TYPE SYSTEMS AND LOGICS

MARIA JOAO FRADE

Departamento de Informatica
Universidade do Minho
2007

Program Semantics, Verification, and Construction

MAP-i, Braga 2007

Program Semantics, Verification, and Construction

Type Systems and Logics

Maria Jodo Frade

Departamento de Informatica
Universidade do Minho

MAP-i, Braga 2007

Part II - Program Verification

® Proof assistants based on type theory

®* Type Systems and Logics

— Pure Type Systems
— The Lambda Cube
— The Logic Cube

® Extensions of Pure Type Systems

— Sigma Types

— Inductive Types

— The Calculus of Inductive Constructions
— Introduction to the Coq proof assistant

® The Coq proof assistant
® Axiomatic semantics of imperative programs: Hoare Logic

® Tool support for the specification, verification, and certification of programs

Bibliography

® Henk Barendregt. Lambda calculi with types. In S. Abramsky, D. Gabbay,
and T. Maibaum, editors, Handbook of Logic in Computer Science, volume 2,
pages 117-309. Oxford Science Publications, 1992.

® Henk Barendregt and Herman Geuvers. Proof-assistants using dependent
type systems. In John Alan Robinson and Andrei Voronkov, editors, Handbook
of Automated Reasoning, pages 1149-1238. Elsevier and MIT Press, 2001.

® Gilles Barthe and Thierry Coquand. An introduction to dependent type
theory. In Gilles Barthe, Peter Dybjer, Luis Pinto, and Jodo Saraiva, editors,
APPSEM, volume 2395 of Lecture Notes in Computer Science, pages 1-41.
Springer, 2000.

® Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program
Development. Coq’Art: The Calculus of Inductive Constructions, volume XXV
of Texts in Theoretical Com- puter Science. An EATCS Series. Springer
Verlag, 2004.

® http://coq.inria.fr/. Documentation of the Coq proof assistant (version 8.1).

Proof Checking

® Proof checking consists of the automated verification of mathematical theories.

— First one formalizes within a given logic the underlying primitive notions, the
definitions, the axioms and the proofs;

— and then the definitions are checked for their well-formedness and the proofs
for their correctness.

In this way mathematics is represented on a computer and also a hight degree of
reliability is obtained.

® Once the theory is formalized, its correctness can be verified by the proof-checker
(which is a small program).

® To help in the formalization process there exists an interactive proof-development
system.

® Proof-checker and proof-development systems are usually combined in what is
called a proof-assistant.

Proof-assistants

In a proof-assistant, after formalizing the primitive notions of the theory (under
study), the user develops the proofs interactively by means of (proof) tactics, and
when a proof is finished a “proof-term” is created. This proof-term closely
corresponds to a standard mathematical proof (in natural deduction style).

Machine assisted theorem proving:

— helps to deal with large problems;
— prevents us from overseeing details;
— does the bookkeeping of the proofs.

Proof-assistants based on type theory present a general specification language to
define mathematical notions and formulas. Moreover, it allows to construct
algorithms and proofs as first class citizens.

Proof checking mathematical statements

® Mathematics is usually presented in an informal but precise way.

In situation I' we have A.
Proof. p. QED

® In Logic I', A become formal objects and proofs can be formalized as a
derivation tree (following some precisely given set of rules).

' =, A
Proof. p. QED

Types in logic

® The connection of type theory to logic is via the proposition-as-types
principle that establishes a precise relation between intuitionistic logic and

computation.

® Intuitionistic logic is based on the notion of proof - a proposition is true
when we can provide a constructive proof of it. On this basis:

— a proposition A can be seen as a type (the type of its proofs);

— and a proof of A as an object of type A.

Hence: A is provable <> A is inhabited

Therefore, the formalization of mathematics in type theory becomes

'Fp p: A which is equivalent to Typer(p) = A

So, proof checking boils down to type checking.

Type-theoretic notions for proof-checking

In the practice of an interactive proof assistant based on type theory, the user types
in tactics, guiding the proof development system to construct a proof-term. At the
end, this term is type checked and the type is compared with the original goal.

In connection to proof checking there are some decidability problems:
Type Checking Problem (TCP) Cbp M:A 7
Type Synthesis Problem (TSP) I' /0 M : ?
Type Inhabitation Problem (TIP) ' b 7. A

TIP is usually undecidable for type theories of interest.

TCP and TSP are decidable for a large class of interesting type theories.

The reliability of machine checked proofs

® Why would one believe a system that says it has verified a proof ?
The proof checker should be a very small program that can be verified by
hand, giving the highest possible reliability to the proof checker.

® de Bruijn criterion

A proof assistant satisfies the de Bruijn criterion if it generates proof-objects
(of some form) that can be checked by an 'easy’ algorithm.

Proof-objects may be large but they are self-evident. This means that a small
program can verify them. The program just follows whether locally the correct
steps are being made.

Type-theoretic approach to interactive theorem proving

provability of formula A <= inhabitation of type A
proof checking <= type checking
interactive theorem proving <= interactive construction of a term
of a given type

So, decidability of type checking is at the core of the type-theoretic approach to
theorem proving.

Examples of proof assistants based on type theory

The first systems of proof checking (type checking) based on the propositions-as-types
principle were the systems of the AUTOMATH project.

Modern proof assistants aggregate to the proof checker a proof-development system
for helping the user to develop the proofs interactively.

We can mention as examples of proof assistants, the systems:

— Coq , based on the Calculus of Inductive Constructions
— Lego , based on the Extended Calculus of Constructions
— Alf and Agda , based on Martin-L5f ‘s type theory

= Nuprl , based on extensional Martin-L6f ‘s type theory

Encoding of logic in type theory

Direct encoding
® Each logical construction have a counterpart in the type theory.

® Theorem proving consists of the (interactive) construction of a proof-term,
which can be easily checked independently.

® Examples: Coq, Lego, Agda.

Shallow encoding (Logical Frameworks)

® The type theory is used as a logical framework, a meta system for encoding
a specific logic one wants to work with.

® The enconding of a logic L is done by choosing an appropriate context I';, in
which the language of L and the proof rules as declared.

® Usually, the proof-assistants based on this kind of enconding do not produce
standard proof-objects, just proof-scripts.
® Examples:
— HOL, based on the Church’s simple type theory. This is a classical higher-
order logic.

— Isabelle, based on intuitionistic simple type theory (used as the meta logic).
Various logics (FOL, HOL, sequent calculi,...) are described.

Type Systems and Logics

Intuitionistic (constructive) logic

® A proof of A DB is a method that transforms a proof of A into a proof of B.
® A proof of AA B is a pair (p, q) such that p is a proof of A and g is a proof of B.

® A proof of AV B is a pair (b, p) where b is either 0 or I and, if b=0 then p is a
proof of A; if b=1I then p is a proof of B.

® There is no proof of L, the false proposition.
® Negation A is defined as A DL.

® A proof of Vx € X. P x is a method p that transforms every element a € X into a
proof of Pa.

® A proof of dx € X. P x is a pair (a, p) such that a € X and p is a proof of Pa.

Propositions as types

A proposition A is interpreted as the collection of its proofs, represented by [A].

So, according to the intuitionistic interpretation of the logical connectives one has

()
[A>B] = [A]—[B]
AnB]l = [Alx[B]
[AvB] = [A] W (B
L] =
Vr e X.Px] = Ha::X. [Px]
[Hr e X.Px] = Xux:X. [Px]
N\ J
where
P—Q = {f|VYp:P.f(p):Q}
PxQ = {(pq |p:P and ¢:Q}
rPYQ = {(0.p) |p:P} U {19 |¢:Q}
Mz:A.Bx = {f:(A—,.,Bx)|Va:A.(fa:Ba)}
Yx:A.Bx = {(a,p)|a:A and p:(Ba)}
Example

Let X be a set and R be a binary relation on X. Now, consider the following lemma:

If Vx,y€X. RxyD - Ryx then Vx€X. - Rxx.

How can this be formalized ?

We have two universes Set and Prop

® a term X of type Set is a type that represents a domain of the logic;
® a term A : Prop is a type that represents a proposition of the logic;

® a predicate on X is represented by a term P : X — Prop

t: X satisfies the predicate P iff the type (Pt) is inhabited
(i.e., there is a proof-term of type (Pt))

® a binary relation over X is represented by a ferm R : X — X — Prop.

Example (cont.)

The collection of binary relations over X is represented as X — X — Prop.

So, to represent the notion of (polymorphic) binary relation one has to abstract
over the domains.

Let us define Rel := A X :Set. X — X — Prop

Definitions are formal constructions in type theory with a computational rule
associated, called d-reduction by which definitions are unfolded.

[D—-sM it D:=M j

Anti-symmetry and irreflexivity can also be define as follows

AntiSym := AX:Set. \R:(RelX).Vx,y:X. Rry D (Ryx D1)
Irrefl = AX:Set.AR:(RelX).Vz:X.Rzx DL

Note that —A is defined as A DL where L is the empty type (the false proposition).

Example (cont.)

By O and [3-reductions we find that for X : Set and Q : X = X — Prop

(Rel X) =53 X —X—Prop
(AntiSym X Q) =53 Vo,y:X.Qry D (Qyz DL)
(Irrefl X Q) =53 Vr:X.Qxx DL

Here we have a dependent type, i.e., a type of functions f where the range-set
depends on the input value.

The type of this kind of functions is f : Ilx: A. B, the product of a family
{Bx}s:a of types.

Example (cont.)

The type of dependent functions is f : Ilz: A. B , the product of a family
{Bz}z.a of types.
Intuitively [z:A. Br = { f:(A—|Bx) | Va: A (fa: Ba)}
z:A
The typing rules associated are
z:AFb:B
' - Ax:Ab: (Ilz: A. B)

(abstraction)

'+ f:(Ilz:A.B) T'Fa:A
I' F fa: Bz :=ad]

(application)
Note substitution [x :=a] in the type of the application.

So, the formula Vx:X.Qxx DL is translated as the dependent function type

[Mz: X.Qrx—_L

Example (cont.)

Therefore, (AntiSym X Q) = TIz,y:X.Qry — (Qyx — 1)
(Irrefl X Q) = Iz: X . Qrzx — L

To prove that anti-symmetry implies irreflexivity for binary relations we have to
find a proof-term of type

I1X :Set. IIR: (RelX). (AntiSym X R) — (Irrefl X R)

the following term is of this type

AX :Set. AR: (RelX). Ah: (AntiSym X R). A\z: X. Aq: (Rxx). hxxqq

The verification of this claim is performed by the type-checking algorithm.

20

Simply-typed A-calculus is not enough

Simply-typed A-calculus has not enough expressive power to encode the kind of
logic used in the previous example.

There are several type systems embedding some of the features described in our
example. For example:

® System F - features polymorphism
® AP - features dependent types
® System Fw- features higher-order polymorphism

® CC - features dependent types and higher-order polymorphism

There is a general class of typed A-calculi were all these systems can be described

- the Pure Type Systems.

21

Pure Type Systems

® Pure Type Systems (PTS) provide a general description for a large class of
typed A-calculi.

® PTS make it possible to derive lot of meta theoretic properties in a generic
way.

® In PTS we only have one type constructor (I1) and one computation rule ([3).
(Therefore the name “pure”).

® PTS were originally introduced (albeit in a different from) by S. Berardi and
J. Terlouw as a generalization of Barendregt’s A-cube, which itself provides a
fine-grained analysis of the Calculus of Constructions.

22

Pure Type Systems

PTS are formal systems for deriving judgments of the form

'+ M:A

SN/

context pseudo-terms
list of variable declarations

M is of type A relative to a typing of the free variables of M
and A (which are declared in I')

23

Syntax

PTS have a single category of expressions, which are called pseudo-terms.

The definitions of pseudo-terms is parameterized by a set 'V of variables and
a set S of sorts (constants that denote the universes of the type system).

(Definition)
The set 7 of pseudo-terms are defined by the abstract syntax
T =S| VI|TT | AXV:7T.T|10vV:T.T
. J

Both Il and A bind variables.
We have the usual notation for free variables and bound variables.

24

Definitions
Pseudo-terms inherit much of the standard definitions and notations of A-calculi.
® V(M) denotes the set of free variables of the pseudo-term M .

® We write A = B instead of I1 x : A. B whenever x ¢ FV(B).

® M [x := N | denotes the substitution of N for all the free occurrences of x in
M .

® We identify pseudo-terms that are equal up to a renaming of bound variables
(cx-conversion).

® We assume the standard variable convention, so all bound variables are chosen
to be different from free variables.

25

Definitions

® fB-reduction is defined as the compatible closure of the rule

Az:AM)N —g3 Mlx:= N]

— (3 is the reflexive-transitive closure of — g3

— 3 is the reflexive-symmetric-transitive closure of — 3

® Application associates to the left, abstraction to the right and application
binds more tightly than abstraction.

® We let x, y, z, ... range over Vands, s, ... range over S

26

Salient Features of PTS

® PTS describe A-calculi a la Church (A-abstractions carry the domain of
bound variables).

® PTS are minimal (just IT type construction and 3 reduction rule), which
imposes strict limitations on their applicability.

® PTS model dependent types. Type constructor II captures in the type
theory the set-theoretic notion of generic or dependent function space.

27

Dependent types

In the type theory one can define for every set A and A-indexed family of
sets (Ba)meA a new set Il,.c 4B, called dependent function space.

Elements of Il,cA B, are functions with domain A and such that f(a) € B,

for every a € A .

IT-construction of PTS works in the same way:

ITx:A. B(x) is the type of terms F such that, for every a : A, Fa : B(a)

28

Specifications

The typing system of PTS is parameterized by a triple (S, A, R) where

S is the set of universes of the type system;
A determine the typing relation between universes;
‘R determine which dependent function types may be found and where they live.

4 . \
Definition
A PTS-specification is a triple (S, A, R) where
e S is a set of sorts
* A4 cSXS isaset of axioms
e R cSXSXS isa set of rules
We use (s1,s2) to denote rules of the form (si,s2,s2).
\\ J

Every specification S induces a PTS AS.

29

Contexts and Judgments
® The set G of contexts is given by the abstract syntax G :=() |G,V : 7T

e We let € denote context inclusion
e The domain of a context is defined by the clause

dom(zy: A1, ..., Ap) = {x1,..., 20}

e We let I', A range over

® A judgment is a triple of the form I' - A: B where A,B €7 and I' € G.

® A judgment is derivable if it can be inferred from the typing rules of the
next slide.

e If THA:B thenT, A and B are legal.
e IfI'HA:s forseS,wesay that A is a type.

30

Typing rules for PTS

(axiom) () F s1: 89

(start) ' = A:s
Ne:AF xz: A

(weakening) I'-A:B I'-C:s

I'z:C + A:B

if (81, 82) e A

if z ¢ dom(T")

if z ¢ dom(T")

if (s1,82,83) €ER

'+ A:s1 I'z:AF B: sy
(product)
I' - (IIz:A.B) : s3
o '+ F:(Ilz:A.B) T'kFa:A
(application)
I' - Fa: Bz :=a]
_ Fe:AFb:B T'F (Ilxz:A.B) : s
(abstraction)
' - Az:Ab: (Ilz: A. B)
: I'-A:B I' B':s
(conversion)

'+ A: B

if B=4 B’

31

Typing rules for PTS

(axiom) () F s1: 89

if (s1,52) € A

It embeds the relation A into the type system.

32

Typing rules for PTS

()
(start) - 5; :1 xS i if ¢ dom(I")
(weakening) 3 FF?:C’B I—FA|_- g ® if z & dom(I)

. J

It allows the introduction of variables in a context.

33

Typing rules for PTS

' A:s1 T''z:AF B:so
' - (ITxz:A.B) : s3

(product) if (s1,52,53) € R

It allows for dependent function types to be formed, provided they match
the rule in R.

34

Typing rules for PTS

' - F:(Ilz:A.B) T'+-a:A
I' - Fa: Blx :=d]

(application)

It allows to form applications.

Note substitution [x :=a] in the type of the application, in order to
accommodate type dependencies.

35

Typing rules for PTS

Fe:AFb:B I' - (Ilz:A.B) : s
' - Ax:Ab: (Ilx: A.B)

(abstraction)

It allows to build A-abstractions.

Note that the side condition requires that the dependent function type is
well formed.

36

Typing rules for PTS

' A:B ©I'' - B :s
I - A: B

(conversion) if B=3 B’

It ensures that convertible types (i.e. types that are -equal) have the same
inhabitants.

This rule is crucial for higher-order type theories, because types are A-terms
and can be reduced, and for dependent type theories, because terms may
occur in types.

37

Examples of PTS

Non-dependent type systems (i.e. an expression M : A with A:* cannot appear
as a subexpression of B : *)

A—, the simply typed A-calculus. S *, O
A= A = (x:0)
R (%, %)
A2 is the PTS counterpart of Girards System F.
S x, O
X A = (x:0)
R (x, %), (O, %)
Aw is the PTS counterpart of Girard's System Fw.
S x, O
w | A = (x:0)
R (x,%), (O,%), (0,0

In logical terms, these non-dependent systems correspond to propositional logics.

38

More examples of non-dependent PTS

S x O, A
AU", Girards System U~ AUT | A = (x:0), (O:4)
R (x,%), (O,%), (3,0), (A,0)
S x, O, A
AU, System U AU A = (x:00), (O:4)
R (x,%), (8,%), (3,0), (A,%), (A,0)
S = x
The System Ax M| A = (k%)
R (%, %)

AU”, AU and Ax are inconsistent in the sense that there exists a pseudo-term M
such that the judgment A :*F M : A is derivable.

39

Examples of dependent PTS

It is possible to type expressions B : * which contain as subexpression M : A : *.

AP is the PTS counterpart of the Logical Frameworks due to Harper et al.

S x, [
AP | A = (+:0)
R (x,%), (x,0)

AP2 is the PTS counterpart of Longo and Moggi's system also named AP2.

S x, O
AP2 | A = (x:0)
R (x,%), (O,%), (x,0)

AC (also known as APw) is the PTS counterpart of Coquand and Huet's Calculus
of Constructions.

S x, O
A0 A = (x:0)
R (x,%), (O,%), (x,0), (O,0)

In logical terms, these dependent systems correspond to predicate logics.

40

Another example of dependent PTS

ACw is an extension of the Calculus os Constructions.

= %, L], , 1€ N
= (>I< : Do), (DZ : Di—i—l) , 1 €N
(

a*)a (Dia*)a (*7Di)7 (Di,DmDmax(i,j)) y 4] €N

AC¥

S NI

*

41

Properties of PTS

[

Substitution property
If Ve:BLAF M:A and ' F N:B ,then I'Alz:=N] F Mz := N]: A[z := N|

J

[

Correctness of types
If ' H A: B, theneither BeS or 3s€ S.' - B:s.

[

Thinning
IfTFA:B islegaland ' CA, then A+ A:B.

[

Strengthening
If Ty,z:ATy - M:B and 2 € FV(I) UFV(M)UFV(B), then TI'y,I'y - M:B.

J

42

Properties of PTS (cont.)

Confluence
Let M\Ne€T .If M =g N ,then M-—»3 P and N3P forsome PcT.

Subject Reduction
ftl'+-M:A and M—»g N ,then I' - N:A.

Uniqueness of types
IfTFM:Aand I' - M:B ,then A=3B.

Holds if A< Sx Sand R<c (S xS) x S are functions.

43

Type Checking, Type Inference and Type Inhabitation

Problems one would like to have an algorithm for:

()

Type Checking Problem (TCP) I' k0 M: A ?
Type Synthesis Problem (TSP) I' /=0 M : ?

Type Inhabitation Problem (TIP) [o 7 : A

. J

In practice, TCP and TSP are very much related:

When checking whether M N : C' one has to infer a type for N, say A,
and a type for M, say D, and then to check whether for some B,
D =g Ilz:A.B with Blx := N|=35C .

® For A— all these problems are decidable.

® TIP is undecidable for extensions of A— (as it corresponds to the provability
in some logic).

44

Strong Normalization and Decidability of Type Checking

Normalization and Type Checking are intimately connected due to conversion rule.

Strong Normalization (SN)

If ' M : A then all B-reductions from M terminate.

SN holds for some PTS (e.g., all subsystems of AC) and for some not (e.g., AU~, Ax).

A PTS is (weakly or strongly) normalizing if all its legal terms are (weakly or
strongly) normalizing.

Decidability of Type Checking

In a PTS that is (weakly or strongly) normalizing and with S finite, the problems of
type checking and type synthesis are decidable.

45

Barendregt’s A-Cube

Barendregt's A-Cube was proposed as a fine-grained analysis of the Calculus of
Constructions.

P
The A-Cube

The cube of typed lambda calculi consists of eight PTS all of them having
S={+x0}, and A= {x:0} and the rules for each system as follows:

System R

A— (%, %)

A2 (x,%) (O, %)

AP (%,) (x,0)

Aw (%, %) (0,0)
Aw (x,%) (O, %) (O0,0)
AP2 (x,%) (O,%) (x,0)

APw (%, %) (x,0) (O,0)
AC (x,%) (O,%) (x,0) (O,0)

46

The A-Cube

Note that arrows denote inclusion of one system in another.

N, O

A2 AP?2
(O0,%) Aw APw
(mA)
/
A— (+)—= AP
Dependencies

Let us call “types” to the pseudo-terms of type * and “kinds” to the pseudo-terms
of type [1.

[term : type : kind]

® (x, *) Terms depending on terms. (functions)

- (Ar:o.x) :0—0
® ([, *) Terms depending on types. (polymorphism)

F (Aasx A zria.x) Haix.a—a
® (x, []) Types depending on terms. (dependent functions)

A:x,P: A—x F (Aa:A) x:Pa.x) : lla: A. Pa— Pa

® ([, (1) Types depending on types. (constructors of a kind)

F (Aaix.a—a) o k—

48

Logics as PTS

Other examples of PTS were given by Berardi who defined logical systems as PTS.

Eight systems of intuitionistic logic will be introduced that correspond in some
sense to the systems in the A-cube. Four systems of proposition logic and four
systems of many-sorted predicate logic.

APROP proposition logic

APROP2 | second-order proposition logic
APROPw | weakly higher-order proposition logic
APROPw | higher-order proposition logic

APRED predicate logic

APRED2 | second-order predicate logic

APREDw | weakly higher-order predicate logic
APREDw | higher-order predicate logic

49

Salient features

® All the systems are minimal logics in the sense that the only logical operators
are O and V.

® However, for the second and higher-order systems the operators -, A, V and

=, as well as Leibeniz's equality are all definable.

® Classical versions of the logics in the upper-plane (of the cube) are obtained
easily (by adding the axiom V.-~ —).

50

Berardi’s Logic Cube

Vs

.

The Logic Cube

The cube of logical typed lambda calculi consists of the following eight PTS.

Each of them has

S = Prop, Set, Type?, Type®
A = (Prop: Type?), (Set: Type®)

and the rules for each of the systems are

System R

APROP
(Prop, Prop)
APROP2
(Prop, Prop)
APROPw
(Prop, Prop)

APROPw
(Prop, Prop)
APRED | (Set, Set) (Set, Type?)
(Prop, Prop) (Set, Prop)
APRED2 | (Set, Set) (Set, Type?)
(Prop, Prop) (Set, Prop)
APREDw | (Set, Set) (Set, Type?)
(Prop, Prop) (Set, Prop)
APREDw | (Set, Set) (Set, Type?)
(Prop, Prop) (Set, Prop)

(Type?, Prop)
(Type?, Type?)

(Type?, Type?)
(Type”, Prop)

(Type?, Prop)
(Type”, Set) (Type?, Type?)

(Type?, Set) (Type”, Type?)
(Type”, Prop)

Set is the class of sets and Prop is the class of propositions.

51

The Logic Cube

APROPw —— APREDw

APROP2 —— APRED?2

(0+) APROPw —

o

— APREDw

APROP —(+5)—= APRED

52

Dependencies

The sorts Set and TypeP form the universes of domains.

e Aj—...— A, —a with a : Set are functional types.

e Aj—...— A, —Prop are predicate types.

The sort Type® allows the introduction of variables of type Set.

® (Prop, Prop) allows the formation of implication of two formulae

¢ : Prop,v : Prop = ¢—1) : Prop

® (Set, Prop) allows quantification over sets

A :Set,¢:Prop - (Ilz:A.¢) : Prop
—_————
Vr:A.¢

53

Dependencies (cont.)

® (Set, Type”) allows the formation of first-order predicates

A :Set = A— Prop: Type”

hence A:Set,P: A—Prop,z: A + Px: Prop

P is a predicate over a set A.

® (Type®, Prop) allows quantification over predicate types

A:Set + (IIP:A—Prop.1lz: A. Px— Px) : Prop

A 7
~"

VPA—Prop.VxzA. Pr—Px

54

Dependencies (cont.)

® (Set, Set) allows function types

A:Set,B:Set - A— B : Set

A Set. B:Set - A:Set A:Set. B:Set.z:A F B:Set
A:Set,B:Set - A— B : Set
—
IIz:A.B

(Set, Set)

® (TypeP , TypeP) allows higher order types

A:Set - (ITP:A — Prop. Prop) : Type?

A:Set - A—Prop: Type? A:Set,P: A—Prop - Prop: Type”
A:Set - (ITP:A— Prop.Prop) : Type?

(Type?, Type?)

55

Example of a derivation tree

r \
- Prop: Type? F Set: Type® - Set : Type®
F Set : Type® A:Set b Prop: Type” A:Set - A:Set
A:Set H A: Set A:Set,y: A F Prop: Type”
(Set, Type?)
A:Set - A — Prop: Type (2.1)
\ J
r \

A:Set,P: A—Prop,r: A+ P:A—Prop A:Set,P: A—Prop,z: A F x: A

A:Set,P: A—Prop,z: A+ Px:Prop (2.2)
\ J
e N
(2.2) (2.2)
A:Set,P: A—Prop,zv:A,q: Pr - Px:Prop (2.3)
\ J
s w
: (2.2) (2.3) Prop. P
A:Set,P: A—Prop,x : A+ A:Set A:Set,P:A—Prop,x: A F Px — Px:Prop ES;spI;roro)p)
(2.1) A:Set,P: A—Prop + (Ilz: A. Px— Px) : Prop P

Type?, P
A:Set - (IIP: A—Prop.llz: A. Px— Pzx) : Prop (Type”, Prop)

56

Second-order definability of the logical operations
Despite the logical construction directly encoded in PTS are implication and universal

quantification, it is a well known fact in that the upper-plane of the cube the logic
connectives A, V, L, = and 3 are definable in terms of D and V.

® For A, B : Prop define

1 = Ila:Prop.«
A = A—_L
ANB = Ta:Prop.(A—-B—a)—a
AvB = Ta:Prop.(A—a)—(B—a)—«

® For A : Prop and X : Set define
Jdzx:X.A = Ha:Prop.(Ilz: X. A—a)—«

® For X : Set and x, y : X define the equality predicate =1, called Leibniz equality.

(x =py) = IIP:X —Prop. Pt— Py

57

Examples

It is not difficult to check that the intuitionistic elimination and introduction
rules for the logic connectives (A, Vv, 1, = and 3) are sound.

Remember ANB = Ha:Prop. (A= B—a)—«
(. . .
Elimination rules
ANB (\E A :Prop,B:Prop,p: ANB + pA(Az:A. \y:B.x): A
A (/\ 1)
AgB (AEs) A : Prop,B :Prop,p: ANB F pB(Ax:A. \y:B.y): B
g J

Introduction rule

A B (Al)

AN B A : Prop,B : Prop,a: A,b: B - (Aa:Prop.\p:(A—B—a«a).pab) : A\NB

58

Examples (cont.)

Note that A : Prop,B :Prop AA B :Prop can be derived in APROP2,

but the term AND = AA:Prop. AB:Prop. AAN B cannot.

One has to be in APROPw to derive = AND : Prop— Prop— Prop

% (ex falso) A : Prop,p : lla:Prop.a F pA: A

e . .)
ex falso sequitur quodlibet

Examples (cont.)

Let us now prove reflexivity and symmetry for the Leibniz equality. Remember
that for X : Set, x, y - X

(x =py) = IIP:X —Prop. Px— Py

Reflexivity X :Set,z: X F (AP: X —Prop.\q: Px.q) : (x =L, x)

[J/

N~
w

Symmetry P

Let T'=X:Set,x: X,y: X,t:(x=Ly)

ke
F'Fiti(x=py) T F A:X.z=pz): X — Prop
'tz X.z=p2): (A2 X.z=px)x — (A\2: X.z2 =1 2)y (=)
'tz X.z=p2): (r=p2) = (y=L x) 7 T'bFow:(z=g)

' tAz:X.z=pz)w: (y =L x)
So,

X:Set,z: X,jy: X,t: (x=py) F t(Az: X. 2= 2)(AP: X —>Prop.\¢: Pz.q) : (y =L 7)

60

Exercices

® Check the soundness of intuitionistic elimination and introduction rules for the
other logic connectives.

® Check that the Leibniz equality is transitive.

61

