: Prop ⊆ Type0, Set ⊆ Type0 and Typei ⊆ Typei+1, i ∈ N. And one also has
Inductive Types and a restricted form of general recursion.

Note that in the Coq system, the user will never mention explicitly the index i when referring
to the universe Typei. One only writes Type. The system itself generates for each instance of Type

a new index for the universe and checks that the constraints between these indexes can be solved.
From the user point of view we consequently have Type : Type.

3.3.1 Impredicativity

In CIC, thanks to rules (Typei,Prop) and (Typei,Set), the following judgements are derivable:

Γ " (ΠA :Set. A→A) : Set

Γ " (Π A :Prop. A→A) : Prop

which means that:

• it is possible to construct a new element of type Set by quantifying over all elements of type
Set;

In the Coq system, the user will never mention explicitly the index i when referring
to the universe . One only writes The system itself generates for each
instance of a new index for the universe and checks that the constraints
between these indexes can be solved.
From the user point of view we consequently have

3.3. CALCULUS OF INDUCTIVE CONSTRUCTIONS 29

This condition states that the datatype under definition can only occur in the domain of its
constructors in a positive position.

Notice that the positivity condition still permits functional recursive arguments in the construc-
tors. A well-known example of a higher-order datatype is the type O : Set of ordinal notations
which has three constructors

S : O
Succ : O → O
Lim : (N → O) → O

and comes equiped with a recursor RO that can be used to define funcition and prove properties
on ordinals.

Γ " P : O→Type

Γ " a : P Zero

Γ " a′ : Πx :O. P x→P (Succ x)
Γ " a′′ : Πu :N→O. (Π x :N. P (u x))→P (Lim u)

Γ " RO P aa′ a′′ : Πn :O. P n

and its reduction rules are

RO P aa′ a′′ Zero → a

RO P aa′ a′′ (Succ x) → a′ x (RO P aa′ a′′ x)
RO P aa′ a′′ (Lim u) → a′′ u (λn :N.RO P aa′ a′′ (u n))

3.3 Calculus of Inductive Constructions

The Calculus of Inductive Constructions (CIC) is the underlying calculus of Coq.
CIC can be described by the following specification:

S = Set,Prop, Typei , i ∈ N
A = (Set : Type0), (Prop : Type0), (Typei : Typei+1) , i ∈ N
R = (Prop,Prop), (Set,Prop), (Typei,Prop), (Prop,Set), (Set,Set), (Typei,Set)

(Typei,Typej ,Typemax(i,j)) , i, j ∈ N

Cumulativity: Prop ⊆ Type0, Set ⊆ Type0 and Typei ⊆ Typei+1, i ∈ N. And one also has
Inductive Types and a restricted form of general recursion.

Note that in the Coq system, the user will never mention explicitly the index i when referring
to the universe Typei. One only writes Type. The system itself generates for each instance of Type

a new index for the universe and checks that the constraints between these indexes can be solved.
From the user point of view we consequently have Type : Type.

3.3.1 Impredicativity

In CIC, thanks to rules (Typei,Prop) and (Typei,Set), the following judgements are derivable:

Γ " (ΠA :Set. A→A) : Set

Γ " (Π A :Prop. A→A) : Prop

which means that:

• it is possible to construct a new element of type Set by quantifying over all elements of type
Set;

3.3. CALCULUS OF INDUCTIVE CONSTRUCTIONS 29

This condition states that the datatype under definition can only occur in the domain of its
constructors in a positive position.

Notice that the positivity condition still permits functional recursive arguments in the construc-
tors. A well-known example of a higher-order datatype is the type O : Set of ordinal notations
which has three constructors

S : O
Succ : O → O
Lim : (N → O) → O

and comes equiped with a recursor RO that can be used to define funcition and prove properties
on ordinals.

Γ " P : O→Type

Γ " a : P Zero

Γ " a′ : Πx :O. P x→P (Succ x)
Γ " a′′ : Πu :N→O. (Π x :N. P (u x))→P (Lim u)

Γ " RO P aa′ a′′ : Πn :O. P n

and its reduction rules are

RO P aa′ a′′ Zero → a

RO P aa′ a′′ (Succ x) → a′ x (RO P aa′ a′′ x)
RO P aa′ a′′ (Lim u) → a′′ u (λn :N.RO P aa′ a′′ (u n))

3.3 Calculus of Inductive Constructions

The Calculus of Inductive Constructions (CIC) is the underlying calculus of Coq.
CIC can be described by the following specification:

S = Set,Prop, Typei , i ∈ N
A = (Set : Type0), (Prop : Type0), (Typei : Typei+1) , i ∈ N
R = (Prop,Prop), (Set,Prop), (Typei,Prop), (Prop,Set), (Set,Set), (Typei,Set)

(Typei,Typej ,Typemax(i,j)) , i, j ∈ N

Cumulativity: Prop ⊆ Type0, Set ⊆ Type0 and Typei ⊆ Typei+1, i ∈ N. And one also has
Inductive Types and a restricted form of general recursion.

Note that in the Coq system, the user will never mention explicitly the index i when referring
to the universe Typei. One only writes Type. The system itself generates for each instance of Type

a new index for the universe and checks that the constraints between these indexes can be solved.
From the user point of view we consequently have Type : Type.

3.3.1 Impredicativity

In CIC, thanks to rules (Typei,Prop) and (Typei,Set), the following judgements are derivable:

Γ " (ΠA :Set. A→A) : Set

Γ " (Π A :Prop. A→A) : Prop

which means that:

• it is possible to construct a new element of type Set by quantifying over all elements of type
Set;

3.3. CALCULUS OF INDUCTIVE CONSTRUCTIONS 29

This condition states that the datatype under definition can only occur in the domain of its
constructors in a positive position.

Notice that the positivity condition still permits functional recursive arguments in the construc-
tors. A well-known example of a higher-order datatype is the type O : Set of ordinal notations
which has three constructors

S : O
Succ : O → O
Lim : (N → O) → O

and comes equiped with a recursor RO that can be used to define funcition and prove properties
on ordinals.

Γ " P : O→Type

Γ " a : P Zero

Γ " a′ : Πx :O. P x→P (Succ x)
Γ " a′′ : Πu :N→O. (Π x :N. P (u x))→P (Lim u)

Γ " RO P aa′ a′′ : Πn :O. P n

and its reduction rules are

RO P aa′ a′′ Zero → a

RO P aa′ a′′ (Succ x) → a′ x (RO P aa′ a′′ x)
RO P aa′ a′′ (Lim u) → a′′ u (λn :N.RO P aa′ a′′ (u n))

3.3 Calculus of Inductive Constructions

The Calculus of Inductive Constructions (CIC) is the underlying calculus of Coq.
CIC can be described by the following specification:

S = Set,Prop, Typei , i ∈ N
A = (Set : Type0), (Prop : Type0), (Typei : Typei+1) , i ∈ N
R = (Prop,Prop), (Set,Prop), (Typei,Prop), (Prop,Set), (Set,Set), (Typei,Set)

(Typei,Typej ,Typemax(i,j)) , i, j ∈ N

Cumulativity: Prop ⊆ Type0, Set ⊆ Type0 and Typei ⊆ Typei+1, i ∈ N. And one also has
Inductive Types and a restricted form of general recursion.

Note that in the Coq system, the user will never mention explicitly the index i when referring
to the universe Typei. One only writes Type. The system itself generates for each instance of Type

a new index for the universe and checks that the constraints between these indexes can be solved.
From the user point of view we consequently have Type : Type.

3.3.1 Impredicativity

In CIC, thanks to rules (Typei,Prop) and (Typei,Set), the following judgements are derivable:

Γ " (ΠA :Set. A→A) : Set

Γ " (Π A :Prop. A→A) : Prop

which means that:

• it is possible to construct a new element of type Set by quantifying over all elements of type
Set;

3.3. CALCULUS OF INDUCTIVE CONSTRUCTIONS 29

This condition states that the datatype under definition can only occur in the domain of its
constructors in a positive position.

Notice that the positivity condition still permits functional recursive arguments in the construc-
tors. A well-known example of a higher-order datatype is the type O : Set of ordinal notations
which has three constructors

S : O
Succ : O → O
Lim : (N → O) → O

and comes equiped with a recursor RO that can be used to define funcition and prove properties
on ordinals.

Γ " P : O→Type

Γ " a : P Zero

Γ " a′ : Πx :O. P x→P (Succ x)
Γ " a′′ : Πu :N→O. (Π x :N. P (u x))→P (Lim u)

Γ " RO P aa′ a′′ : Πn :O. P n

and its reduction rules are

RO P aa′ a′′ Zero → a

RO P aa′ a′′ (Succ x) → a′ x (RO P aa′ a′′ x)
RO P aa′ a′′ (Lim u) → a′′ u (λn :N.RO P aa′ a′′ (u n))

3.3 Calculus of Inductive Constructions

The Calculus of Inductive Constructions (CIC) is the underlying calculus of Coq.
CIC can be described by the following specification:

S = Set,Prop, Typei , i ∈ N
A = (Set : Type0), (Prop : Type0), (Typei : Typei+1) , i ∈ N
R = (Prop,Prop), (Set,Prop), (Typei,Prop), (Prop,Set), (Set,Set), (Typei,Set)

(Typei,Typej ,Typemax(i,j)) , i, j ∈ N

Cumulativity: Prop ⊆ Type0, Set ⊆ Type0 and Typei ⊆ Typei+1, i ∈ N. And one also has
Inductive Types and a restricted form of general recursion.

Note that in the Coq system, the user will never mention explicitly the index i when referring
to the universe Typei. One only writes Type. The system itself generates for each instance of Type

a new index for the universe and checks that the constraints between these indexes can be solved.
From the user point of view we consequently have Type : Type.

3.3.1 Impredicativity

In CIC, thanks to rules (Typei,Prop) and (Typei,Set), the following judgements are derivable:

Γ " (ΠA :Set. A→A) : Set

Γ " (Π A :Prop. A→A) : Prop

which means that:

• it is possible to construct a new element of type Set by quantifying over all elements of type
Set;

24

Impredicativity

• it is possible to construct a new element of type Prop by quantifying over all
elements of type Prop;

• it is possible to construct a new element of type Set by quantifying over all
elements of type Set.

which means that:

In CIC, thanks to rules and , the following judgments
are derivable

3.3. CALCULUS OF INDUCTIVE CONSTRUCTIONS 29

This condition states that the datatype under definition can only occur in the domain of its
constructors in a positive position.

Notice that the positivity condition still permits functional recursive arguments in the construc-
tors. A well-known example of a higher-order datatype is the type O : Set of ordinal notations
which has three constructors

S : O
Succ : O → O
Lim : (N → O) → O

and comes equiped with a recursor RO that can be used to define funcition and prove properties
on ordinals.

Γ " P : O→Type

Γ " a : P Zero

Γ " a′ : Πx :O. P x→P (Succ x)
Γ " a′′ : Πu :N→O. (Π x :N. P (u x))→P (Lim u)

Γ " RO P aa′ a′′ : Πn :O. P n

and its reduction rules are

RO P aa′ a′′ Zero → a

RO P aa′ a′′ (Succ x) → a′ x (RO P aa′ a′′ x)
RO P aa′ a′′ (Lim u) → a′′ u (λn :N.RO P aa′ a′′ (u n))

3.3 Calculus of Inductive Constructions

The Calculus of Inductive Constructions (CIC) is the underlying calculus of Coq.
CIC can be described by the following specification:

S = Set,Prop, Typei , i ∈ N
A = (Set : Type0), (Prop : Type0), (Typei : Typei+1) , i ∈ N
R = (Prop,Prop), (Set,Prop), (Typei,Prop), (Prop,Set), (Set,Set), (Typei,Set)

(Typei,Typej ,Typemax(i,j)) , i, j ∈ N

Cumulativity: Prop ⊆ Type0, Set ⊆ Type0 and Typei ⊆ Typei+1, i ∈ N. And one also has
Inductive Types and a restricted form of general recursion.

Note that in the Coq system, the user will never mention explicitly the index i when referring
to the universe Typei. One only writes Type. The system itself generates for each instance of Type

a new index for the universe and checks that the constraints between these indexes can be solved.
From the user point of view we consequently have Type : Type.

3.3.1 Impredicativity

In CIC, thanks to rules (Typei,Prop) and (Typei,Set), the following judgements are derivable:

Γ " (ΠA :Set. A→A) : Set

Γ " (Π A :Prop. A→A) : Prop

which means that:

• it is possible to construct a new element of type Set by quantifying over all elements of type
Set;

3.3. CALCULUS OF INDUCTIVE CONSTRUCTIONS 29

This condition states that the datatype under definition can only occur in the domain of its
constructors in a positive position.

Notice that the positivity condition still permits functional recursive arguments in the construc-
tors. A well-known example of a higher-order datatype is the type O : Set of ordinal notations
which has three constructors

S : O
Succ : O → O
Lim : (N → O) → O

and comes equiped with a recursor RO that can be used to define funcition and prove properties
on ordinals.

Γ " P : O→Type

Γ " a : P Zero

Γ " a′ : Πx :O. P x→P (Succ x)
Γ " a′′ : Πu :N→O. (Π x :N. P (u x))→P (Lim u)

Γ " RO P aa′ a′′ : Πn :O. P n

and its reduction rules are

RO P aa′ a′′ Zero → a

RO P aa′ a′′ (Succ x) → a′ x (RO P aa′ a′′ x)
RO P aa′ a′′ (Lim u) → a′′ u (λn :N.RO P aa′ a′′ (u n))

3.3 Calculus of Inductive Constructions

The Calculus of Inductive Constructions (CIC) is the underlying calculus of Coq.
CIC can be described by the following specification:

S = Set,Prop, Typei , i ∈ N
A = (Set : Type0), (Prop : Type0), (Typei : Typei+1) , i ∈ N
R = (Prop,Prop), (Set,Prop), (Typei,Prop), (Prop,Set), (Set,Set), (Typei,Set)

(Typei,Typej ,Typemax(i,j)) , i, j ∈ N

Cumulativity: Prop ⊆ Type0, Set ⊆ Type0 and Typei ⊆ Typei+1, i ∈ N. And one also has
Inductive Types and a restricted form of general recursion.

Note that in the Coq system, the user will never mention explicitly the index i when referring
to the universe Typei. One only writes Type. The system itself generates for each instance of Type

a new index for the universe and checks that the constraints between these indexes can be solved.
From the user point of view we consequently have Type : Type.

3.3.1 Impredicativity

In CIC, thanks to rules (Typei,Prop) and (Typei,Set), the following judgements are derivable:

Γ " (ΠA :Set. A→A) : Set

Γ " (Π A :Prop. A→A) : Prop

which means that:

• it is possible to construct a new element of type Set by quantifying over all elements of type
Set;

3.3. CALCULUS OF INDUCTIVE CONSTRUCTIONS 29

This condition states that the datatype under definition can only occur in the domain of its
constructors in a positive position.

Notice that the positivity condition still permits functional recursive arguments in the construc-
tors. A well-known example of a higher-order datatype is the type O : Set of ordinal notations
which has three constructors

S : O
Succ : O → O
Lim : (N → O) → O

and comes equiped with a recursor RO that can be used to define funcition and prove properties
on ordinals.

Γ " P : O→Type

Γ " a : P Zero

Γ " a′ : Πx :O. P x→P (Succ x)
Γ " a′′ : Πu :N→O. (Π x :N. P (u x))→P (Lim u)

Γ " RO P aa′ a′′ : Πn :O. P n

and its reduction rules are

RO P aa′ a′′ Zero → a

RO P aa′ a′′ (Succ x) → a′ x (RO P aa′ a′′ x)
RO P aa′ a′′ (Lim u) → a′′ u (λn :N.RO P aa′ a′′ (u n))

3.3 Calculus of Inductive Constructions

The Calculus of Inductive Constructions (CIC) is the underlying calculus of Coq.
CIC can be described by the following specification:

S = Set,Prop, Typei , i ∈ N
A = (Set : Type0), (Prop : Type0), (Typei : Typei+1) , i ∈ N
R = (Prop,Prop), (Set,Prop), (Typei,Prop), (Prop,Set), (Set,Set), (Typei,Set)

(Typei,Typej ,Typemax(i,j)) , i, j ∈ N

Cumulativity: Prop ⊆ Type0, Set ⊆ Type0 and Typei ⊆ Typei+1, i ∈ N. And one also has
Inductive Types and a restricted form of general recursion.

Note that in the Coq system, the user will never mention explicitly the index i when referring
to the universe Typei. One only writes Type. The system itself generates for each instance of Type

a new index for the universe and checks that the constraints between these indexes can be solved.
From the user point of view we consequently have Type : Type.

3.3.1 Impredicativity

In CIC, thanks to rules (Typei,Prop) and (Typei,Set), the following judgements are derivable:

Γ " (ΠA :Set. A→A) : Set

Γ " (Π A :Prop. A→A) : Prop

which means that:

• it is possible to construct a new element of type Set by quantifying over all elements of type
Set;

3.3. CALCULUS OF INDUCTIVE CONSTRUCTIONS 29

This condition states that the datatype under definition can only occur in the domain of its
constructors in a positive position.

Notice that the positivity condition still permits functional recursive arguments in the construc-
tors. A well-known example of a higher-order datatype is the type O : Set of ordinal notations
which has three constructors

S : O
Succ : O → O
Lim : (N → O) → O

and comes equiped with a recursor RO that can be used to define funcition and prove properties
on ordinals.

Γ " P : O→Type

Γ " a : P Zero

Γ " a′ : Πx :O. P x→P (Succ x)
Γ " a′′ : Πu :N→O. (Π x :N. P (u x))→P (Lim u)

Γ " RO P aa′ a′′ : Πn :O. P n

and its reduction rules are

RO P aa′ a′′ Zero → a

RO P aa′ a′′ (Succ x) → a′ x (RO P aa′ a′′ x)
RO P aa′ a′′ (Lim u) → a′′ u (λn :N.RO P aa′ a′′ (u n))

3.3 Calculus of Inductive Constructions

The Calculus of Inductive Constructions (CIC) is the underlying calculus of Coq.
CIC can be described by the following specification:

S = Set,Prop, Typei , i ∈ N
A = (Set : Type0), (Prop : Type0), (Typei : Typei+1) , i ∈ N
R = (Prop,Prop), (Set,Prop), (Typei,Prop), (Prop,Set), (Set,Set), (Typei,Set)

(Typei,Typej ,Typemax(i,j)) , i, j ∈ N

Cumulativity: Prop ⊆ Type0, Set ⊆ Type0 and Typei ⊆ Typei+1, i ∈ N. And one also has
Inductive Types and a restricted form of general recursion.

Note that in the Coq system, the user will never mention explicitly the index i when referring
to the universe Typei. One only writes Type. The system itself generates for each instance of Type

a new index for the universe and checks that the constraints between these indexes can be solved.
From the user point of view we consequently have Type : Type.

3.3.1 Impredicativity

In CIC, thanks to rules (Typei,Prop) and (Typei,Set), the following judgements are derivable:

Γ " (ΠA :Set. A→A) : Set

Γ " (Π A :Prop. A→A) : Prop

which means that:

• it is possible to construct a new element of type Set by quantifying over all elements of type
Set;

These kinds of types are called impredicative.

In this case we say Prop and Set are impredicative universes.

Coq version V7 was based in CIC.

25

Impredicativity (cont.)

Coq version V8 is based in a weaker calculus:

In pCIC the rule was removed, as a consequence: the universe Set
become predicative.

30 CHAPTER 3. EXTENSIONS OF PURE TYPE SYSTEMS

• it is possible to construct a new element of type Set by quantifying over all elements of type
Set.

These kind of types is called impredicative. We say that Prop and Set are impredicative universes.

Coq version V7 was based in CIC.

Coq version V8 is based in a weaker calculus: the Predicative Calculus of Inductive Construc-
tions (pCIC)

In pCIC the rule (Typei,Set) was removed, so the universe Set become predicative. Within
this calculus the type Π A :Set. A→A has now sort Type.

Prop is the only impredicative universe of pCIC.

Note that the only possible universes where impredivativity is allowed are the ones at the
bottom of the hierarchy. Otherwise the calculus would turn inconsistent. (This justifies the rules
(Typei,Typej ,Typemax(i,j)), i, j ∈ N)

3.4 Coq in brief

3.4.1 Declarations and definitions

3.4.2 Syntax

λ x :A.λ y :A→B. y x fun (x:A) (y:A->B) => y x

Π x :A.P x→P x forall x:A, P x -> P x

Inductive types Inductive nat :Set := 0 : nat

| S : nat -> nat.
This definiton yields:

– constructors 0 and S

– recursors nat ind, nat rec, nat rect

General recursion and case analysis Fixpoint double (n:nat) :nat :=

match n with

| O => O

| (S x) => S (S (double x))

end.
Note that the recursive call is “smaller”.

• Within pCIC the type has now sort Type.

• Prop is the only impredicative universe of pCIC.

30 CHAPTER 3. EXTENSIONS OF PURE TYPE SYSTEMS

• it is possible to construct a new element of type Set by quantifying over all elements of type
Set.

These kind of types is called impredicative. We say that Prop and Set are impredicative universes.

Coq version V7 was based in CIC.

Coq version V8 is based in a weaker calculus: the Predicative Calculus of Inductive Construc-
tions (pCIC)

In pCIC the rule (Typei,Set) was removed, so the universe Set become predicative. Within
this calculus the type Π A :Set. A→A has now sort Type.

Prop is the only impredicative universe of pCIC.

Note that the only possible universes where impredivativity is allowed are the ones at the
bottom of the hierarchy. Otherwise the calculus would turn inconsistent. (This justifies the rules
(Typei,Typej ,Typemax(i,j)), i, j ∈ N)

3.4 Coq in brief

3.4.1 Declarations and definitions

3.4.2 Syntax

λ x :A.λ y :A→B. y x fun (x:A) (y:A->B) => y x

Π x :A.P x→P x forall x:A, P x -> P x

Inductive types Inductive nat :Set := 0 : nat

| S : nat -> nat.
This definiton yields:

– constructors 0 and S

– recursors nat ind, nat rec, nat rect

General recursion and case analysis Fixpoint double (n:nat) :nat :=

match n with

| O => O

| (S x) => S (S (double x))

end.
Note that the recursive call is “smaller”.

the Predicative Calculus of Inductive Constructions (pCIC) .

NOTE: The only possible universes where impredicativity is allowed are the
ones at the bottom of the hierarchy. Otherwise the calculus would
turn out inconsistent.
This justifies the rules

30 CHAPTER 3. EXTENSIONS OF PURE TYPE SYSTEMS

• it is possible to construct a new element of type Set by quantifying over all elements of type
Set.

These kind of types is called impredicative. We say that Prop and Set are impredicative universes.

Coq version V7 was based in CIC.

Coq version V8 is based in a weaker calculus: the Predicative Calculus of Inductive Construc-
tions (pCIC)

In pCIC the rule (Typei,Set) was removed, so the universe Set become predicative. Within
this calculus the type Π A :Set. A→A has now sort Type.

Prop is the only impredicative universe of pCIC.
Note that the only possible universes where impredicativity is allowed are the ones at the

bottom of the hierarchy. Otherwise the calculus would turn out inconsistent. (This justifies the
rules (Typei,Typej ,Typemax(i,j)), i, j ∈ N)

3.4 Coq in brief

In the Coq system the well typing of a term depends on an environment which consists in a global
environment and a local context.

• The local context is a sequence of variable declarations, written x : A (A is a type) and
“standard” definitions, written x := t : A (that is abbreviations for well-formed terms).

• The global environment is list of global declarations and definitions. This includes not only
assumptions and “standard” definitions, but also definitions of inductive objects. (The global
environment can be set by loading some libraries.)

We frequently use the names constant to describe a globally defined identifier and global variable
for a globally declared identifier.

The typing judgments are as follows E |Γ # t : A

3.4.1 Declarations and definitions

The environment combines the contents of initial environment, the loaded libraries, and all the
global definitions and declarations made by the user.

Example: the following command loads the definitions and declarations of module ZArith

which is the standard library for basic relative integer arithmetic.

Require Import ZArith.

The Coq system has a block mechanism (similar to the one found in many programming
languages) Section id. ... End id. which allows to manipulate the local context (by expanding
and contracting it).

Declarations Global variable declaration.

Parameter max_int : Z.

Local variable declaration.

26

Coq in brief

• The local context is a sequence of variable declarations, written x : A (A is a type)
and “standard” definitions, written x := t : A (i.e., abbreviations for well-formed
terms).

• The global environment is list of global declarations and definitions. This includes
not only assumptions and “standard” definitions, but also definitions of inductive
objects. (The global environment can be set by loading some libraries.)

In the Coq system the well typing of a term depends on an environment which consists

in a global environment and a local context.

We frequently use the names constant to describe a globally defined identifier
and global variable for a globally declared identifier.

The typing judgments are as follows:

30 CHAPTER 3. EXTENSIONS OF PURE TYPE SYSTEMS

• it is possible to construct a new element of type Set by quantifying over all elements of type
Set.

These kind of types is called impredicative. We say that Prop and Set are impredicative universes.

Coq version V7 was based in CIC.

Coq version V8 is based in a weaker calculus: the Predicative Calculus of Inductive Construc-
tions (pCIC)

In pCIC the rule (Typei,Set) was removed, so the universe Set become predicative. Within
this calculus the type Π A :Set. A→A has now sort Type.

Prop is the only impredicative universe of pCIC.
Note that the only possible universes where impredicativity is allowed are the ones at the

bottom of the hierarchy. Otherwise the calculus would turn out inconsistent. (This justifies the
rules (Typei,Typej ,Typemax(i,j)), i, j ∈ N)

3.4 Coq in brief

In the Coq system the well typing of a term depends on an environment which consists in a global
environment and a local context.

• The local context is a sequence of variable declarations, written x : A (A is a type) and
“standard” definitions, written x := t : A (that is abbreviations for well-formed terms).

• The global environment is list of global declarations and definitions. This includes not only
assumptions and “standard” definitions, but also definitions of inductive objects. (The global
environment can be set by loading some libraries.)

We frequently use the names constant to describe a globally defined identifier and global variable
for a globally declared identifier.

The typing judgments are as follows E |Γ # t : A

3.4.1 Declarations and definitions

The environment combines the contents of initial environment, the loaded libraries, and all the
global definitions and declarations made by the user.

Example: The following command load the definitions and declarations of module ZArith

which is the standard library for basic relative integer arithmetic.

Require Import ZArith.

The Coq system has a block mechanism (similar to the one found in many programming
languages) Section id. ... End id. which allows to manipulate the local context (by expanding
and contracting it).

Declarations Global variable declaration.

Parameter max_int : Z.

Local variable declaration.

27

Declarations and definitions

The environment combines the contents of initial environment, the loaded libraries,
and all the global definitions and declarations made by the user.

Require Import ZArith.

The Coq system has a block mechanism Section id. ... End id.
which allows to manipulate the local context (by expanding and contracting it).

This command loads the definitions and declarations
of module ZArith which is the standard library for
basic relative integer arithmetic.

Section Example.

Declarations

Global variable declaration.Parameter max_int : Z.

Variables A B : Set.
Variable Q : Prop.
Variables (b:B) (P : A->Prop).

Local variable declarations.

Loading modules

28

Declarations and definitions (cont.)

Definition min_int := 1 - max_int.

Definitions

Global definition.

Let FB : Set := B -> B. Local definition.

Lemma trivial : forall x:A, P x -> P x.
intros x H.
exact H.
Qed.

Proof-terms

• Using tactics a term of type forall x:A, P x -> P x has been created.

• Using Qed the identifier trivial is defined as this proof-term and add to
the global environment.

29

Syntax

" x : A. " y : A $ B. y x fun (x:A) (y:A->B) => y x

Inductive types

This definition yields: – constructors O and S
 – recursors nat_ind, nat_rec, nat_rect

Inductive nat :Set :=
 | O : nat
 | S : nat -> nat.

General recursion + case analysis

Note that the recursive call is “smaller”.

Fixpoint double (n:nat) :nat :=
 match n with
 | O => O
 | (S x) => S (S (double x))
 end.

forall x:A, P x -> P x" x : A. P x $ P x

30

Inductive types

The declaration of this inductive type introduces in the global environment not only
the constructors O and S, but also the recursors: nat_rect, nat_ind and nat_rec

Coq < Check nat_rect.
nat_rect
 : forall P : nat -> Type,
 P 0 -> (forall n : nat, P n -> P (S n)) -> forall n : nat, P n

Recursor

Coq < Print nat_ind.
nat_ind = fun P : nat -> Prop => nat_rect P
 : forall P : nat -> Prop,
 P 0 -> (forall n : nat, P n -> P (S n)) -> forall n : nat, P n

Proof-by-induction scheme

Coq < Print nat_rec.
nat_rec = fun P : nat -> Set => nat_rect P
 : forall P : nat -> Set,
 P 0 -> (forall n : nat, P n -> P (S n)) -> forall n : nat, P n

Primitive recursor scheme

Inductive nat :Set := O : nat
 | S : nat -> nat.

Example:

31

The cumulativity property within the universe hierarchy leads to a notion of order
between types, written , which replaces the side condition in
the conversion rule. A precise description of this relation can be found in the Coq
reference manual.

• !-reduction

• "-reduction , for unfolding definitions

• #-reduction , for primitive recursion rules, general recursion and case analysis

• $-reduction , for local definitions

32 CHAPTER 3. EXTENSIONS OF PURE TYPE SYSTEMS

Coq < Check nat_rect.

nat_rect

: forall P : nat -> Type,

P 0 -> (forall n : nat, P n -> P (S n)) -> forall n : nat, P n

Coq < Print nat_ind.

nat_ind =

fun P : nat -> Prop => nat_rect P

: forall P : nat -> Prop,

P 0 -> (forall n : nat, P n -> P (S n)) -> forall n : nat, P n

Coq < Print nat_rec.

nat_rec =

fun P : nat -> Set => nat_rect P

: forall P : nat -> Set,

P 0 -> (forall n : nat, P n -> P (S n)) -> forall n : nat, P n

3.4.4 Computations

Computations are performed as series of reductions. The Eval command computes the normal
form of a term with respect to some reduction rules (and using some reduction strategy: cbv or
lazy).

Reductions
β-reduction

(λx :A.M) N →β M [x := N]

δ-reduction for unfolding definitions

D → δ M if (D := M) ∈ E | Γ

ι-reduction for primitive recursion rules, general recursion and case analysis

ζ-reduction for local definitions

let x := a in b → ζ b[x := a]

Note that the conversion rule is

E | Γ # M : A E | Γ # B : s

E | Γ # M : B
if A =βιδζ B

So, types that are equal modulo =βιδζ have the same inhabitants.

3.5 Examples of inductive types

3.5.1 List

Inductive list (A : Type) : Type :=

| nil : list A

| cons : A -> list A -> list A.

32 CHAPTER 3. EXTENSIONS OF PURE TYPE SYSTEMS

Coq < Check nat_rect.

nat_rect

: forall P : nat -> Type,

P 0 -> (forall n : nat, P n -> P (S n)) -> forall n : nat, P n

Coq < Print nat_ind.

nat_ind =

fun P : nat -> Prop => nat_rect P

: forall P : nat -> Prop,

P 0 -> (forall n : nat, P n -> P (S n)) -> forall n : nat, P n

Coq < Print nat_rec.

nat_rec =

fun P : nat -> Set => nat_rect P

: forall P : nat -> Set,

P 0 -> (forall n : nat, P n -> P (S n)) -> forall n : nat, P n

3.4.4 Computations

Computations are performed as series of reductions. The Eval command computes the normal
form of a term with respect to some reduction rules (and using some reduction strategy: cbv or
lazy).

Reductions
β-reduction

(λx :A.M) N →β M [x := N]

δ-reduction for unfolding definitions

D → δ M if (D := M) ∈ E | Γ

ι-reduction for primitive recursion rules, general recursion and case analysis

ζ-reduction for local definitions

let x := a in b → ζ b[x := a]

Note that the conversion rule is

E | Γ # M : A E | Γ # B : s

E | Γ # M : B
if A =βιδζ B

So, types that are equal modulo =βιδζ have the same inhabitants.

3.5 Examples of inductive types

3.5.1 List

Inductive list (A : Type) : Type :=

| nil : list A

| cons : A -> list A -> list A.

32 CHAPTER 3. EXTENSIONS OF PURE TYPE SYSTEMS

Coq < Check nat_rect.

nat_rect

: forall P : nat -> Type,

P 0 -> (forall n : nat, P n -> P (S n)) -> forall n : nat, P n

Coq < Print nat_ind.

nat_ind =

fun P : nat -> Prop => nat_rect P

: forall P : nat -> Prop,

P 0 -> (forall n : nat, P n -> P (S n)) -> forall n : nat, P n

Coq < Print nat_rec.

nat_rec =

fun P : nat -> Set => nat_rect P

: forall P : nat -> Set,

P 0 -> (forall n : nat, P n -> P (S n)) -> forall n : nat, P n

3.4.4 Computations

Computations are performed as series of reductions. The Eval command computes the normal
form of a term with respect to some reduction rules (and using some reduction strategy: cbv or
lazy).

Reductions
β-reduction

(λx :A.M) N →β M [x := N]

δ-reduction for unfolding definitions

D → δ M if (D := M) ∈ E | Γ

ι-reduction for primitive recursion rules, general recursion and case analysis

ζ-reduction for local definitions

let x := a in b → ζ b[x := a]

Note that the conversion rule is

E | Γ # M : A E | Γ # B : s

E | Γ # M : B
if A =βιδζ B

So, types that are equal modulo =βιδζ have the same inhabitants.

3.5 Examples of inductive types

3.5.1 List

Inductive list (A : Type) : Type :=

| nil : list A

| cons : A -> list A -> list A.

Computations
Computations are performed as series of reductions. The Eval command computes the
normal form of a term with respect to some reduction rules (and using some reduction
strategy: cbv or lazy).

Note that the conversion rule is

32 CHAPTER 3. EXTENSIONS OF PURE TYPE SYSTEMS

Coq < Check nat_rect.

nat_rect

: forall P : nat -> Type,

P 0 -> (forall n : nat, P n -> P (S n)) -> forall n : nat, P n

Coq < Print nat_ind.

nat_ind =

fun P : nat -> Prop => nat_rect P

: forall P : nat -> Prop,

P 0 -> (forall n : nat, P n -> P (S n)) -> forall n : nat, P n

Coq < Print nat_rec.

nat_rec =

fun P : nat -> Set => nat_rect P

: forall P : nat -> Set,

P 0 -> (forall n : nat, P n -> P (S n)) -> forall n : nat, P n

3.4.4 Computations

Computations are performed as series of reductions. The Eval command computes the normal
form of a term with respect to some reduction rules (and using some reduction strategy: cbv or
lazy).

Reductions
β-reduction

(λx :A.M) N →β M [x := N]

δ-reduction for unfolding definitions

D → δ M if (D := M) ∈ E | Γ

ι-reduction for primitive recursion rules, general recursion and case analysis

ζ-reduction for local definitions

let x := a in b → ζ b[x := a]

Note that the conversion rule is

E | Γ # M : A E | Γ # B : s

E | Γ # M : B
if A =βιδζ B

So, types that are equal modulo =βιδζ have the same inhabitants.

3.5 Examples of inductive types

3.5.1 List

Inductive list (A : Type) : Type :=

| nil : list A

| cons : A -> list A -> list A.

32 CHAPTER 3. EXTENSIONS OF PURE TYPE SYSTEMS

Coq < Check nat_rect.

nat_rect

: forall P : nat -> Type,

P 0 -> (forall n : nat, P n -> P (S n)) -> forall n : nat, P n

Coq < Print nat_ind.

nat_ind =

fun P : nat -> Prop => nat_rect P

: forall P : nat -> Prop,

P 0 -> (forall n : nat, P n -> P (S n)) -> forall n : nat, P n

Coq < Print nat_rec.

nat_rec =

fun P : nat -> Set => nat_rect P

: forall P : nat -> Set,

P 0 -> (forall n : nat, P n -> P (S n)) -> forall n : nat, P n

3.4.4 Computations

Computations are performed as series of reductions. The Eval command computes the normal
form of a term with respect to some reduction rules (and using some reduction strategy: cbv or
lazy).

Reductions

β-reduction

(λx :A.M) N →β M [x := N]

δ-reduction for unfolding definitions

D → δ M if (D := M) ∈ E | Γ

ι-reduction for primitive recursion rules, general recursion and case analysis

ζ-reduction for local definitions

let x := a in b → ζ b[x := a]

Note that the conversion rule is

E | Γ # M : A E | Γ # B : s

E | Γ # M : B
if A =βιδζ B

So, types that are equal modulo =βιδζ have the same inhabitants.
The cumulativity property within the universe hierarchy leads to a notion of order between

types, written E | Γ # A ≤βιδζ B, which replaces the side condition in the conversion rule. A
precise description of this relation can be found in the Coq reference manual.

32

Implicit syntax

Definition compose : forall A B C : Set, (A->B) -> (B->C) -> A -> C
 := fun A B C f g x => g (f x).

The implicit arguments mechanism makes possible to avoid _ in Coq expressions. It is
necessary to describe in advance the arguments that should be inferred from the
other arguments of a function f or from the context, when writing an application of f
these arguments must be omitted.

The symbol _ can be used to replace a function argument when the context makes it
possible to determine automatically the value of this argument. When handling terms,

the Coq system simply replaces each _ by the appropriate value.

Coq < Check (fun (A:Set) (f:nat->A) => compose _ _ _ double f).
fun (A : Set) (f : nat -> A) => compose nat nat A double f
 : forall A : Set, (nat -> A) -> nat -> A

33

Implicit syntax (cont.)

To deactivate this mode:

If the Coq system cannot infer the implicit arguments it is possible to give them
explicitly.

The Coq system also provides a working mode where the arguments that could be
inferred are automatically determined and declared as implicit arguments when a
function is defined.

Implicit Arguments compose [A B C].

Coq < Check (compose double S).
compose double S
 : nat -> nat

Unset Implicit Arguments.

Set Implicit Arguments.

Coq < Check (compose (C:=nat) double).
compose (C:=nat) double
 : (nat -> nat) -> nat -> nat

34

Lists

In this definition, A is a general parameter, global to both constructors. This kind
of definition allows us to build a whole family of inductive types, indexed over
the sort Type.

Inductive list (A : Type) : Type :=
 | nil : list A
 | cons : A -> list A -> list A.

Coq < Check list_rect.
list_rect
 : forall (A : Type) (P : list A -> Type),
 P nil ->
 (forall (a : A) (l : list A), P l -> P (cons a l)) ->
 forall l : list A, P l

The recursor for lists

An example of a parametric inductive type: the type of lists over a type A.

35

Vectors

Remark the difference between the two parameters A and n:
 - A is general parameter, global to all the introduction rules;
 - n is an index, which is instantiated differently in the introduction rules.
The type of constructor Vcons is a dependent type.

The recursor for vectors

Inductive vector (A : Type) : nat -> Type :=
 | Vnil : vector A 0
 | Vcons : A -> forall n : nat, vector A n -> vector A (S n).

of length n over A

Coq < Check (Vcons _ b1 _ (Vcons _ b2 _ (Vnil _))).
Vcons B b1 1 (Vcons B b2 0 (Vnil B))
 : vector B 2

Variables b1 b2 : B.

Coq < Check vector_rect.
vector_rect
 : forall (A : Type) (P : forall n : nat, vector A n -> Type),
 P 0 (Vnil A) ->
 (forall (a : A) (n : nat) (v : vector A n),
 P n v -> P (S n) (Vcons A a n v)) ->
 forall (n : nat) (v : vector A n), P n v

36

Equality

Inductive eq (A : Type) (x : A) : A -> Prop :=
 | refl_equal : (eq A x x).

Inductive eq (A : Type) (x : A) : A -> Prop :=
 | refl_equal : x = x.

Notice that Coq system uses the syntax “a = b” is an abbreviation for “eq a b”,
and that the parameter A is implicit, as it can be inferred from a.

The induction principle of eq is very close to the Leibniz’s equality but not exactly the
same.

Coq < Check eq_ind.
eq_ind
 : forall (A : Type) (x : A) (P : A -> Prop),
 P x -> forall y : A, x = y -> P y

In Coq, the propositional equality between two inhabitants a and b of the same type A
is introduced as a family of recursive predicates “to be equal to a”, parameterized by
both a and its type A. This family of types has only one introduction rule, which
corresponds to reflexivity.

37

Relations as inductive types

Inductive le (n:nat) : nat -> Prop :=
 | le_n : le n n
 | le_S : forall m : nat, le n m -> le n (S m).

• Notice that in this definition n is a general parameter, while the second argument
of le is an index. This definition introduces the binary relation n # m as the family
of unary predicates “to be greater or equal than a given n”, parameterized by n.

• The Coq system provides a syntactic convention, so that “le x y” can be written
“x <= y”.

• The introduction rules of this type can be seen as rules for proving that a given
integer n is less or equal than another one. In fact, an object of type n # m is
nothing but a proof built up using the constructors le_n and le_S.

Some relations can be introduced as an inductive family of propositions. For instance,
the order n # m on natural numbers is defined as follows in the standard library:

38

Sigma types

The concept of !-type is implemented in Coq by the following inductive type.

Inductive sig (A : Type) (P : A -> Prop) : Type :=
 | exist : forall x : A, P x -> sig A P.

Implicit Arguments sig [A].

• Note that this inductive type can be used to build a specification, combining a
datatype and a predicate over this type, thus creating “the type of data that
satisfies the predicate”. Intuitively, the type one obtains represents a subset of
the initial type.

• The Coq system provides a syntactical convention for this inductive type. For
instance, assume we have a predicate prime : nat -> Prop in the
environment. The expression sig prime (notice the implicit argument) can be
written {x:nat | prime x}.

• A certified value of this type should contain a computation component that
says how to obtain a value n and a certificate, a proof that is n a prime.

39

Logical connectives in Coq
In the Coq System, most logical connectives are represented as inductive types,
except for ⊃ and ∀ which are directly represented by $ and "-types, and
negation which is defined as the implication of the absurd.

The constructors are the introduction rules.
The induction principle gives the elimination rules.

Inductive False : Prop := .

Inductive True : Prop := I : True.

Inductive ex (A : Type) (P : A -> Prop) : Prop :=
 | ex_intro : forall x : A, P x -> ex A P.

Inductive and (A : Prop) (B : Prop) : Prop :=
 | conj : A -> B -> (and A B). /\ is pretty printing for and

Inductive or (A : Prop) (B : Prop) : Prop :=
 | or_introl : A -> (or A B)
 | or_intror : B -> (or A B). \/ is pretty printing for or

Definition not := fun A : Prop => A -> False. ~ is pretty printing for not

40

