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Part II - Program Verification

• Proof assistants based on type theory

• Type Systems and Logics

- Pure Type Systems
- The Lambda Cube
- The Logic Cube

• Extensions of Pure Type Systems

- Sigma Types
- Inductive Types
- The Calculus of Inductive Constructions
- Introduction to the Coq proof assistant

• The Coq proof assistant

• Axiomatic semantics of imperative programs: Hoare Logic

• Tool support for the specification, verification, and certification of programs
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Proof Checking

• Proof checking consists of the automated verification of mathematical theories.

- First one formalizes within a given logic the underlying primitive notions, the 
definitions, the axioms and the proofs;

- and then the definitions are checked for their well-formedness and the proofs 
for their correctness.

In this way mathematics is represented on a computer and also a hight degree of 
reliability is obtained. 

• Once the theory is formalized, its correctness can be verified by the proof-checker 
(which is a small program).

• To help in the formalization process there exists an interactive proof-development 

system.

• Proof-checker and proof-development systems are usually combined in what is 

called a proof-assistant.
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Proof-assistants

- helps to deal with large problems; 

- prevents us from overseeing details; 

- does the bookkeeping of the proofs.

In a proof-assistant, after formalizing the primitive notions of the theory (under 
study), the user develops the proofs interactively by means of (proof) tactics, and 
when a proof is finished a “proof-term” is created. This proof-term closely 
corresponds to a standard mathematical proof (in natural deduction style). 

Machine assisted theorem proving: 

Proof-assistants based on type theory present a general specification language to 
define mathematical notions and formulas. Moreover, it allows to construct 
algorithms and proofs as first class citizens.
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• Mathematics is usually presented in an informal but precise way.

• In Logic !, A become formal objects and proofs can be formalized as a 
derivation tree (following some precisely given set of rules). 

Proof checking mathematical statements

2 CHAPTER 1. INTRODUCTION
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“proof-term” is created. This proof-term closely corresponds to a standard mathematical proof
(in natural deduction style).

Machine assisted theorem proving:
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• prevents us from overseeing details;

• does the bookkeeping of the proofs.

Proof-assistants based on type theory present a general specification language to define mathe-
matical notions and formulas. Moreover, it allows o construct algorithms and proofs as first class
citizens.

1.4.1 Proof checking mathematical statements

Mathematics is usually presented in an informal but precise way.

In situation Γ we have A.
Proof. p. QED

In Logic Γ, A become formal objects and proofs can be formalized as a derivation tree (following
some precisely given set of rules).

Γ !L A

Proof. p. QED

1.4.2 Types in logic

The connection of type theory to logic is via the proposition-as-types principle that establishes a
precise relation between intuicionistic logic and computation.

Intuitionistic logic is based on the notion of proof – a proposition is true when we can provide
a constructive proof of it. On this basis:

• a proposition A can be seen as a type (the type of its proofs);

• and a proof of A as an object of type A.

Hence:
A is provable ⇐⇒ A is inhabited

Therefore, the formalization of mathematics in type theory becomes

Γ !T p : A which is equivalent to TypeΓ(p) = A

Proof checking boils down to type checking.
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Type-theoretic notions for proof-checking

In the practice of an interactive proof assistant based on type theory, the user types 
in tactics, guiding the proof development system to construct a proof-term. At the 
end, this term is type checked and the type is compared with the original goal.

TIP is usually undecidable for type theories of interest. 

TCP and TSP are decidable for a large class of interesting type theories. 

In connection to proof checking there are some decidability problems: 

Type Checking Problem (TCP)

Type Synthesis Problem (TSP)

Type Inhabitation Problem (TIP)

1.4. PROOF CHECKING 3
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Type Synthesis Problem (TSP) Γ !T M : ?

Type Inhabitation Problem (TIP) Γ !T ? : A

TIP is usually undecidable for type theories of interest.
TCP and TSP are decidable for a large class of interesting type theories.

1.4.4 The reliability of machine checked proofs

Why would one believe a system that says it has verified a proof ?

The proof checker should be a very small program that can be verified by hand, giving the
highest possible reliability to the proof checker.

de Bruijn criterion

A proof assistant satisfies the de Bruijn criterion if it generates proof-objects (of some
form) that can be checked by an ’easy’ algorithm.

Proof-objects may be large but they are self-evident. This means that a small program can verify
them. The program just follows whether locally the correct steps are being made.

1.4.5 Type-theoretic approach to interactive theorem proving

provability of formula A ⇐⇒ inhabitation of type A

proof checking ⇐⇒ type checking

interactive theorem proving ⇐⇒ interactive construction of a term of a given type

So, decidability of type checking is at the core of the type-theoretic approach to theorem proving.
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The reliability of machine checked proofs 

Proof-objects may be large but they are self-evident. This means that a small 
program can verify them. The program just follows whether locally the correct 
steps are being made.

• Why would one believe a system that says it has verified a proof ? 

• de Bruijn criterion

A proof assistant satisfies the de Bruijn criterion if it generates proof-objects 
(of some form) that can be checked by an ’easy’ algorithm.

The proof checker should be a very small program that can be verified by 
hand, giving the highest possible reliability to the proof checker.
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Examples of proof assistants based on type theory

- Coq , based on the Calculus of Inductive Constructions 

- Lego , based on the Extended Calculus of Constructions 

- Alf and Agda , based on Martin-Löf ’s type theory 

- Nuprl , based on extensional Martin-Löf ’s type theory

The first systems of proof checking (type checking) based on the propositions-as-types 

principle were the systems of the AUTOMATH project.

Modern proof assistants aggregate to the proof checker a proof-development system 
for helping the user to develop the proofs interactively.

We can mention as examples of proof assistants, the systems: 

11

Encoding of logic in type theory

- HOL, based on the Church’s simple type theory. This is a classical higher-
order logic.

- Isabelle, based on intuitionistic simple type theory (used as the meta logic). 
Various logics (FOL, HOL, sequent calculi,...) are described.

Shallow encoding  (Logical Frameworks)

Direct encoding        
• Each logical construction have a counterpart in the type theory.

• Theorem proving consists of the (interactive) construction of a proof-term, 
which can be easily checked independently.

• Examples: Coq, Lego, Agda.

• The type theory is used as a logical framework, a meta system for encoding 
a specific logic one wants to work with.

• The enconding of a logic L is done by choosing an appropriate context !L, in 
which the language of L and the proof rules as declared.

• Usually, the proof-assistants based on this kind of enconding do not produce 
standard proof-objects, just proof-scripts.

• Examples:
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Type Systems and Logics
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Intuitionistic (constructive) logic

• A proof of A ⊃ B is a method that transforms a proof of A into a proof of B.

• A proof of A ∧ B is a pair (p, q) such that p is a proof of A and q is a proof of B.

• A proof of A ∨ B is a pair (b, p) where b is either 0 or 1 and, if b=0 then p is a 
proof of A; if b=1 then p is a proof of B.

• There is no proof of ⊥ , the false proposition.

• Negation ¬A is defined as A ⊃⊥.

• A proof of ∀x ∈ X. P x is a method p that transforms every element a ∈ X into a 
proof of Pa. 

• A proof of ∃x ∈ X. P x is a pair (a, p) such that a ∈ X and p is a proof of Pa.
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Propositions as types

A proposition A is interpreted as the collection of its proofs, represented by [A].

So, according to the intuitionistic interpretation of the logical connectives one has 

where

Chapter 2

Type Systems and Logics

2.1 Intuitionistic (constructive) logic

• A proof of A ⊃ B is a method that transforms a proof of A into a proof of B.

• A proof of A ∧B is a pair (p, q) such that p is a proof of A and q is a proof of B.

• A proof of A ∨B is a pair (b, p) where b is either 0 or 1 and, if b = 0 then p is a proof of A;
if b = 1 then p is a proof of B.

• There is no proof of ⊥, the false proposition.

• Negation ¬A is defined as A ⊃⊥.

• A proof of ∀x ∈ X. Px is a method p that transforms every element a ∈ X and p into a
proof of Pa.

• A proof of ∃x ∈ X. Px is a pair (a, p) such that a ∈ X and p is a proof of pa.

2.2 Propositions as types

A proposition A is interpreted as the collection of its proofs (represented by [A]). So, according
to the intuitionistic interpretation of the logical connectives one has

[A ⊃ B] = [A] → [B]
[A ∧B] = [A]× [B]
[A ∨B] = [A]

⊎
[B]

[⊥] = ∅
[∀x ∈ X. Px] = Π x :X. [Px]
[∃x ∈ X. Px] = Σ x :X. [Px]

where
P → Q = {f | ∀p :P. f(p) : Q}
P ×Q = {(p, q) | p :P and q :Q}
P

⊎
Q = {(0, p) | p :P}

⊎
{(1, q) | q :Q}

Π x :A.Bx =
{
f : (A→

⊎
x:A Bx) | ∀a :A. (fa : Ba)

}

Σ x :A.Bx = {(a, p) | a :A and p : (Ba)}
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Example

• a term X of type Set is a type that represents a domain of the logic;

• a term A : Prop is a type that represents a proposition of the logic;

• a predicate on X is represented by a term P : X ! Prop

• a binary relation over X is represented by a term  R : X ! X ! Prop.

If   ∀x, y ∈ X.  R  x   y ⊃ ¬ R y x   then    ∀x ∈ X.  ¬ R x x .

How can this be formalized ?

Let X be a set and R be a binary relation on X. Now, consider the following lemma: 

t : X satisfies the predicate P  iff  the type (P t) is inhabited 
(i.e., there is a proof-term of type (P t) )

We have two universes Set and Prop

16



Example (cont.)

Let us define

The collection of binary relations over X is represented as X ! X ! Prop.

So, to represent the notion of (polymorphic) binary relation one has to abstract 
over the domains.

Chapter 2

Type Systems and Logics

2.1 Example

Let X be a set and R be a binary relation on X.

If ∀x, y ∈ X.Rxy ⊃ ¬Rxy then ∀x ∈ X.¬Rxx.

How can this be formalized ?

We have two universes Set and Prop

• a term X of type Set is a type that represents a domain of the logic;

• a term A : Prop is a type that represents a proposition of the logic;

• a predicate on X is represented by a term P : X→Prop

t : X satisfies the predicate P iff the type Pt is inhabited (i.e., there is a proof-term
of type Pt

So, the collection of predicates over X is represented as X→Prop.

• The collection of binary relations over X is represented as X→X→Prop.

So, to represent the notion of (polymorphic) binary relation one has to abstract over the do-
mains.

Let us define Rel := λX : Set.X→X→Prop

Definitions are formal constructions in type theory with a computational rule associated, called
δ-reduction by which definitions are unfolded.

D → δ M if D := M

Anti-symmetry and irreflexivity can also be define as follows

AntiSym := λX : Set.λR : (RelX).∀x, y : X.Rxy ⊃ (Rxy ⊃⊥)
Irrefl := λX : Set.λR : (RelX).∀x : X.Rxx ⊃⊥
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5Note that ¬A is defined as A ⊃⊥ where ⊥ is the empty type (the false proposition).
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AntiSym := λX :Set.λR : (RelX).∀x, y :X. Rxy ⊃ (Ryx ⊃⊥)
Irrefl := λX :Set.λR : (RelX).∀x :X. Rxx ⊃⊥
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Here we have a dependent type, i.e., a type of functions f where the range-set 
depends on the input value.

By ! and "-reductions we find that for X : Set and Q : X ! X ! Prop 6 CHAPTER 2. TYPE SYSTEMS AND LOGICS

Note that ¬A is defined as A ⊃⊥ where ⊥ is the empty type (the false proposition).
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Here we have a dependent type, i.e., a type of functions f where the range-set depends on the
input value.

The type of this kind of functions is f : Πx : A.B, the product of a family {Bx}x:a of types.
Intuitively

Πx : A.B = {f : A→
⋃

x:a

Bx | ∀x : A.fx : Bx}

(abstraction)
Γ, x :A % b : B

Γ % λx :A.b : (Πx :A.B)

(application)
Γ % f : (Πx :A.B) Γ % a : A

Γ % f a : B[x := a]
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the following term is of this type
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The verification of this claim is performed by the type-checking algorithm.

2.1.1 Simply-typed λ-calculus is not enough

Simply-typed λ-calculus has not enogh expressive power to encode the kind of logic used in the
previous example.

There are several type systems embedding some of the features described in our example. For
example:

• System F – features polymorphism via the universal abstraction of types

The type of this kind of functions is                              , the product of a family 
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The typing rules associated are

(abstraction)
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Γ % λx :A.b : (Πx :A.B)

(application)
Γ % f : (Πx :A.B) Γ % a : A
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Πx :X. Qxx→⊥
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2.1.1 Simply-typed λ-calculus is not enough

Simply-typed λ-calculus has not enough expressive power to encode the kind of logic used in the
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There are several type systems embedding some of the features described in our example. For
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Intuitively

Note substitution [x := a] in the type of the application.
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2.3 Example

Let X be a set and R be a binary relation on X.

If ∀x, y ∈ X.Rxy ⊃ ¬Ryx then ∀x ∈ X.¬Rxx.

How can this be formalized ?

We have two universes Set and Prop

• a term X of type Set is a type that represents a domain of the logic;

• a term A : Prop is a type that represents a proposition of the logic;

• a predicate on X is represented by a term P : X→Prop

t : X satisfies the predicate P iff the type Pt is inhabited (i.e., there is a proof-term
of type Pt

So, the collection of predicates over X is represented as X→Prop.

• The collection of binary relations over X is represented as X→X→Prop.

So, to represent the notion of (polymorphic) binary relation one has to abstract over the do-
mains.

Let us define Rel := λX :Set. X→X→Prop

Definitions are formal constructions in type theory with a computational rule associated, called
δ-reduction by which definitions are unfolded.

D → δ M if D := M

Anti-symmetry and irreflexivity can also be define as follows

AntiSym := λX :Set.λR : (RelX).∀x, y :X. Rxy ⊃ (Ryx ⊃⊥)
Irrefl := λX :Set.λR : (RelX).∀x :X. Rxx ⊃⊥

Note that ¬A is defined as A ⊃⊥ where ⊥ is the empty type (the false proposition).

By δ and β-reductions we find that for X : Set and Q : X→X→Prop

(Rel X) =δβ X→X→Prop

(AntiSym XQ) =δβ ∀x, y :X. Qxy ⊃ (Qyx ⊃⊥)
(Irrefl XQ) =δβ ∀x :X. Qxx ⊃⊥

Here we have a dependent type, i.e., a type of functions f where the range-set depends on the
input value.

The type of this kind of functions is f : Πx :A.B, the product of a family {Bx}x:A of types.
Intuitively

Πx :A.Bx =
{

f : (A→
⋃

x:A

Bx) | ∀a :A. (fa : Ba)
}
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To prove that anti-symmetry implies irreflexivity for binary relations we have to 
find a proof-term of type

The verification of this claim is performed by the type-checking algorithm.
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example:

• System F – features polymorphism
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Simply-typed !-calculus is not enough

• System F – features polymorphism

• !P – features dependent types

• System F"– features higher-order polymorphism

• CC – features dependent types and higher-order polymorphism

Simply-typed "-calculus has not enough expressive power to encode the kind of 
logic used in the previous example.

There are several type systems embedding some of the features described in our 
example. For example:

There is a general class of typed "-calculi were all these systems can be described 

– the Pure Type Systems.
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Pure Type Systems

• Pure Type Systems (PTS) provide a general description for a large class of 
typed "-calculi. 

• PTS make it possible to derive lot of meta theoretic properties in a generic 
way.

• In PTS we only have one type constructor (") and one computation rule (#). 
(Therefore the name “pure”).

• PTS were originally introduced (albeit in a different from) by S. Berardi and 
J. Terlouw as a generalization of Barendregt’s "-cube, which itself provides a 
fine-grained analysis of the Calculus of Constructions. 
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M is of type A relative to a typing of the free variables of M 

and A (which are declared in !  )

Chapter 2

Type Systems and Logics

2.1 Pure Type Systems

• Pure Type Systems (PTS) provide a framework to specify typed λ-calculi.

• The typed lambda calculi that belong to the class of PTS have only one type constructor
(Π) and a computation rule (β). (Therefore the name “pure”).

• The framework of PTS provides a general description of a large class of typed λ-calculi and
makes it possible to derive lot of meta theoretic properties in a generic way.

• PTS were originally introduced (albeit in a different from) by S.Berardi and J. Terlouw as
a generalization of Barendregt’s λ-cube, which itself provides a fine-grained analysis of the
Calculus of Constructions.

PTS are formal systems for deriving judgements of the form

Γ ! M : A

were both M and A are in the set of the so called pseudoterms and Γ is a finite sequence of
declarations, statements of the form x : B, where x is a variable and B a pseudoterm.

2.1.1 Syntax

PTS have a single category of expressions, which are called pseudo-terms. The definitions of
pseudo-terms is parameterized by a set V of variables and a set S of sorts (constants that denote
the universes of the type system.

Definition 2.1.1 For some set S, the set T of pseudo-terms over S is defined by the abstract
syntax

T ::= S | V | T T | λV :T .T | ΠV :T . T

where V is a countable set of variables

3

Pure Type Systems

PTS are formal systems for deriving judgments of the form 

context
list of variable declarations

pseudo-terms
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Syntax

PTS have a single category of expressions, which are called pseudo-terms. 

The definitions of pseudo-terms is parameterized by a set V of variables and 

a set S of sorts (constants that denote the universes of the type system).

Both " and $ bind variables. 
We have the usual notation for free variables and bound variables.
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3

The set T of pseudo-terms are defined by the abstract syntax

Definition
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Definitions

Pseudo-terms inherit much of the standard definitions and notations of "-calculi.

• FV(M) denotes the set of free variables of the pseudo-term M . 

• We write A ! B instead of " x : A. B whenever x ! FV(B).

• M [x := N ] denotes the substitution of N for all the free occurrences of x in 
M . 

• We identify pseudo-terms that are equal up to a renaming of bound variables 

(#-conversion). 

• We assume the standard variable convention, so all bound variables are chosen 
to be different from free variables.
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Definitions

•  $-reduction is defined as the compatible closure of the rule 

         is the reflexive-transitive closure of 

         is the reflexive-symmetric-transitive closure of

• Application associates to the left, abstraction to the right and application 
binds more tightly than abstraction. 

• We let x, y, z , ... range over V and s, s’, ... range over S
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• We write A→B instead of Πx :A.B whenever x "∈ FV(B).

• M [x := N ] denote the substitution of N for all the free occurrences of x in M .

• We identify pseudo-terms that are equal up to a renaming of bound variables (α-conversion).

• We assume the standard variable convention, so all bound variables are chosen to be different
from free variables.

• β-reduction is defined as the compatible closure of the rule

(λ x :A.M) N →β M [x := N ]

!β is the reflexive-transitive closure of→β .

=β is the reflexive-symmetric-transitive closure of→β .

• Application associates to the left, abstraction to the right and application binds more tightly
than abstraction.

• We let x, y, z, ... range over V and s, s′, ... range over S.

2.1.3 Typing Rules for Pure Type Systems

(axiom) 〈〉 & ∗ : " if (s1, s2) ∈ A

(start) Γ & A : s
Γ, x :A & x : A

if x "∈ dom(Γ)

(weakening) Γ & A : B Γ & C : s
Γ, x :C & A : B

if x "∈ dom(Γ)

(product)
Γ & A : s1 Γ, x :A & B : s2

Γ & (Π x :A.B) : s3

if (s1, s2, s3) ∈ R

(application)
Γ & F : (Π x :A.B) Γ & a : A

Γ & F a : B[x := a]

(abstraction)
Γ, x :A & b : B Γ & (Π x :A.B) : s

Γ & λ x :A.b : (Π x :A.B)

(conversion) Γ & A : B Γ & B′ : s

Γ & A : B′ if B =β B′
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Salient Features of PTS

• PTS describe "-calculi à la Church ("-abstractions carry the domain of 
bound variables).

• PTS are minimal (just " type construction and # reduction rule), which 
imposes strict limitations on their applicability.

• PTS model dependent types. Type constructor " captures in the type 
theory the set-theoretic notion of generic or dependent function space.

27

Dependent types

In the type theory one can define for every set A and A-indexed family of 

sets               a new set               called dependent function space.
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• We write A→B instead of Πx :A.B whenever x "∈ FV(B).

• M [x := N ] denote the substitution of N for all the free occurrences of x in M .

• We identify pseudo-terms that are equal up to a renaming of bound variables (α-conversion).

• We assume the standard variable convention, so all bound variables are chosen to be different
from free variables.

• β-reduction is defined as the compatible closure of the rule
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!β is the reflexive-transitive closure of→β .

=β is the reflexive-symmetric-transitive closure of→β .

• Application associates to the left, abstraction to the right and application binds more tightly
than abstraction.

• We let x, y, z, ... range over V and s, s′, ... range over S.

2.1.3 Salient Features of PTS

• PTS describe λ-calculi à la Church ( λ-abstraction carry the domain of bound variables).

• PTS are minimal (just Π type construction and β reduction rule), which imposes strict
limitations on their applicability.

• PTS model dependent types. Type constructor Π captures in the type theory the set-theoretic
notion of generic or dependent function space.

In the type theory one can define for every set A and A-indexed family of sets (Ba)x∈A a
new set Πx∈ABx called dependent function space.

Elements of Πx∈ABx are functions with domain A and such that f(a) ∈ Ba for every a ∈ A.

Π-construction of PTS works in the same way

Π x :A.B(x) is the type of terms f such that, for every a : A, F a : B(a)
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• PTS describe λ-calculi à la Church ( λ-abstraction carry the domain of bound variables).

• PTS are minimal (just Π type construction and β reduction rule), which imposes strict
limitations on their applicability.

• PTS model dependent types. Type constructor Π captures in the type theory the set-theoretic
notion of generic or dependent function space.

In the type theory one can define for every set A and A-indexed family of sets (Ba)x∈A a
new set Πx∈ABx called dependent function space.

Elements of Πx∈ABx are functions with domain A and such that f(a) ∈ Ba for every a ∈ A.

Π-construction of PTS works in the same way

Π x :A.B(x) is the type of terms f such that, for every a : A, F a : B(a)

4 CHAPTER 2. TYPE SYSTEMS AND LOGICS

• We write A→B instead of Πx :A.B whenever x "∈ FV(B).

• M [x := N ] denote the substitution of N for all the free occurrences of x in M .

• We identify pseudo-terms that are equal up to a renaming of bound variables (α-conversion).

• We assume the standard variable convention, so all bound variables are chosen to be different
from free variables.

• β-reduction is defined as the compatible closure of the rule

(λ x :A.M) N →β M [x := N ]

!β is the reflexive-transitive closure of→β .

=β is the reflexive-symmetric-transitive closure of→β .

• Application associates to the left, abstraction to the right and application binds more tightly
than abstraction.

• We let x, y, z, ... range over V and s, s′, ... range over S.

2.1.3 Salient Features of PTS
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Specifications

The typing system of PTS is parameterized by a triple (S, A, R) where

Every specification S induces a PTS $S.

• S  is a set of sorts

• A  ⊆ S # S  is a set of axioms   

• R  ⊆ S # S # S  is a set of rules

A PTS-specification is a triple (S, A, R) where 

Definition

We use (s1,s2) to denote rules of the form (s1,s2,s2). 

S  is the set of universes of the type system;
A  determine the typing relation between universes;
R  determine which dependent function types may be found and where they live. 
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Contexts and Judgments

• A judgment is derivable if it can be inferred from the typing rules of the 
next slide.

•  The set    of contexts is given by the abstract syntax   

• We let ⊆ denote context inclusion
• The domain of a context is defined by the clause 

• We let !, % range over 

2.1. PURE TYPE SYSTEMS 5

(axiom) 〈〉 # ∗ : ! if (s1, s2) ∈ A

(start) Γ # A : s
Γ, x :A # x : A

if x &∈ dom(Γ)

(weakening) Γ # A : B Γ # C : s
Γ, x :C # A : B

if x &∈ dom(Γ)

(product)
Γ # A : s1 Γ, x :A # B : s2

Γ # (Π x :A.B) : s3

if (s1, s2, s3) ∈ R

(application)
Γ # F : (Π x :A.B) Γ # a : A

Γ # F a : B[x := a]

(abstraction)
Γ, x :A # b : B Γ # (Π x :A.B) : s

Γ # λ x :A.b : (Π x :A.B)

(conversion) Γ # A : B Γ # B′ : s

Γ # A : B′ if B =β B′
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It embeds the relation A into the type system. 
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2.2.6 Typing rules for PTS

(axiom) 〈〉 # s1 : s2 if (s1, s2) ∈ A

embeds the relation A into the type system.

(start) Γ # A : s
Γ, x :A # x : A

if x %∈ dom(Γ)

(weakening) Γ # A : B Γ # C : s
Γ, x :C # A : B

if x %∈ dom(Γ)

allow the introduction of variables in a context.

(product)
Γ # A : s1 Γ, x :A # B : s2

Γ # (Πx :A.B) : s3

if (s1, s2, s3) ∈ R

allows for dependent function types to be formed, provided they match the rule in R.

(application)
Γ # F : (Πx :A.B) Γ # a : A

Γ # F a : B[x := a]

allows to form applications. Note substitution [x := a] in the type of the application, in order to
accommodate type dependencies.

(abstraction)
Γ, x :A # b : B Γ # (Πx :A.B) : s

Γ # λx :A.b : (Πx :A.B)

allows to build λ-abstractions. Note that the side condition requires that the dependent function
type is well formed.

(conversion) Γ # A : B Γ # B′ : s

Γ # A : B′ if B =β B′

ensures that convertible types (i.e. types that are β-equal) have the same inhabitants. This rule
is crucial for higher-order type theories, because types are λ-terms and can be reduced, and for
dependent type theories because they may occur in types.

2.2.7 Examples of PTS

Some examples of non-dependent type systems (i.e. an expression M : A with A : ∗ cannot appear
as a subexpression of B : ∗).

λ→, the simply typed λ-calculus.

S = ∗, !
A = (∗ : !)
R = (∗, ∗)
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It allows the introduction of variables in a context.
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2.2 Lambda Cube

λω !! λC

λ2

""!!!!!!!!!!
!! λP2

""!!!!!!!!!!

λω

##

!! λPω

##

λ→ !!

""!!!!!!!!!

##

λP

""!!!!!!!!!

##
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It allows for dependent function types to be formed, provided they match 
the rule in R.
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Γ # A : B′ if B =β B′

ensures that convertible types (i.e. types that are beta-equal) have the same inhabitants. This
rule is crucial for higher-order type theories, because types are λ-terms and can be reduced, and
for dependent type theories because they may occur in types.

2.2 Lambda Cube

λω !! λC

λ2

""!!!!!!!!!!
!! λP2

""!!!!!!!!!!

λω

##

!! λPω

##

λ→ !!

""!!!!!!!!!

##

λP

""!!!!!!!!!

##
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It allows to form applications. 

Note substitution [x := a] in the type of the application, in order to 
accommodate type dependencies.

Typing rules for PTS
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(axiom) 〈〉 # ∗ : ! if (s1, s2) ∈ A

(start) Γ # A : s
Γ, x :A # x : A

if x &∈ dom(Γ)

(weakening) Γ # A : B Γ # C : s
Γ, x :C # A : B

if x &∈ dom(Γ)

(product)
Γ # A : s1 Γ, x :A # B : s2

Γ # (Π x :A.B) : s3
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(application)
Γ # F : (Π x :A.B) Γ # a : A

Γ # F a : B[x := a]
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Γ, x :A # b : B Γ # (Π x :A.B) : s

Γ # λ x :A.b : (Π x :A.B)

(conversion) Γ # A : B Γ # B′ : s

Γ # A : B′ if B =β B′

Figure 2.1: Typing rules for PTS

2.1.5 Contexts and Judgments

• The set G of contexts is given by the abstract syntax G ::= 〈〉 | G,V : T

– We let ⊆ denote context inclusion.

– The domain of a context is defined by the clause dom(x1 :A1, ..., xn :An) = {x1, ..., xn}

– We let Γ,∆ range over G.

• A judgment is a triple of the form Γ # A : B where A,B ∈ Γ and Γ ∈ G. Γ, A and B are
the context, the subject and the predicate of the judgment.

• A judgment is derivable if it can be infered from the typing rules of Figure 2.1.

• If Γ # A : B then Γ, A and B are legal.

• If Γ # A : s for s ∈ S we say that A is a type.

Note that:

• contexts may introduce type variables with assertions of the form A : s with s ∈ S.

• contexts are ordered lists so as to handle possible dependencies, e.g., A : s, a : A intriduces
a type variable and an object variable nd is meaningful, whereas a : A,A : s is not.

It allows to build "-abstractions.
 
Note that the side condition requires that the dependent function type is 
well formed.

Typing rules for PTS
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It ensures that convertible types (i.e. types that are #-equal) have the same 
inhabitants. 

This rule is crucial for higher-order type theories, because types are "-terms 
and can be reduced, and for dependent type theories, because terms may 
occur in types. 
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Examples of PTS
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λ→
S = ∗, !
A = (∗ : !)
R = (∗, ∗)

λ2, is the PTS counterpart of the Girard’s System F.

S = ∗, !
A = (∗ : !)
R = (∗, ∗), (!, ∗)

λ2
S = ∗, !
A = (∗ : !)
R = (∗, ∗), (!, ∗)

λω, is the PTS counterpart of the Girard’s System Fω.

S = ∗, !
A = (∗ : !)
R = (∗, ∗), (!, ∗), (!,!)

λω

S = ∗, !
A = (∗ : !)
R = (∗, ∗), (!, ∗), (!,!)

In logical terms, these non-dependent systems correspond to propositional logics.

2.1.8 More examples of non-dependent PTS

λU−, the Girard’s System U−.

S = ∗, !, #
A = (∗ : !), (! : #)
R = (∗, ∗), (!, ∗), (!,!), (#,!)

λU−
S = ∗, !, #
A = (∗ : !), (! : #)
R = (∗, ∗), (!, ∗), (!,!), (#,!)

λU ,the System U .

S = ∗, !, #
A = (∗ : !), (! : #)
R = (∗, ∗), (!, ∗), (!,!), (#, ∗), (#,!)

λU

S = ∗, !, #
A = (∗ : !), (! : #)
R = (∗, ∗), (!, ∗), (!,!), (#, ∗), (#,!)
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S = ∗, !, #
A = (∗ : !), (! : #)
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Non-dependent type systems (i.e. an expression M : A with A : ! cannot appear 
as a subexpression of B : !)

!2 is the PTS counterpart of Girard’s System F.

!%, the simply typed "-calculus.

!" is the PTS counterpart of Girard’s System F$. 

In logical terms, these non-dependent systems correspond to propositional logics.
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More examples of non-dependent PTS

"U&, "U and "! are inconsistent in the sense that there exists a pseudo-term M 
such that the judgment A : ! " M : A is derivable.

!U&, Girard’s System U&

!U , System U

The System !!

8 CHAPTER 2. TYPE SYSTEMS AND LOGICS

The System λ∗
S = ∗
A = (∗ : ∗)
R = (∗, ∗)

λ∗
S = ∗
A = (∗ : ∗)
R = (∗, ∗)

λU−, λU and λ∗ are inconsistent in the sense that exists a pseudo-term M such that the
judgment A : ∗ " M : A is derivable.

2.1.9 Examples of dependent PTS

Some examples of dependent type systems (i.e. these systems allow to type expressions B : ∗
which contain as subexpression M : A : ∗).

λP , is the PTS counterpart of the Logical Frameworks due to Harper et al.

S = ∗, !
A = (∗ : !)
R = (∗, ∗), (∗,!)

λP

S = ∗, !
A = (∗ : !)
R = (∗, ∗), (∗,!)

λP2, is the PTS counterpart of the Longo and Moggi’s system also named λP2.

S = ∗, !
A = (∗ : !)
R = (∗, ∗), (!, ∗), (∗,!)

λP2
S = ∗, !
A = (∗ : !)
R = (∗, ∗), (!, ∗), (∗,!)

λC (also known as λPω) is the PTS counterpart of the Coquand and Huet’s Calculus os
Constructions.

S = ∗, !
A = (∗ : !)
R = (∗, ∗), (!, ∗), (∗,!), (!,!)

λC

S = ∗, !
A = (∗ : !)
R = (∗, ∗), (!, ∗), (∗,!), (!,!)

In logical terms, these dependent systems correspond to predicate logics.
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Examples of dependent PTS

In logical terms, these dependent systems correspond to predicate logics.

It is possible to type expressions B : ! which contain as subexpression M : A : !.

!P is the PTS counterpart of the Logical Frameworks due to Harper et al.

!P2 is the PTS counterpart of Longo and Moggi’s system also named "P2.

!C (also known as !P") is the PTS counterpart of Coquand and Huet’s Calculus 
of Constructions.

8 CHAPTER 2. TYPE SYSTEMS AND LOGICS

The System λ∗
S = ∗
A = (∗ : ∗)
R = (∗, ∗)

λ∗
S = ∗
A = (∗ : ∗)
R = (∗, ∗)

λU−, λU and λ∗ are inconsistent in the sense that exists a pseudo-term M such that the
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Another example of dependent PTS

!C" is an extension of the Calculus os Constructions.

2.2. LAMBDA CUBE 9

2.1.10 Another example of dependent PTS

λCω is an extension of the Calculus os Constructions.

S = ∗, !i , i ∈ N
A = (∗ : !0), (!i : !i+1) , i ∈ N
R = (∗, ∗), (!i, ∗), (∗,!i), (!i,!j ,!max(i,j)) , i, j ∈ N

λCω

S = ∗, !i , i ∈ N
A = (∗ : !0), (!i : !i+1) , i ∈ N
R = (∗, ∗), (!i, ∗), (∗,!i), (!i,!j ,!max(i,j)) , i, j ∈ N

2.2 Lambda Cube

λω !! λC

λ2

""!!!!!!!!!!
!! λP2

""!!!!!!!!!!

λω

##

!! λPω

##

λ→ !!

""!!!!!!!!!

##

λP

""!!!!!!!!!

##

2.3 Logic Cube
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Properties of PTS

2.2. PURE TYPE SYSTEMS 13

2.2.10 Another example of dependent PTS

λCω is an extension of the Calculus of Constructions.

S = ∗, !i , i ∈ N
A = (∗ : !0), (!i : !i+1) , i ∈ N
R = (∗, ∗), (!i, ∗), (∗,!i), (!i,!j ,!max(i,j)) , i, j ∈ N

λCω

S = ∗, !i , i ∈ N
A = (∗ : !0), (!i : !i+1) , i ∈ N
R = (∗, ∗), (!i, ∗), (∗,!i), (!i,!j ,!max(i,j)) , i, j ∈ N

2.2.11 Properties of PTS

In the following we present some of the properties hold by PTS.

Substitution property

If Γ, x : B,∆ # M : A and Γ # N : B , then Γ,∆[x := N ] # M [x := N ] : A[x := N ] .

Correctness of types

If Γ # A : B , then either B ∈ S or ∃s ∈ S.Γ # B : s .

Thinning

If Γ # A : B is legal and Γ ⊆ ∆ , then ∆ # A : B .

Strengthening

If Γ1, x : A,Γ2 # M : B and x &∈ FV(Γ2) ∪ FV(M) ∪ FV(B) , then Γ1,Γ2 # M : B .

Confluence

Let M,N ∈ T . If M =β N - , then M "β P and N "β P for some P ∈ T .

Subject Reduction

If Γ # M : A and M "β N , then Γ # N : A .

Uniqueness of types

If Γ # M : A and Γ # M : B , then A = −βB .

Holds if A ⊆ S × S and R ⊆ (S × S)× S are function (the PTS-specification is functional).

2.2.12 Type Checking, Type Inference and Type Inhabitation

Problems one would like to have an algorithm for:

Type Checking Problem (TCP)

Γ # M : σ ?

Type Synthesis Problem (TSP)

Γ # M : ?

Substitution property
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Type Checking Problem (TCP)

Type Synthesis Problem (TSP)

Type Inhabitation Problem (TIP)

1.4. PROOF CHECKING 3

1.4.3 Type-theoretic notions for proof-checking

In the practice of an interactive proof assistant based on type theory, the user types in tactics,
guiding the proof development system to construct a proof-term. At the end, this term is type
checked and the type is compared with the original goal.

In connection to proof checking there are some decidability problems:

Type Checking Problem (TCP) Γ !T M : A ?

Type Synthesis Problem (TSP) Γ !T M : ?

Type Inhabitation Problem (TIP) Γ !T ? : A

TIP is usually undecidable for type theories of interest.
TCP and TSP are decidable for a large class of interesting type theories.

1.4.4 The reliability of machine checked proofs

Why would one believe a system that says it has verified a proof ?

The proof checker should be a very small program that can be verified by hand, giving the
highest possible reliability to the proof checker.

de Bruijn criterion

A proof assistant satisfies the de Bruijn criterion if it generates proof-objects (of some
form) that can be checked by an ’easy’ algorithm.

Proof-objects may be large but they are self-evident. This means that a small program can verify
them. The program just follows whether locally the correct steps are being made.

1.4.5 Type-theoretic approach to interactive theorem proving

provability of formula A ⇐⇒ inhabitation of type A

proof checking ⇐⇒ type checking

interactive theorem proving ⇐⇒ interactive construction of a term of a given type

So, decidability of type checking is at the core of the type-theoretic approach to theorem proving.
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Type Checking, Type Inference and Type Inhabitation

Problems one would like to have an algorithm for:

In practice, TCP and TSP are very much related:

• For "! all these problems are decidable. 

• TIP is undecidable for extensions of "! (as it corresponds to the provability 
in some logic).

When checking whether                one has to infer a type for N, say A, 

and a type for M, say D, and then to check whether for some B,                  
                    with                        .
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2.4.11 Properties of PTS

In the following we present some of the properties hold by PTS.
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If Γ, x : B,∆ ! M : A and Γ ! N : B , then Γ,∆[x := N ] ! M [x := N ] : A[x := N ] .

Correctness of types

If Γ ! A : B , then either B ∈ S or ∃s ∈ S.Γ ! B : s .

Thinning

If Γ ! A : B is legal and Γ ⊆ ∆ , then ∆ ! A : B .

Strengthening

If Γ1, x : A,Γ2 ! M : B and x %∈ FV(Γ2) ∪ FV(M) ∪ FV(B) , then Γ1,Γ2 ! M : B .

Confluence

Let M,N ∈ T . If M =β N , then M !β P and N !β P for some P ∈ T .

Subject Reduction

If Γ ! M : A and M !β N , then Γ ! N : A .

Uniqueness of types

If Γ ! M : A and Γ ! M : B , then A =β B .

Holds if A ⊆ S ×S and R ⊆ (S ×S)×S are functions (the PTS-specification is functional).
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Strong Normalization and Decidability of Type Checking

SN holds for some PTS (e.g., all subsystems of !C ) and for some not (e.g., "U%, "!).

Normalization and Type Checking are intimately connected due to conversion rule. 

A PTS is (weakly or strongly) normalizing if all its legal terms are (weakly or 
strongly) normalizing.

In a PTS that is (weakly or strongly) normalizing and with S finite, the problems of 
type checking and type synthesis are decidable.

Decidability of Type Checking

Strong Normalization (SN) 

If                   then all #-reductions from M terminate.

2.5. BARENDREGT’S λ-CUBE 15

2.4.13 Strong Normalization and Decidability of Type Checking

Normalization and Type Checking are intimately connected due to conversion rule.

Strong Normalization (SN)
If Γ ! M : A then all β-reductions from M terminate.

SN holds for some PTS (e.g., all subsystems of λC) and for some not (e.g., ΛU−,λ∗).

A PTS is (weakly or strongly) normalizing if all its legal terms are (weakly or strongly) normalizing.

Proposition 2.4.3 In a PTS that is (weakly or strongly) normalizing and with S finite, the
problems of type checking and type synthesis are decidable.

2.5 Barendregt’s λ-Cube

TBarendregt’s λ-Cube was proposed as fine-grained analysis of the Calculus of Constructions.

Definition 2.5.1 The cube of typed lambda calculi consists of eight PTS all of them having
S = {∗,!} and A = {∗ : !} and the rules for each system as follows:

System R
λ→ (∗, ∗)
λ2 (∗, ∗) (!, ∗)
λP (∗, ∗) (∗,!)
λω (∗, ∗) (!,!)
λω (∗, ∗) (!, ∗) (!,!)
λP2 (∗, ∗) (!, ∗) (∗,!)
λPω (∗, ∗) (∗,!) (!,!)
λC (∗, ∗) (!, ∗) (∗,!) (!,!)

2.5.1 The λ-Cube

Note that arrows denote inclusion of one system in another.

λω !! λC

λ2

""!!!!!!!!!!
!! λP2

""!!!!!!!!!!

λω

##

!! λPω

##

λ→ !!

""!!!!!!!!!

##

λP

""!!!!!!!!!

##

45

Barendregt’s !-Cube

Barendregt’s "-Cube was proposed as a fine-grained analysis of the Calculus of 
Constructions.
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The Barendregt’s λ-Cube was proposed as fine-grained analysis of the Calculus of Constructions.

Definition 2.3.1 The cube of typed lambda calculi consists of eight PTS all of them having
S = {∗,!} and A = {∗ : !} and the rules for each system as follows:

System R
λ→ (∗, ∗)
λ2 (∗, ∗) (!, ∗)
λP (∗, ∗) (∗,!)
λω (∗, ∗) (!,!)
λω (∗, ∗) (!, ∗) (!,!)
λP2 (∗, ∗) (!, ∗) (∗,!)
λPω (∗, ∗) (∗,!) (!,!)
λC (∗, ∗) (!, ∗) (∗,!) (!,!)

2.3.1 The λ-Cube

Note that arrows denote inclusion of one system in another.
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Type Inhabitation Problem (TIP)

Γ ! ? : σ

In practice, TCP is often reduced to TSP:

To solve M N : σ one has to solve N :? and if this gives answer τ , solve M : τ→σ.

For λ→ all these problems are decidable.

TIP is undecidable for extensions of λ→ (as it corresponds to the probability in some logic).

2.2.13 Strong Normalization and Decidability of Type Checking

Normalization and Type Checking are intimately connected due to conversion rule.

Strong Normalization (SN)
If Γ ! M : σ then all β-reductions from M terminate.

SN holds for some PTS (e.g., all subsystems of λC) and for some not (e.g., ΛU−,λ∗).

A PTS is (weakly or strongly) normalizing if all its legal terms are (weakly or strongly) normalizing.

Proposition 2.2.3 In a PTS that is (weakly or strongly) normalizing and with S finite, the
problems of type checking and type synthesis are decidable.

2.3 The Barendregt’s λ-Cube

The Barendregt’s λ-Cube was proposed as fine-grained analysis of the Calculus of Constructions.

Definition 2.3.1 The cube of typed lambda calculi consists of eight PTS all of them having
S = {∗,!} and A = {∗ : !} and the rules for each system as follows:

System R
λ→ (∗, ∗)
λ2 (∗, ∗) (!, ∗)
λP (∗, ∗) (∗,!)
λω (∗, ∗) (!,!)
λω (∗, ∗) (!, ∗) (!,!)
λP2 (∗, ∗) (!, ∗) (∗,!)
λPω (∗, ∗) (∗,!) (!,!)
λC (∗, ∗) (!, ∗) (∗,!) (!,!)

2.3.1 The λ-Cube

Note that arrows denote inclusion of one system in another.
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The !-Cube

Note that arrows denote inclusion of one system in another.
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##
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##

2.3.2 Dependencies

Let us call “type” to the pseudo-terms of type ∗ and “kinds” to the pseudo-terms of type !.
“ term : type : kind ”

(∗, ∗) Terms depending on terms. (functions)

# (λx :σ.x) : σ→σ

(!, ∗) Terms depending on types. (polymorphism)

# (λα :∗.λx :α.α) : Πα :∗.α→α
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• (!, !)  Terms depending on terms. (functions)

• (!, !)  Terms depending on types. (polymorphism) 

• (!, !)  Types depending on terms. (dependent functions)

• (!, !)  Types depending on types. (constructors of a kind)

Dependencies

 term : type : kind 

Let us call “types” to the pseudo-terms of type ! and “kinds” to the pseudo-terms 
of type !.
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(∗,!) Types depending on terms. (dependent functions)

A : ∗, P : A→∗ # (λa :A.λx :Pa. x) : Πa :A.Pa→Pa

(!,!) Types depending on types. (constructors of a kind)

# (λα :∗.α→α) : ∗→∗

2.4 Logics as PTS

Other interesting examples of PTS were given by Berardi who defined logical systems as PTS.

Eight systems of intuitionistic logic will be introduced that correspond in some sense to the
systems in the λ-cube. Four systems of proposition logic and four systems of many-sorted predicate
logic.

λPROP proposition logic
λPROP2 second-order proposition logic
λPROPω weakly higher-order proposition logic
λPROPω higher-order proposition logic
λPRED2 second-order predicate logic
λPREDω weakly higher-order predicate logic
λPREDω higher-order predicate logic

2.4.1 Salient features

• All the systems are minimal logics in the sense that the only logical operators are ⇒ and ∀.

• However, for the second and higher-order systems the operators ¬, ∧, ∨ and ∃, as well as
the Leibeniz’s equality are all definable.

• Classical versions of the logics in the upper-plane (of the cube) are obtained easily (by adding
the axiom ∀α.¬¬α→α).

2.4.2 The Berardi’s Logic Cube

Definition 2.4.1 The cube of logical typed lambda calculi consists of the following eight PTS.
Each of them has

S = Prop, Set, Typep, Types

A = (Prop : Typep), (Set : Types)

16 CHAPTER 2. TYPE SYSTEMS AND LOGICS

(∗,!) Types depending on terms. (dependent functions)
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Each of them has

S = Prop, Set, Typep, Types

A = (Prop : Typep), (Set : Types)

2.3. THE BARENDREGT’S λ-CUBE 15

λω !! λC

λ2

""!!!!!!!!!!
!! λP2

""!!!!!!!!!!

λω

##

!! λPω

##

λ→ !!

""!!!!!!!!!

##

λP

""!!!!!!!!!

##

λω !! λC

λ2

""!!!!!!!!!!
!! λP2

""!!!!!!!!!!

λω

##

!! λPω

##

λ→ (∗,!)
!!

(!,!)

""!!!!!!!!!

(!,∗)

##

λP

""!!!!!!!!!

##

λω !! λC

λ2

""!!!!!!!!!!
!! λP2

""!!!!!!!!!!

λω

##

!! λPω

##

λ→ (∗,!) !!

(!,!)
!!!!

""!!!

(!,∗)

##

λP

""!!!!!!!!!

##

2.3.2 Dependencies

Let us call “type” to the pseudo-terms of type ∗ and “kinds” to the pseudo-terms of type !.
“ term : type : kind ”

(∗, ∗) Terms depending on terms. (functions)

# (λx :σ. x) : σ→σ

(!, ∗) Terms depending on types. (polymorphism)

# (λα :∗.λx :α. α) : Πα :∗.α→α
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2.5.2 Dependencies

Let us call “type” to the pseudo-terms of type ∗ and “kinds” to the pseudo-terms of type !.
“ term : type : kind ”

(∗, ∗) Terms depending on terms. (functions)

# (λx :σ. x) : σ→σ

(!, ∗) Terms depending on types. (polymorphism)

# (λα :∗.λx :α. x) : Πα :∗.α→α

(∗,!) Types depending on terms. (dependent functions)

A : ∗, P : A→∗ # (λa :A.λx :Pa. x) : Πa :A.Pa→Pa

(!,!) Types depending on types. (constructors of a kind)

# (λα :∗.α→α) : ∗→∗
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Logics as PTS

Eight systems of intuitionistic logic will be introduced that correspond in some 
sense to the systems in the "-cube. Four systems of proposition logic and four 
systems of many-sorted predicate logic.

Other examples of PTS were given by Berardi who defined logical systems as PTS.
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(∗,!) Types depending on terms. (dependent functions)

A : ∗, P : A→∗ # (λa :A.λx :Pa. x) : Πa :A.Pa→Pa

(!,!) Types depending on types. (constructors of a kind)

# (λα :∗.α→α) : ∗→∗

2.5 Logics as PTS

Other interesting examples of PTS were given by Berardi who defined logical systems as PTS.

Eight systems of intuitionistic logic will be introduced that correspond in some sense to the
systems in the λ-cube. Four systems of proposition logic and four systems of many-sorted predicate
logic.

λPROP proposition logic
λPROP2 second-order proposition logic
λPROPω weakly higher-order proposition logic
λPROPω higher-order proposition logic
λPRED predicate logic
λPRED2 second-order predicate logic
λPREDω weakly higher-order predicate logic
λPREDω higher-order predicate logic

2.5.1 Salient features

• All the systems are minimal logics in the sense that the only logical operators are ⊃ and ∀.

• However, for the second and higher-order systems the operators ¬, ∧, ∨ and ∃, as well as
the Leibeniz’s equality are all definable.

• Classical versions of the logics in the upper-plane (of the cube) are obtained easily (by adding
the axiom ∀α.¬¬α→α).

2.5.2 The Berardi’s Logic Cube

Definition 2.5.1 The cube of logical typed lambda calculi consists of the following eight PTS.
Each of them has

S = Prop, Set, Typep, Types

A = (Prop : Typep), (Set : Types)
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Salient features

• All the systems are minimal logics in the sense that the only logical operators 

are ⊃ and ∀.

• However, for the second and higher-order systems the operators ¬, ∧, ∨ and 
∃, as well as Leibeniz’s equality are all definable.

• Classical versions of the logics in the upper-plane (of the cube) are obtained 

easily (by adding the axiom ∀&.¬¬& ! &).
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Berardi’s Logic Cube
The Logic Cube
The cube of logical typed lambda calculi consists of the following eight PTS. 
Each of them has 
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(∗,!) Types depending on terms. (dependent functions)
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2.4 Logics as PTS

Other interesting examples of PTS were given by Berardi who defined logical systems as PTS.
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systems in the λ-cube. Four systems of proposition logic and four systems of many-sorted predicate
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λPROP proposition logic
λPROP2 second-order proposition logic
λPROPω weakly higher-order proposition logic
λPROPω higher-order proposition logic
λPRED2 second-order predicate logic
λPREDω weakly higher-order predicate logic
λPREDω higher-order predicate logic

2.4.1 Salient features

• All the systems are minimal logics in the sense that the only logical operators are ⇒ and ∀.

• However, for the second and higher-order systems the operators ¬, ∧, ∨ and ∃, as well as
the Leibeniz’s equality are all definable.

• Classical versions of the logics in the upper-plane (of the cube) are obtained easily (by adding
the axiom ∀α.¬¬α→α).

2.4.2 The Berardi’s Logic Cube

Definition 2.4.1 The cube of logical typed lambda calculi consists of the following eight PTS.
Each of them has

S = Prop, Set, Typep, Types

A = (Prop : Typep), (Set : Types)

and the rules for each of the systems are 
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and the rules for each of the systems are

System R
λPROP

(Prop,Prop)
λPROP2

(Prop,Prop) (Typep,Prop)
λPROPω (Typep,Typep)

(Prop,Prop)
λPROPω (Typep,Typep)

(Prop,Prop) (Typep,Prop)
λPRED (Set,Set) (Set,Typep)

(Prop,Prop) (Set,Prop)
λPRED2 (Set,Set) (Set,Typep)

(Prop,Prop) (Set,Prop) (Typep,Prop)
λPREDω (Set,Set) (Set,Typep) (Typep,Set) (Typep,Typep)

(Prop,Prop) (Set,Prop)
λPREDω (Set,Set) (Set,Typep) (Typep,Set) (Typep,Typep)

(Prop,Prop) (Set,Prop) (Typep,Prop)

Set is the class of sets (the “sorts” of the many sorted logic).
Prop is the class of propositions (the formulae of the logic).

2.4.3 The Logic Cube

λPROPω !! λPREDω

λPROP2

""!!!!!!!!!!
!! λPRED2

""!!!!!!!!!!

λPROPω

##

!! λPREDω

##

λPROP (∗,!) !!

(!,!)
!!!!

""!!!

(!,∗)

##

λPRED

""!!!!!!!!!

##

2.4.4 Dependencies

The sorts Set and Typep form the universes of domains.

A1→ . . .→An→α with α : Set are functional types.

A1→ . . .→An→Prop are predicate types.

The sort Types allows the introduction of variables of type Set.

Set is the class of sets and  Prop is the class of propositions.
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The Logic Cube
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2.4.4 Dependencies

The sorts Set and Typep form the universes of domains.

A1→ . . .→An→α with α : Set are functional types.

A1→ . . .→An→Prop are predicate types.

The sort Types allows the introduction of variables of type Set.
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• (Prop, Prop) allows the formation of implication of two formulae

• (Set, Prop) allows quantification over sets 

Dependencies

The sorts Set and Type'  form the universes of domains.

•                              with # : Set are functional types.

•                                 are predicate types.
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2.4.4 Dependencies

The sorts Set and Typep form the universes of domains.

A1→ . . .→An→α with α : Set are functional types.

A1→ . . .→An→Prop are predicate types.

The sort Types allows the introduction of variables of type Set.18 CHAPTER 2. TYPE SYSTEMS AND LOGICS

(Prop,Prop) allows the formation of implication of two formulae

φ : Prop,ψ : Prop ! φ→ψ : Prop

(Set,Prop) allows quantification over sets

A : Set,φ : Prop ! (Πx :A.φ)︸ ︷︷ ︸
∀x:a.φ

: Prop

(Set,Typep) allows the formation of first-order predicates

A : Set ! A→Prop : Typep

hence
A : Set, P : A→Prop, x : A ! Px : Prop

P is a predicate over a set A.

(Typep,Prop) allows quantification over predicate types

A : Set ! (Πx :A→Prop.Πx :A.Px→Px)︸ ︷︷ ︸
∀:qx:A→Prop. Πx:A. Px→Px

: Typep

2.4.5 Second-order definability of the logical operations

Despite the logical construction directly encoded in PTS are implication and universal quantifica-
tion, it is a well known fact in the upper-plane of the cube the logic connectives ∧,∨,⊥,¬ and ∃
are definable are definable in terms of → and ∀.

• For A,B : Prop define

⊥ ≡ Πα :Prop.α

¬A ≡ A→⊥
A ∧B ≡ Πα :Prop. (A→B→α)→α

A ∨B ≡ Πα :Prop. (A→α)→(B→α)→α

• For A : Prop and S : Set define

∃x : S.A ≡ Πα :Prop. (Πx :S. A→α)→α

• For S : Set and x, y : S define the equality predicate =L called Lebniz’ equality.

(x =L y) ≡ ΠP :S→Prop. Px→Py

2.4.6 Examples of proof derivations
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∀x:A.φ

: Prop
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A : Set # A→Prop : Typep

hence
A : Set, P : A→Prop, x : A # Px : Prop

P is a predicate over a set A.

(Typep,Prop) allows quantification over predicate types

A : Set # (ΠP :A→Prop.Πx :A.Px→Px)︸ ︷︷ ︸
∀P:A→Prop. ∀x:A. Px→Px

: Typep

2.4.5 Second-order definability of the logical operations

Despite the logical construction directly encoded in PTS are implication and universal quantifi-
cation, it is a well known fact that in the upper-plane of the cube the logic connectives ∧,∨,⊥,¬
and ∃ are definable in terms of ⊃ and ∀.
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• (Set, Type' ) allows the formation of first-order predicates

• (Type' , Prop) allows quantification over predicate types

Dependencies (cont.)

hence

18 CHAPTER 2. TYPE SYSTEMS AND LOGICS
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• (Set, Set ) allows function types

• (Type' , Type') allows higher order types

Dependencies (cont.)
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(Typep,Typep) allows higher order types

A : Set ! (ΠP :A → Prop.Prop) : Typep

...
A : Set ! A→Prop : Typep

...
A : Set, P : A→Prop ! Prop : Typep

A : Set ! (ΠP :A→Prop.Prop) : Typep (Typep,Typep)

2.6.5 Example of a derivation tree
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...
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...
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2.6.6 Second-order definability of the logical operations

Despite the logical construction directly encoded in PTS are implication and universal quantifi-
cation, it is a well known fact that in the upper-plane of the cube the logic connectives ∧,∨,⊥,¬
and ∃ are definable in terms of ⊃ and ∀.

• For A,B : Prop define

⊥ ≡ Πα :Prop.α

¬A ≡ A→⊥
A ∧B ≡ Πα :Prop. (A→B→α)→α
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∃x :X.A ≡ Πα :Prop. (Πx :X. A→α)→α
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(x =L y) ≡ ΠP :X→Prop. Px→Py
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(Typep,Prop)

(2.4)

2.5.6 Second-order definability of the logical operations

Despite the logical construction directly encoded in PTS are implication and universal quantifi-
cation, it is a well known fact that in the upper-plane of the cube the logic connectives ∧,∨,⊥,¬
and ∃ are definable in terms of ⊃ and ∀.

• For A,B : Prop define

⊥ ≡ Πα :Prop.α

¬A ≡ A→⊥
A ∧B ≡ Πα :Prop. (A→B→α)→α

A ∨B ≡ Πα :Prop. (A→α)→(B→α)→α

• For A : Prop and X : Set define

∃x :X.A ≡ Πα :Prop. (Πx :X. A→α)→α

• For X : Set and x, y : X define the equality predicate =L called Leibniz’ equality.

(x =L y) ≡ ΠP :X→Prop. Px→Py
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Examples

It is not difficult to check that the intuitionistic elimination and introduction 
rules for the logic connectives (∧, ∨, ⊥, ¬ and ∃) are sound.

Remember

texto exemplo 1
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A : Set, P : A→Prop, x : A " P : A → Prop

...
A : Set, P : A→Prop, x : A " x : A

A : Set, P : A→Prop, x : A " Px : Prop (2.2)

(2.2) (2.2)
A : Set, P : A→Prop, x : A, q : Px " Px : Prop (2.3)

(2.1)
A : Set, P : A→Prop, x : A " A : Set

(2.2) (2.3)
A : Set, P : A→Prop, x : A " Px → Px : Prop

(Prop,Prop)

A : Set, P : A→Prop " (Πx :A.Px→Px) : Prop
(Set,Prop)

A : Set " (ΠP :A→Prop.Πx :A.Px→Px) : Prop
(Typep,Prop)

(2.4)

2.4.6 Second-order definability of the logical operations

Despite the logical construction directly encoded in PTS are implication and universal quantifi-
cation, it is a well known fact that in the upper-plane of the cube the logic connectives ∧,∨,⊥,¬
and ∃ are definable in terms of ⊃ and ∀.

• For A,B : Prop define

⊥ ≡ Πα :Prop.α

¬A ≡ A→⊥
A ∧B ≡ Πα :Prop. (A→B→α)→α

A ∨B ≡ Πα :Prop. (A→α)→(B→α)→α

• For A : Prop and S : Set define

∃x : S.A ≡ Πα :Prop. (Πx :S. A→α)→α

• For S : Set and x, y : S define the equality predicate =L called Leibniz’ equality.

(x =L y) ≡ ΠP :S→Prop. Px→Py

2.4.7 Examples

It is not difficult to check that the intuitionistic elimination and introduction rules for the logic
connectives (∧,∨,⊥,¬ and ∃) are sound.

Remember A ∧B ≡ Πα :Prop. (A→B→α)→α

A ∧B
A

(∧E1)

A : Prop, B : Prop, p : A ∧B " pA(λx :A.λy :B. x) : A

A ∧B
B

(∧E2)

A : Prop, B : Prop, p : A ∧B " pA(λx :A.λy :B. y) : B20 CHAPTER 2. TYPE SYSTEMS AND LOGICS

A B
A ∧B

(∧I)

A : Prop, B : Prop, a : A, b : B " (λα :Prop.λp : (A→B→α). pab) : A ∧B

Note that
A : Prop, B : Prop " A ∧B : Prop

can be derived in λPROP2 but the term

AND ≡ λA :Prop.λB :Prop. A ∧B

cannot. One has to be in λPROPω to derive

" AND : Prop→Prop→Prop

.

⊥
A

(ex falso)

A : Prop, p : Πα :Prop.α " pA : A

Let us now prove reflexivity and symmetry for the Leibniz equality. Remember that for X : Set,
x, y : X

(x =L y) ≡ ΠP :X→Prop. Px→Py

Reflexivity X : Set, x : X " (λP :X→Prop.λq :Px. q)︸ ︷︷ ︸
w

: (x =L x)

Let Γ ≡ X : Set, x : X, y : X, t : (x =L y)

Γ " t : (x =L y) Γ " (λz :X. z =L x) : X → Prop

Γ " t(λz :X. z =L x) : (λz :X. z =L x)x → (λz :X. z =L x)y
...

Γ " t(λz :X. z =L x) : (x =L x) → (y =L x)
(=β)

Γ " w : (x =L x)
Γ " t(λz :X. z =L x)w : (y =L x)

So, X : Set, x : X, y : X, t : (x =L y) " t(λz :X. z =L x)(λP :X→Prop.λq :Px. q) : (y =L x)

Exercises:

• Check the soundness of intuitionistic elimination and introduction rules for the other con-
nectives.

• Check that the Leibniz equality is transitive.
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• Check that the Leibniz equality is transitive.

Introduction rule

2.4. LOGICS AS PTS 19

...
A : Set, P : A→Prop, x : A " P : A → Prop

...
A : Set, P : A→Prop, x : A " x : A

A : Set, P : A→Prop, x : A " Px : Prop (2.2)

(2.2) (2.2)
A : Set, P : A→Prop, x : A, q : Px " Px : Prop (2.3)

(2.1)
A : Set, P : A→Prop, x : A " A : Set

(2.2) (2.3)
A : Set, P : A→Prop, x : A " Px → Px : Prop

(Prop,Prop)

A : Set, P : A→Prop " (Πx :A.Px→Px) : Prop
(Set,Prop)

A : Set " (ΠP :A→Prop.Πx :A.Px→Px) : Prop
(Typep,Prop)

(2.4)

2.4.6 Second-order definability of the logical operations

Despite the logical construction directly encoded in PTS are implication and universal quantifi-
cation, it is a well known fact that in the upper-plane of the cube the logic connectives ∧,∨,⊥,¬
and ∃ are definable in terms of ⊃ and ∀.

• For A,B : Prop define

⊥ ≡ Πα :Prop.α

¬A ≡ A→⊥
A ∧B ≡ Πα :Prop. (A→B→α)→α

A ∨B ≡ Πα :Prop. (A→α)→(B→α)→α

• For A : Prop and S : Set define

∃x : S.A ≡ Πα :Prop. (Πx :S. A→α)→α

• For S : Set and x, y : S define the equality predicate =L called Leibniz’ equality.

(x =L y) ≡ ΠP :S→Prop. Px→Py

2.4.7 Examples

It is not difficult to check that the intuitionistic elimination and introduction rules for the logic
connectives (∧,∨,⊥,¬ and ∃) are sound.

Remember A ∧B ≡ Πα :Prop. (A→B→α)→α

A ∧B
A

(∧E1)

A : Prop, B : Prop, p : A ∧B " pA(λx :A.λy :B. x) : A

A ∧B
B

(∧E2)

A : Prop, B : Prop, p : A ∧B " pA(λx :A.λy :B. y) : B
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It is not difficult to check that the intuitionistic elimination and introduction rules for the logic
connectives (∧,∨,⊥,¬ and ∃) are sound.
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A ∧B
A

(∧E1)

A : Prop, B : Prop, p : A ∧B " pA(λx :A.λy :B. x) : A
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...
A : Set, P : A→Prop, x : A " P : A → Prop

...
A : Set, P : A→Prop, x : A " x : A

A : Set, P : A→Prop, x : A " Px : Prop (2.2)

(2.2) (2.2)
A : Set, P : A→Prop, x : A, q : Px " Px : Prop (2.3)

(2.1)
A : Set, P : A→Prop, x : A " A : Set

(2.2) (2.3)
A : Set, P : A→Prop, x : A " Px → Px : Prop

(Prop,Prop)

A : Set, P : A→Prop " (Πx :A.Px→Px) : Prop
(Set,Prop)

A : Set " (ΠP :A→Prop.Πx :A.Px→Px) : Prop
(Typep,Prop)

(2.4)

2.4.6 Second-order definability of the logical operations

Despite the logical construction directly encoded in PTS are implication and universal quantifi-
cation, it is a well known fact that in the upper-plane of the cube the logic connectives ∧,∨,⊥,¬
and ∃ are definable in terms of ⊃ and ∀.

• For A,B : Prop define

⊥ ≡ Πα :Prop.α

¬A ≡ A→⊥
A ∧B ≡ Πα :Prop. (A→B→α)→α

A ∨B ≡ Πα :Prop. (A→α)→(B→α)→α

• For A : Prop and S : Set define

∃x : S.A ≡ Πα :Prop. (Πx :S. A→α)→α

• For S : Set and x, y : S define the equality predicate =L called Leibniz’ equality.

(x =L y) ≡ ΠP :S→Prop. Px→Py

2.4.7 Examples

It is not difficult to check that the intuitionistic elimination and introduction rules for the logic
connectives (∧,∨,⊥,¬ and ∃) are sound.

Remember A ∧B ≡ Πα :Prop. (A→B→α)→α

A ∧B
A

(∧E1)

A : Prop, B : Prop, p : A ∧B " pA(λx :A.λy :B. x) : A

A ∧B
B

(∧E2)

A : Prop, B : Prop, p : A ∧B " pA(λx :A.λy :B. y) : B

Elimination rules
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2.6.7 Examples

It is not difficult to check that the intuitionistic elimination and introduction rules for the logic
connectives (∧,∨,⊥,¬ and ∃) are sound.

Remember A ∧B ≡ Πα :Prop. (A→B→α)→α

A ∧B
A

(∧E1)

A : Prop, B : Prop, p : A ∧B ' pA(λx :A.λy :B. x) : A

A ∧B
B

(∧E2)

A : Prop, B : Prop, p : A ∧B ' pB(λx :A.λy :B. y) : B

A B
A ∧B

(∧I)

A : Prop, B : Prop, a : A, b : B ' (λα :Prop.λp : (A→B→α). pab) : A ∧B

Note that
A : Prop, B : Prop ' A ∧B : Prop

can be derived in λPROP2 but the term

AND ≡ λA :Prop.λB :Prop. A ∧B

cannot. One has to be in λPROPω to derive

' AND : Prop→Prop→Prop

.

⊥
A

(ex falso)

A : Prop, p : Πα :Prop.α ' pA : A

Let us now prove reflexivity and symmetry for the Leibniz equality. Remember that for X : Set,
x, y : X

(x =L y) ≡ ΠP :X→Prop. Px→Py

Reflexivity X : Set, x : X ' (λP :X→Prop.λq :Px. q)︸ ︷︷ ︸
w

: (x =L x)

Let Γ ≡ X : Set, x : X, y : X, t : (x =L y)
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Examples (cont.)
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A B
A ∧B

(∧I)

A : Prop, B : Prop, a : A, b : B " (λα :Prop.λp : (A→B→α). pab) : A ∧B

Note that
A : Prop, B : Prop " A ∧B : Prop

can be derived in λPROP2 but the term

AND ≡ λA :Prop.λB :Prop. A ∧B
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⊥
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Γ " t : (x =L y) Γ " (λz :X. z =L x) : X → Prop

Γ " t(λz :X. z =L x) : (λz :X. z =L x)x → (λz :X. z =L x)y
...

Γ " t(λz :X. z =L x) : (x =L x) → (y =L x)
(=β)

Γ " w : (x =L x)
Γ " t(λz :X. z =L x)w : (y =L x)

So, X : Set, x : X, y : X, t : (x =L y) " t(λz :X. z =L x)(λP :X→Prop.λq :Px. q) : (y =L x)

Exercises:

• Check the soundness of intuitionistic elimination and introduction rules for the other con-
nectives.

• Check that the Leibniz equality is transitive.
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Note that
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can be derived in λPROP2 but the term
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cannot. One has to be in λPROPω to derive
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⊥
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Let us now prove reflexivity and symmetry for the Leibniz equality. Remember that for X : Set,
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w
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• Check the soundness of intuitionistic elimination and introduction rules for the other con-
nectives.

• Check that the Leibniz equality is transitive.

ex falso sequitur quodlibet
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Examples (cont.)
Let us now prove reflexivity and symmetry for the Leibniz equality. Remember 
that for X : Set, x, y : X

Reflexivity
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⊥
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So,

Let

Symmetry
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Exercices

• Check the soundness of intuitionistic elimination and introduction rules for the 
other logic connectives.

• Check that the Leibniz equality is transitive.
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