
Bidirectional Spreadsheet Formulas

Nuno Macedo⇤, Hugo Pacheco†, Nuno Rocha Sousa⇤, Alcino Cunha⇤
⇤HASLab, INESC TEC & Universidade do Minho, Portugal {nfmmacedo,nrsousa,alcino}@di.uminho.pt

†Cornell University, USA {hpacheco}@cs.cornell.edu

Abstract—Bidirectional transformations have potential appli-

cations in a vast number of computer science domains. Spread-

sheets, on the other hand, are widely used for developing business

applications, but their formulas are unidirectional, in the sense

that their result can not be edited and propagated back to

their input cells. In this paper, we interpret such formulas as

a well-known class of bidirectional transformations that go by

the name of lenses. Being aimed at users that are not proficient

with programming languages, we devote particular attention to

the seamless embedding of the proposed bidirectional mechanism

with the typical workflow of spreadsheet environments, allowing

users to have a fine control and understanding of the behavior

of the derived backward transformations.

I. INTRODUCTION

Transforming data between two different domains is a
typical problem in software engineering. Ideally such trans-
formations should be bidirectional, so that changes in either
domain can be propagated to the other one. Many existing
bidirectional transformation (BX) frameworks are instantiations
of so called lenses [1], a BX programming paradigm that tackles
the well-known view-update problem: given a function that
queries specific information from a source domain, how can
modifications to the view be translated back to the original
source? Despite the high demand and recognized potential of
BXs, they have still not found the desired adoption among
commercial products (with [2] as a notable exception).

Spreadsheets are one of the most popular tools for storing
and processing information, with more than 500 million
estimated users worldwide, providing a semi-structured data
model and a simple programming model that make initiation
easier for non-proficient users [3]. At the heart of spreadsheet
programming are formulas, that automate calculations by
describing how the value of a target cell can be calculated
from other cells. Spreadsheet formulas are commonly used to
transform entities like dates/phone-numbers from one format to
another, perform arithmetic computations, compute summary
reports, etc. Spreadsheet systems like Microsoft Excel or Google
Spreadsheets provide rich libraries with a myriad of numerical
and string manipulation functions, as well as lookup functions
for the manipulation of arrays or matrices of cells.

Notwithstanding, formulas in a traditional spreadsheet are
inherently unidirectional: when a user edits the value of a cell,
the spreadsheet recalculates all the corresponding formulas to
display the updated results, but the values of the target cells are
not editable by users. For instance, a cell C = A+B computes
the value of C from the values of A and B , but the user is not
able to compute the values of A and/or B by editing C . For
many cases, this restriction is unnecessary, in the sense that
there are natural (but not necessarily unique) choices to reverse
the computations, and limits the usefulness of the system.

That said, it is natural to imagine being able to evaluate
spreadsheet formulas bidirectionally: users edit the values of
the target cells of a formula, and input cells are automatically
updated accordingly. Such a feature may be useful when two
formats are interchangeable, to reverse arithmetic formulas, to
fix errors, or to modify information directly in a summary table.
Since spreadsheet formulas can refer to other cells, this also
prevents users from having to trace multiple steps backwards,
a tedious task for long calculation chains [4]. More intricate
examples involve “what-if” scenarios where it is easier to
change the output and inspect how it possibly affects the input
cells, instead of trying to modify the inputs on a trial-and-error
basis until obtaining the desired outputs—which is probably a
“technique” attempted by many non-professional users.

Consider the spreadsheet for the forecast of profits depicted
in Fig. 1. Each row represents a product whose first column
defines its identifier, the second and third its name and reference
(extracted using the RIGHT function from the name), and the
next three its production cost, taxes cost and profit margin. The
last column presents a summary report of the total expected
profit (calculated in column H), and is processed with an IF
statement: profits are simply presented as numerical values, and
losses are alerted with the string "Loss". Thus, a modification
to a cost will trigger the recalculation of the resulting profit,
but the opposite is not possible: one can not simply modify the
profit and trigger a recalculation of the costs. Other possible
examples of bidirectional spreadsheets include calculation of tax
deductions, when the taxpayer wants to estimate the expenses
that he needs to declare to attain a maximum tax deduction, or
bet winning calculations, when the gambler wants to decide
where or how much to bet by tuning the resulting gains.

Being able to calculate spreadsheet formulas backwards
without having to redesign the existing calculation flow is not
a new idea, and a couple of systems in the past have proposed
to leverage traditional spreadsheets with new spreadsheet-like
interfaces that allow calculations to be executed in multiple
directions [5]–[8]. The novelty of these systems often comes
from changing the spreadsheet model into the world of con-
straint programming where users specify constraints that express
relationships between cells, and the system automatically
updates the values of spreadsheet cells as users enter or delete
values from related cells. However, this asks users to (again!)
adapt into a new spreadsheet interface with a somewhat different
programming experience. In particular, they need to learn a
new constraint language and become aware of the different
(and in some cases unclear) implications of editing cells as
precluded by the new interface. This is a significant burden
especially for non-proficient spreadsheet users, that are already
familiar with the commonplace spreadsheet formula language.

Starting from first principles, any spreadsheet extension
should be 1) intuitive, by providing a seamless integration with

=D2+E2

=#F2*G2-G2

=IF(H2>0;#H2;"Loss")=RIGHT(#B2;4)

Fig. 1. Example spreadsheet and update propagation.

traditional development processes, not requiring to learn new
languages or new spreadsheet-specific features, 2) conservative,
by not affecting the usual behavior of existing spreadsheets, and
3) transparent, by presenting the new features using terminology
that users are already familiar with. This is to say that the ability
to evaluate formulas backwards should not compromise the
nature nor the evaluation of existing spreadsheet formulas, and
it should be possible to reason about the effects of backward
evaluation in terms of the existing spreadsheet model.

In this paper, we advocate this lightweight approach: we
propose a technique to interpret spreadsheet formulas as lenses,
i.e., BXs that can be intuitively run forwards to evaluate a
formula and backwards to propagate updates on formula cells to
a set of source cells selected by the user (from among the cells
referenced in the dependency graph of the formula). To keep
the design simple, our approach focuses on the (bidirectional)
semantics of individual spreadsheet formulas and is fully
integrated with Microsoft Excel. Our extension is conservative
and only requires a minimal extension to the interface: users can
explicitly mark cells that they wish to evaluate bidirectionally—
this is essential to preserve the usability of the system and keep
it predictable to the user. It is also transparent, by allowing
the users to inspect (and eventually control) the synthesized
backward transformations as spreadsheet formulas themselves.

Still, bidirectional spreadsheet formulas are not always
desirable; for instance, in our forecast example we probably do
not want taxes to be changeable, as they are institutionally fixed.
They are much less trivial: a formula may refer to several cells
or multiple times the same cell, refer to a cell that is itself a
formula, inducing a chain of computations, or contain complex
expressions, e.g. involving several conditionals. In general,
formulas are not surjective nor injective and the corresponding
backward transformation will be non-deterministic, meaning
that the input values could be updated in various ways to
produce the new output, requiring the system (or the user) to
provide some sensible decision procedure. This is the usual
scenario tackled by existing BX systems [1], [9]–[12], that
offer mechanisms to bidirectionalize formulas that are typically
not injective. The multi-disciplinary context of spreadsheets
also makes them a unique scenario for applying and combining
ideas from different BX domains. In fact, we believe that
spreadsheets can become the “killer” application for BXs!

Section II introduces our BX framework for spreadsheets.
Section III motivates the need for cell invariants, Section IV
analyzes how these can be explored in a BX and Section V
applies these concepts to some spreadsheet primitives. An
implementation as a Microsoft Excel add-in is presented in
Section VI. Section VII discusses related work and Section VIII
finishes with conclusions and directions for future work.

II. BIDIRECTIONALIZING SPREADSHEET FORMULAS

A. Bidirectional Spreadsheet Formulas

A lens [1] is a bidirectional transformation with two
components: a forward transformation get : A ! B that
computes a target of type B from a source of type A, and a
backward transformation (or putback) put : B ⇥ A! A that
takes an original source and an updated target and produces a
new updated source. Since get may drop source information, the
original source passed to put allows it restore data not present
in the target. Thus, the framework of lenses is asymmetric, and
works better for scenarios where B contains less information
than A. A lens is well-behaved if the following properties hold.

get (put (b, a)) = b PUTGET

put ((get a), a) = a GETPUT

PUTGET guarantees that user updates on the target are preserved
by a round-trip, while GETPUT guarantees that the system is
stable for null updates. Various BX approaches encompass
the design of combinatorial domain-specific lens languages
whose combinators denote well-behaved pairs of get and put
transformations, allowing users to build complex correct-by-
construction programs by composition [1], [9], [11], [12].

In our approach, the subjects of bidirectionalization are
ordinary spreadsheet formulas. Spreadsheets are naturally
reactive, since an update on a cell is automatically propagated to
all formula cells that depend on it. Bidirectional formulas should
react in the same way, by automatically propagating updates on
a target cell to input cells that it refers to. Such kind of BXs are
said to work in an online setting [13] and typically allow a finer
control of the update propagation by collecting information
from the environment, in contrast to offline approaches that
do not rely on system-specific information. In spreadsheets,
this information may include constraints imposed by other
formulas or cell bindings in the current environment. Unlike
combinatorial BX languages we will process each formula as
an independent BX, what will allow us to keep a simple design
while handling the necessary environment information.

As a change in a cell may prompt the recalculation of a
chain of multiple dependent formulas, the update of input cells
prompted by backward propagations may trigger the backward
and forward recalculation of other dependent formulas. In
normal spreadsheets systems, formulas cannot build cycles to
avoid infinite calculation loops–neither should the evaluation of
bidirectional formulas. The required properties to guarantee that
update propagation does not loop indefinitely and converges
into a consistent state are exactly the round-tripping properties
of lenses [1]: 1) if a cell is not updated then its formula never
has to be recomputed and 2) a backward evaluation never
requires the forward evaluation for the same formula.

In general, updates can be reflected back in more than one
way to the input cells. In order to keep the system predictable,
we adopt a conservative updating principle and ask users
to explicitly indicate, for each formula, which cells can be
updated, by marking them with the special symbol #. E.g., the
bidirectional formula from column H in Fig. 1 only updates
the value of profit margins (F). This ensures no modifications
occur unless authorized by the user—formulas without # marks
behave as ordinary unidirectional ones. In order to allow the
user to understand the backward semantics (and eventually
parameterize it), we follow a white-box approach, specifying all
backward transformations as spreadsheet formulas themselves.

Taking these design decisions into consideration, a formula
f on a cell B that depends on input cells A1, ...,An

will be
denoted as f : A1 ⇥ ... ⇥ A

n

! B (for readability, A1 ⇥
. .⇥A

n

will often be abbreviated to A). For each #-marked
cell an individual put formula is synthesized, whose behavior
depends on the other # marks of the formula. To characterize
the different scenarios, each put is indexed with extra marks:
⌅ denotes the cell for which the put is being defined; ⇤
denotes another #-marked cell; and cell names denote a non-
marked constant parameter. E.g., for a formula C = #A+#B
where both A and B are #-marked, both put⌅+⇤ : C ⇥ (A⇥
B) ! A and put⇤+⌅ : C ⇥ (A ⇥ B) ! B are synthesized,
to update the values on A and B when C is updated; for a
formula C = #A + B only a put⌅+B

: C ⇥ (A ⇥ B) ! A
for cell A is required (which is not the same as put⌅+⇤).
Cell ranges may represent arrays, denoted by (A1 : An

), or
matrices, represented by (A1,1 : Am,n), with A

i

denoting the
array corresponding to column i . A # mark on a range is
assumed to affect every cell in it, thus #(A1 : An

) (similar to
(#A1,#A2,#(...),#A

n

)) is distinguished from (#A1 :#A
n

)
(similar to (#A1,A2, ...,#A

n

)). Since many functions, like
SUM or MAX, allow ranges to be decomposed, this improves
the control of the user over the propagation of updates.

B. Spreadsheet Primitive Function Examples

Modern spreadsheet systems support database-like functions
(e.g. VLOOKUP), functions for the manipulation of strings (e.g.
LEFT, LEN) or arithmetic operations (e.g. MAX, SUM), and
logical operators (e.g. IF). Here we present first attempts to
bidirectionalize some basic functions. Section III will show why
these definitions would be too inflexible for practical situations.

Let us start with a simple addition with a single #-marked
cell, like B = #A1 + A2. Since this formula is injective, the
corresponding putback has a single valid solution:

put⌅+A2
(b, (a1, a2)) = b � a2

If both references are #-marked as B = #A1 +# A2, b can
be divided into A1 and A2 in any way as long as their addition
is b. One option is to divide b by two:

put⌅+⇤ (b, (a1, a2)) = put⇤+⌅ (b, (a1, a2)) = b / 2

This can be generalized for the n-ary SUM operation.

A typical operation over a string is to compute its length
using the LEN function. One reasonable putback formula
retrieves as much as possible from the original string:

putLEN (⌅) (b, a) = if b 6 LEN (a) then LEFT (a, b)
else a & REPEAT ("A", b � LEN (a))

VLOOKUP is used to find information in large data tables,
and its putback diverges greatly depending on the #-marked
cells. When the table array is #-marked and the remaining argu-
ments are constant (D = VLOOKUP (A,#(B1,1 :Bm,n),C)),
we can simply update the cell retrieved by VLOOKUP:

8i , j . putVLOOKUP (A,(⇤1,1:⌅i,j :⇤m,n),C) (d , (a, b, c)) =
let r = MATCH (a, b1, 0)
in if (i , j) ⌘ (c, r) then d else b

i,j

For an IF conditional without # marks on the conditional
test (D = IF (A,#B ,#C)), its putback can be defined by
updating the input cell that was originally copied to the result:

putIF (A,⌅,⇤) (d , (a, b, c)) = if a then d else b
putIF (A,⇤,⌅) (d , (a, b, c)) = if a then c else d

C. Spreadsheet Formula Chaining

Until now, we have focused on the bidirectionalization of
individual primitive functions. In spreadsheets, functions can
be composed in two ways: either through formula nesting (by
defining complex formulas as f(g(A))) or through formula
chaining (by having B = f(A), where A is itself a formula
A = g(B)). For simplicity, we focus on the latter, since nested
formulas can be decomposed into chains of formulas1. The
backward evaluation of formula chains exploits the reactive
nature of spreadsheets: updating an intermediate formula cell
will trigger the backward evaluation of its own formula.
Consider a concrete example, with cells D = #C + #B ,
C = LEN (#A) = 5, B = 10 and A = "hello". An update
D 8 is propagated back as C put⌅+⇤ (8, (10, 5)) = 4
and B put⇤+⌅ (8, (10, 5)) = 4. Since B is a value
cell, the chain stops; C is a formula cell, so another update
A putLEN (⌅) (4,"hello") = "hell" is triggered.

To be sound, formula chaining requires a careful analysis of
the formula dependencies. First, formulas cannot be cyclic (what
is not an issue since spreadsheet systems already ensure this
restriction). Second, all #-marked references must eventually
lead to an updatable cell (i.e., a #-marked value cell). To
understand this restriction, imagine two cells C = f(#B)
and B = g(A). If C is updated, the system would propagate
the update to B, but would not be able to propagate it to A
as g is not a bidirectional formula. This is a premeditated
design decision: we could implicitly allow g to be evaluated
bidirectionally, but we prefer to make users explicitly aware
of the implications of backward propagations. Third, a cell
occurring multiple times in the dependency graph of a formula
can never be #-marked. Updates must be performed locally,
without inspecting other formulas—the same cell appearing
more than once would require a global analysis of the
spreadsheet. Consider formulas C = #A+#B and B = #A;
to work properly, the putback at C would need to infer that
the values propagated to A and B need to be the same2.

A particular line of BX approaches considers the problem
of supporting data duplication [13], [14], for which they relax
the BX properties and develop sophisticated BX semantics.

1For instance, B = f(g(A)) can be rewritten to B = f(X) and X = g(A),
with an auxiliary cell X .

2This would not be an issue for logical spreadsheet systems, where the
relationship between A and B could be specified as a global constraint.

Our framework naturally allows duplication to a certain degree
(for formulas with disjoint dependency graphs), even with the
standard properties and the above restrictions. For example,
consider B = f(#A) and C = g(A); updating B assigns a
new value to A through f , which in turn triggers a forward
evaluation of g , restoring the consistency between A and C .

III. INVARIANTS

Let us return to the forecast example from Fig. 1. It is easy
to see that the output of the formula in column I is either a
positive number or the string "Loss". Thus, user updates in
these bidirectional cells must be somehow restricted: a negative
value has no source values that output it (breaking PUTGET).
Similarly, in the references column C calculated by a RIGHT
function, any string with length higher than 4 is outside its range.
Since spreadsheet formulas are not surjective in general3, we
need a way to check if an updated value is within the domain of
a bidirectional formula. This problem is aggravated by chains of
bidirectional formulas: the putback of the second formula must
generate values within the range of the first one. IF statements
bring additional complexity: in an update from "Loss" to a
positive number (column I), the putback of IF should support
the change of branch and update the respective value in column
H ; the naive semantics from Section II renders this impossible.

Now imagine that the user inserted a constraint in column F
stating that the profit margin can never exceed 200% (using, for
instance, the ‘Data Validation’ feature of Excel). The domain of
allowed values in the I cells must be coherently restricted, to
forbid the insertion of profit values that will exceed the 200%
margin. For instance, any value higher than 53 in the column
I of product 1 would result in an invalid update. These two
scenarios (non-surjective formulas and user-defined constraints)
motivate the introduction of invariants in our BX framework,
to validate updated target values and guide the generation of
source values during backward propagation. We will assume
user-defined constraints to be applied only at source cells4.
These must be propagated through chains of formulas, as they
also affect the domain of valid output values.

Formally, invariants (represented by upper-case greek letters
�, 2 P(�)) consist of sets of clauses (represented by lower-
case greek letters ', 2 �) that denote sets of values. The set
of all values allowed by an invariant is defined as the union
of all values in its clauses. For a cell A, �

A

will denote an
invariant � restricting the values of A, and similarly for '

A

.
We support clauses over strings, reals, integers or booleans,
according to the following abstract syntax:

� 2 Num | Int | Text | Bool
Num 2 hR..Ri | hR..Rh | iR..Ri | i..Ri | hR..h | UnivR
Int 2 [Z..Z] | [Z..[|]..Z] | UnivZ
Text 2 ⌃⇤ | lenInt | Univ⌃⇤

Bool 2 True | False | UnivBool

Here, clauses ⌃⇤ denote constant strings of arbitrary length,
and clauses Univ� accepts any value in �. For simplicity, we
will often write constants [x ..x] or hx ..x i as x , and integer
intervals [x ..y � 1] and [x + 1..y] as open intervals [x ..y [and

3Spreadsheets are not typed, so there are technically no surjective functions.
4The evaluation of formulas in systems like Excel actually ignores invariants,

outputting any value produced by a formula regardless of the constraint.

]x ..y], respectively. Note that for x, y 2 Z, interval hx ..yi
is continuous while [x ..y] is discrete. Most of these clauses
are inspired by the data constraint features of Excel and the
constraint languages of logical spreadsheet systems [5], [6],
that usually support numerical intervals. The notable exception
is the lenInt clause that denotes the set of strings whose length
belongs to the integer parameter. E.g., len[0..10] represents all
strings whose length is between 0 and 10. To be manageable,
invariants are processed in a normalized form, such that their
comprising clauses are disjoint. Our invariants can deal with
numerical formulas whose range is representable by a finite
set of intervals. E.g., the square Aˆ2 over integers is not
definable, as it would require an infinite union of singleton sets
(though the square of reals works fine). For strings, it supports
formulas which are oblivious to the string’s content (except
constants); we cannot give precise invariants for functions like
UPPER. Even so, this simple language of invariants is already
sufficient to solve interesting BX examples.

Some operations are required to test and manipulate these
invariants. The membership test x :� boils down to testing if x
belongs to any of the clauses ' 2 �; union [and intersection
\ of invariants produce themselves normalized invariants, e.g.:

{ [x ..y]} [{[a..b]} = if a 6 y _ x 6 b
then { [min (x , a)..max (y , b)]} else { [x ..y], [a..b]}

{ [x ..y]} \ {[a..b]} = if a 6 y _ x 6 b
then { [max (x , a)..min (y , b)]} else { }

We will also require the difference (�) operation on invariants;
however, for particular cases over strings the resulting invariant
may not be expressible in a normalized form (e.g. len'�y , for
LEN (y) \ ' 6= ;). The sel :P(�)⇥A! A operation receives
an invariant and an original value (not necessarily satisfying
the invariant), and generates a repaired value that satisfies the
invariant; already valid values shall not be repaired:

8a. a : �) sel (�, a) = a sel-STABLE

At this point, readers may see sel as an abstract placeholder
denoting a semi-arbitrary choice in the backward propagation
of a formula5; in practice, it will be possible to control this
choice for particular situations (Section VI).

IV. SYNTHESIS OF PUTBACK FORMULAS

A. Overview

In order to evaluate a function f : A! B backwards, the
system needs to be able to, given an updated target b, find one
possible source value a that is consistent with b and satisfies
the existing source invariant �

A

, i.e., find a value that satisfies
the invariant f �1 b \ �

A

. Since the possibly non-functional
inverse f �1 of a function f is not easily computable in
general, we instead define, for each particular bidirectionalizable
function in our add-in, the target range of f over a normalized
source invariant; such target invariant declares the set of valid
updates on the target of a formula. Furthermore, in order to
propagate target updates, the putback formula needs to establish
a correspondence between valid target values and corresponding
source values. Thus we compute, for each formula and source
invariant, a target invariant �

B

and a traceability link between

5It plays a similar role to the missing ⌦ placeholder of [1] and the create
function of [12], but generating default values within particular invariants.

(values in) it and the source invariant. Using this information,
we define a backward transformation that is guaranteed to
succeed for source and target values within the invariants.

In this section, we present the general algorithm for syn-
thesizing putback formulas for arbitrary spreadsheet primitive
functions. Examples illustrating its application to particular
primitives are presented in Section V. Our algorithm synthesizes
a putback formula locally, i.e., for each formula cell, and
statically, for the constraints in a given state of the spreadsheet.
To avoid an expensive global analysis of the spreadsheet, our
invariants only express predicates over single cells, by freezing
the values of other cells as constants. E.g., a constraint A 6 B,
where A = 5 and B = 10 is decomposed into two invariants
�

A

=]..10] and �
B

= [5..[. This breaks down the complexity of
the system and allows each bidirectional formula to be handled
independently. The caveat is that modifying a bidirectional
formula, user-defined constraint affecting input cells, or cell
referenced by source invariants, requires the synthesis of a new
put consistent with the new state of the spreadsheet. Since each
#-marked input cell is assigned an independent put, constraints
relating multiple input cells (like A 6 B) impose a sequential
order on updates: e.g., updating A a first, refreshing the
invariant on B to �

B

= [a..[, and then updating B taking into
consideration the updated invariant (or vice-versa).

B. Synthesis Procedure

For a function f : A ! B , our general putback synthesis
algorithm can be defined according to the following steps6:

1) Calculate the invariant �
A

2 P(�
A

) over A, taking
into consideration the domain of f (�f) and any pre-
existing constraint over A not imposed by f ;

2) Calculate the target range �
B

of f over the source
invariant �

A

and the traceability link f �
A

✓
P(�

B

)⇥P(�
A

) between source and target invariants;
3) For every marked input cell #A

i

and for each
trace link (

B

,
A

) 2 f �
A

, synthesize a putback
component

 ��������
f (...,⌅

i

, ...)
A

:B⇥A! A
i

that, given
an updated value b :

B

and an original value a :�
A

,
produces a consistent a

i

0 :
A

i

;
4) For every marked input cell #A

i

, synthesize the
putback put

f (...,⌅
i

,...) : B ⇥ A ! A
i

that for an
updated value b:

B

and an original value a :�
A

, given
the trace link (

B

,
A

) 2 f �
A

, calls the appropriate ��������
f (...,⌅

i

, ...)
A

.

For every function f : A ! B , we require a domain
operation �f 2 P(�

A

), that computes the domain invariant of
f . Furthermore, we require an operation ⇢f : �

A

! P(�
B

),
that computes the range of a source invariant clause, that is:

8b. b : ⇢f ' ⌘ (9a. a : ') f a = b).

Given an invariant �
A

, the range �
B

of f over �
A

will be
denoted by ⇢f �

A

2 P(�
B

) (overloading ⇢) and defined as
the union of all ⇢f ' such that ' 2 �

A

.

We then calculate the traceability f �
A

✓ P(�
B

)⇥P(�
A

)
between source and target invariants. The left projection of
f �

A

must form a partition of the range �
B

. Also, for every

6We write �
A

= �
A1 ⇥ ...⇥ �

A

n

and '
A

= ('
A1 , ...,'A

n

).

�
B

�
A

�
A

�
B

⇢f �
A

f �
A

Fig. 2. Representation of the traceability link f �
A

.

pair (
B

,
A

) 2 f �
A

and value b :
B

, there must exist at
least one consistent source a in every clause

A

2
A

:

8b :
B

. 8 A 2 A. 9a :
A

. f a = b (1)

For instance, consider a function f(A) = Aˆ2, with a
pre-existing domain invariant �

A

= {h0..10i, h�6.. � 5i}.
Applying the range definition yields ⇢(Aˆ2) �

A

:

h0..10i 7! h0..100i
h�6..� 5i 7! h25..36i

With range invariant �
B

= {h0..100i}. The �
B

clauses overlap,
as values h25..36i are produced by both h0..10i and h�6..�5i.
Since the �

B

component of the normalized traceability must
form a partition, these must be split, and thus Aˆ2 �

A

becomes:

{h0..25h, i36..100i} 7! {h0..10i}
{h25..36i} 7! {h�6..� 5i, h0..10i}

Fig. 2 depicts this process graphically, by comparing ⇢f �
A

with the produced f �
A

. By keeping this traceability in a
normalized form, the source invariant into which the updated
a0 source must fall for each target b can be easily found.

For every marked input cell #A
i

of f and each trace pair
(

B

,
A

) we require an operation
 ��������
f (...,⌅

i

, ...)
A

that, for
an updated target b :

B

and an original source a, produces a
consistent update a

i

0 :
A

i

for the cell A
i

. These operations
shall be statically synthesized, for a particular invariant �

A

and function f , and are the components that actually describe
the behavior of each putback formula. The invariant parameter

A

from the traceability is assumed to be normalized, and
from (1) we know that

 ��������
f (...,⌅

i

, ...)
A

may select the
new source a 0 from any of the invariant clauses

A

2
A

.
The top-level putback simply assembles these components
together: based on traceabilities (

B

,
A

), put
f (...,⌅

i

,...) tests
to which

B

invariant b belongs and applies the corresponding ��������
f (...,⌅

i

, ...)
A

. From the properties of the traceabilities and
putback components, put is correct-by-construction.

V. EXAMPLES OF INSTANTIATIONS

Each spreadsheet primitive function has a particular back-
ward component synthesis procedure. In this section we present
the instantiation of some of the supported functions.

A. LEN Function

The synthesis procedure for the LEN function follows the
same idea of the unbounded version presented in Section II-B,
but now taking into consideration the respective cell invariants.
If the target length is decreased, it will “try” to trim the original
string; if it increases, it will “try” to use the original string as
a prefix; if the preserving part of the original source does not

satisfy the source invariant, it will select a consistent string
using sel. The LEN function is total for any string (�LEN =
{Univ⌃⇤ }). Its range for a given clause is defined as:

⇢LEN (x 2 ⌃⇤) = {LEN (x)}
⇢LEN len

x

= {x }
⇢LEN Univ⌃⇤ = {UnivZ}

The putback components are synthesized by a procedure that
tries to produce optimal source updates taking into consideration
the invariants. For instance, if the update b is less or equal than
LEN (a), and clauses Univ⌃⇤ or len

x

, with b : x , are available
in

A

, it simply trims the original string; next, it searches for
a prefix of the original string in the available string constants;
if none is found, it calls sel to generate an arbitrary consistent
string. Since the traceability is normalized according to (1),
additional tests are unnecessary. If the length increases instead,
the behavior is similar, but searching for an adequate extension.
The produced putback also preserves GETPUT.

Consider �
A

= {"abc","xyz", len[4..10]} (note that
�LEN \ �

A

= �
A

), resulting in traceability LEN (A) �
A

3 7! {"abc","xyz"}
[4..10] 7! { len[4..10]}

with range invariant ⇢(LEN (A)) �
A

= {3, [4..10]}. The
synthesized putLEN (⌅) for the invariant �

A

is then:

putLEN (⌅) (b, a) =
if b : {3} then
if b 6 LEN (a) then

if LEFT (b, a) = "abc" then "abc"

else if LEFT (b, a) = "xyz" then "xyz"

else sel ({"abc","xyz"}, LEFT (b, a))
else

if LEFT (b,"abc") = a then "abc"

else if LEFT (b,"xyz") = a then "xyz"

else sel ({"abc","xyz"}, a)
if b : { [4..10]} then
if b 6 LEN (a) then LEFT (b, a)
else a & sel ({ len

b�LEN a

}, a)

If the updated b is 3, it searches the constants for the
closest string; otherwise the len[4..10] clause allows it to freely
generate the closest solution. This putback is automatically
synthesized and could eventually be simplified: if b : {3} is
true, b 6 LEN (a) always holds. Section VI will show how this
intermediary notation is translated to the spreadsheet formula
language, by instantiating the invariant tests and sel operations.

B. IF Statement

An interesting spreadsheet function is the IF (C ,#A,#B)
logical statement, that affects the flow of update propagation.
Without nested formulas, its putback simply needs to decide
whether to propagate the update to A or B depending on the
condition and the invariants. To make it manageable, predicate
C (without # marks) is interpreted as a normalized invariant
(

A

,
B

,K), with
A

and
B

invariants over A and B and
K a constant predicate.

A

and
B

may contain references to
each other, e.g., A > B is interpreted as ([B ..[,]..A],True). In
comparison to the put from Section II, this version is able to
change the selected branch; it also allows duplicated #-marked
cells in the branches, like IF (C ,#A,#A), as the update will

only be propagated through one them. Its range must consider
the original A and B values: if ¬(b :

B

), updates on A are not
acceptable, as they will never render b :

B

; if ¬(a :
A

), any
B value is valid as it will never switch the branch (omitting
K for the sake of simplicity):

⇢IF ((
A

,
B

),�
A

,�
B

) =
(if (b :

B

) then (�
A

\
A

) else { }) [
(if (a :

A

) then (�
B

�
B

) else �
B

)

As a general logical combinator that just refers to other cells,
we can provide a universal static definition for its putback
formula instead of synthesizing it for specific invariants.

putIF (,⌅,⇤) (c, (a, b)) =
if c : �

A

^ ¬(c : �
B

) then c
if ¬(c : �

A

) ^ c : �
B

then a
if (c, b) : ^ (a, b) : then c
if ¬((a, c) :) ^ ¬((a, b) :) then a
if (c, b) in then c else a

Here, = (
A

,
B

). Only one of the branches is updated, so
the put in each cell either returns the original source or the
updated target. Since c is assumed to have passed the target
invariant, it must be acceptable in one of the branches. The
first two cases are straight-forward: if c :�

A

but not c :�
B

, c
must be propagated to A, and vice-versa. The next cases regard
situations when c :�

A

[�
B

. The put tries to avoid switching
the selected branch: if initially (a, b) : , and it remains so if
c is propagated to A, A is updated; if instead ¬(a, b) : , and
propagating c to B still evaluates to false, B is updated; the
last cases occur when the selected branch must change. The
definition of putIF ((

A

,
B

),⇤,⌅) is symmetric.

Although this putback works well in many cases, it can be
made even more flexible by allowing both sides to be updated
simultaneously: the cell opposite to the one receiving the update
can be repaired in order to align C with the chosen branch.
Although it would improve the updatability of the system, this
invariant would not be representable in our language (as it
would involve existential quantifications). To support it, we
would need to relax the assumption that the invariant denotes
the exact values for which backward propagation succeeds, and
consider a weaker invariant that underapproximates it.

VI. IMPLEMENTATION

This section describes the prototype implementation of
our BX system as an Excel add-in, depicted in Fig. 3. New
functionalities are managed by a new tab named ‘BX’ in the
Excel ribbon. To make a formula bidirectional (or modify an
existing one), the user selects a formula and hits the ‘Edit’
button; a dialog box allows him to edit the formula with our
special # symbol to mark updatable cells, as in Fig. 3a. The
system checks if the new bidirectional formula satisfies our
restrictions from Section II (no duplicated #-marked cells and
all #-paths lead to value cells), and reports a faulty # mark if a
violation is found; it also verifies if the user-defined constraints
in input cells are expressible in our invariant language. Next,
the system calculates the invariant on the target cell and
synthesizes the respective putback—they are both shown to
the user in the ribbon as spreadsheet formulas themselves. The
‘Remove Marks’ button converts a bidirectional formula into a
unidirectional one by removing all # marks.

(a) Formula bidirectionalization. (b) Invalid update.

Fig. 3. Screenshots of the BX add-in.

To trigger the backward evaluation of a bidirectional
formula, the user simply writes the new value in the target
cell, as he normally would. The system intercepts the event
and, instead of overwriting the existing formula, propagates the
update to the input cells. Fig. 3b depicts an invalid update: the
user inserts a value in cell H2 that violates the target invariant
imposed by the formula (the profit can not be negative). Nested
formulas are encoded in the implementation by internally
storing virtual auxiliary cells, uniquely identified by their
position inside the formula cell. Invariants are enforced by
relying on Excel’s ‘Data Validation’ feature, that allows the
declaration of constraints over a cell that are enforced on each
user update. We show invariants to the user by converting them
into the disjunctive normal form; e.g., �

A

= { [0..10], 20}
becomes the formula 0 6 A 6 20 _ A = 20. In our
current prototype, the sel(�

A

, a) operation is implemented
by automatically repairing a into a value satisfying �

A

. For
numerical values, the Excel solver is used, and for strings
a simple generation algorithm was implemented. In the next
version, we plan to allow users to control this selection in
the following way: by selecting a bidirectional formula, the
system presents its put in the ribbon, together with a table
‘invariant’/‘original value’/‘selected value’, so that he can tweak
the selected value (initially generated by default) considering
the original value and the invariant to be satisfied.

VII. RELATED WORK

A. Bidirectional Transformations

BX languages of interest for spreadsheet programming range
from functional programming [1], [9] to arithmetic [10], string
processing [12] or databases [11]. Our framework reuses many
lessons learned in these languages for the synthesis of puts for
particular formulas. But unlike them it is not combinatorial,
in the sense that we only bidirectionalize formulas and the
interaction between different cells is handled by the spreadsheet
environment. Also, these languages often denote total and
surjective transformations, by defining the domains of each
program in standard type systems. Since spreadsheets, as a
lightweight programming language, lack a type system, we
considered precise invariants to describe the “types” for which
formulas are total and surjective. We have previously studied
the impact of introducing invariants in BXs [15].

The interactive bidirectional XML editor proposed in [13],
like spreadsheets, reacts immediately to one operation at a time.
To ensure that after each update the editor converges into a
consistent state, transformations obey one-and-a-half round-
tripping laws. To the best of our knowledge, existing work
on the application of BX techniques to spreadsheets has not

yet considered the bidirectionalization of spreadsheet formulas.
In [16], we developed an OpenOffice plugin that tackles the
bidirectional synchronization of spreadsheet models (modeling
their business logic) and conforming instances.

B. Program Synthesis

Previous work has been done on the synthesis by example
of spreadsheet transformations [17]. The process consists of
defining languages, not necessarily in spreadsheet notation,
for particular domains (strings, numbers and table layouts),
for which a synthesizer produces transformations from input-
output examples. The work of [18] proposes a technique for
the synthesis of functions from decision procedures over a set
of constraints, supporting integer arithmetic and collections.
Our approach for addition follows their ideas, by representing
constraints in disjunctive normal form, applying one-point rules
to eliminate variables from the conjunctions, and then finding
witnesses from one of them. A technique for the inversion
of imperative programs through synthesis is proposed in [19].
While related to BX, pure inverse programs lack the ability to
synchronize the original source with an updated view.

C. Spreadsheets

Significant work has been done in extending spreadsheets
with logical programming capabilities [5], [8], culminating in
a Workshop on Logical Spreadsheets (WOLS 2005). These
approaches introduce Prolog-like operations to spreadsheet
systems that could to some extent provide bidirectional behavior.
Others have focused on extending spreadsheets with constraint-
solving functionalities [6], [7], [20]. These can be applied to
solve formulas backwards by specifying a set of constraint on
the spreadsheet and a set of target cells to solve. However,
at the user-interface level, solving is more tailored for search
and optimization problems described through a set of global
constraints over the spreadsheet, the spreadsheet acting as a
mere interface to the solver. Typically, for every backward
computation, the user must set up a new constraint-solving
problem using a specialized interface. In both these extended
systems, the user is expected to reason about bidirectionalization
in a new language and/or interface—not using plain spreadsheet
formulas. Our “solver” is not explicit and upfront but a backend:
constraints are not first class entities that the user manipulates,
but integrated seamlessly into the bidirectionalization approach.

Constraint-solvers typically support arithmetic constraints,
but not high-level combinators like conditionals, table lookups
or string manipulation, at which BXs excel. Nonetheless,
for numerical functions our putbacks draw some similarities
with solving. For instance, TK Solver [7] is able to solve

constraints with several target cells, restricted with additional
cell constraints, as long as there is an initial “guess” to start the
solver—in a BX, that role could be played by the original source
values. However, it would defeat our white-box design principle,
that we believe makes the bidirectionalization accountable
and more easily trusted by users: in constraint-solving such
“putback” is computed at runtime and in ways completely
opaque to users. Still, our sel placeholders over numeric values
currently use solving to generate valid defaults at synthesis
time. We believe that our technique could benefit from localized
solving procedures by postponing the concretization of sel
values to runtime—once the overall sketch of the putback is
synthesized, the user could either provide specific values for
each sel placeholder, or call a solver to compute them.

GoalDebug [21] allows users to fix incorrect formulas
by defining (numeric) constraints over their outputs: if the
constraints are broken, the system proposes changes on the
formula in order to restore consistency. These changes may
involve modifying the formula or one of its parameters, being
propagated until value cells are reached. While at first sight this
technique resembles our own, they are fundamentally different:
bidirectional transformations are meant to propagate updates
between data domains, leaving formulas unchanged.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a technique for the bidirec-
tionalization of spreadsheet formulas, with a particular emphasis
on the seamless integration with the standard spreadsheet
development cycle. We have implemented our system as an
add-in for Microsoft Excel. Owing to the fact that spreadsheets
are not typed, we have also demonstrated how introducing
invariants is essential to derive sufficiently flexible putback
formulas, to provide users with errors for non-translatable
modifications, and to ensure an acceptable level of predictability
for translatable ones. Our approach was designed to obey three
basic principles: to be 1) intuitive, in that users write ordinary
formulas that can be run backwards just by editing their result
cells; 2) conservative, as it preserves the forward behavior of
formulas and backward evaluation only affects cells that are
explicitly marked by users; and 3) transparent, in that backward
transformations and invariants are presented to users as ordinary
spreadsheet formulas themselves. Assessing if these goals are
effective in practice requires a future empirical study.

The current implementation is only meant as a first
prototype, and many extensions could and should be applied
to make it a fully usable and effective BX environment. In the
near future, we plan to improve the supported parameterization
of sel operations appearing in putbacks, generalize our invariant
language to capture more constraints (for example by admitting
arbitrary regular expressions over strings), and provide better
error reporting (for instance by suggesting to the user which
cells in a chain deemed a particular update invalid). An
advantage of our approach is that we work with the native
spreadsheet formula language, with the caveat that we need
to manually derive necessary information for each primitive
function that we want to support. This is in a way similar
to the Excel solver [20], that requires a previous analysis of
each spreadsheet function that can be used in solved formulas.
Although we have already managed to gather a considerable
number of common primitives (like +, SUM, MAX or ˆ2 over

numbers, RIGHT, LEFT or LEN over strings, VLOOKUP or
FIND over tables, and IF statements), we plan to keep expanding
the catalog of supported spreadsheet functions.

ACKNOWLEDGMENT

This work is funded by ERDF - European Regional Devel-
opment Fund through the COMPETE Programme (operational
programme for competitiveness) and by national funds through
the FCT - Fundação para a Ciência e a Tecnologia (Portuguese
Foundation for Science and Technology) within project FATBIT
with reference FCOMP-01-0124-FEDER-020532. The first
author is also sponsored by FCT grant SFRH/BD/69585/2010.

REFERENCES

[1] J. N. Foster, M. Greenwald, J. Moore, B. Pierce, and A. Schmitt,
“Combinators for bidirectional tree transformations: A linguistic approach
to the view-update problem,” ACM Trans. Program. Lang. Syst., vol. 29,
no. 3, p. 17, 2007.

[2] D. Lutterkort, “Augeas: A configuration API,” in Linux Symposium, July
2008, pp. 47–56, available from http://augeas.net/.

[3] B. Nardi, A small matter of programming: perspectives on end user
computing. Cambridge, MA: The MIT Press, 1993.

[4] B. Nardi and J. Miller, “The spreadsheet interface: A basis for end user
programming,” in INTERACT 1990. North-Holland, 1990, pp. 977–983.

[5] M. Kassoff, L.-M. Zen, A. Garg, and M. Genesereth, “PrediCalc: a
logical spreadsheet management system,” in VLDB 2005. VLDB
Endowment, 2005, pp. 1247–1250.

[6] Y. Adachi, “Intellisheet: a spreadsheet system expanded by including
constraint,” in HCC 2001. IEEE, 2001, pp. 173–179.

[7] M. Konopasek and S. Jayaraman, The TK! Solver Book: A Guide
to Problem-Solving in Science, Engineering, Business, and Education.
Osborne/McGraw-Hill, 1984.

[8] I. Cervesato, The Deductive Spreadsheet, ser. Cognitive Technologies.
Springer, 2013.

[9] H. Pacheco and A. Cunha, “Generic point-free lenses,” in MPC 2010,
ser. LNCS, vol. 6120. Springer, 2010, pp. 331–352.

[10] T. Yokoyama, H. Axelsen, and R. Glück, “Principles of a reversible
programming language,” in CF 2008. ACM, 2008, pp. 43–54.

[11] A. Bohannon, B. Pierce, and J. Vaughan, “Relational lenses: a language
for updatable views,” in PODS 2006. ACM, 2006, pp. 338–347.

[12] A. Bohannon, J. N. Foster, B. Pierce, A. Pilkiewicz, and A. Schmitt,
“Boomerang: resourceful lenses for string data,” in POPL 2008. ACM,
2008, pp. 407–419.

[13] Z. Hu, S.-C. Mu, and M. Takeichi, “A programmable editor for
developing structured documents based on bidirectional transformations,”
Higher-Order Symb. Comput., vol. 21, no. 1–2, pp. 89–118, 2008.

[14] D. Liu, Z. Hu, and M. Takeichi, “Bidirectional interpretation of XQuery,”
in PEPM 2007. ACM, 2007, pp. 21–30.

[15] N. Macedo, H. Pacheco, and A. Cunha, “Relations as executable
specifications: Taming partiality and non-determinism using invariants,”
in RAMiCS 2012, ser. LNCS, vol. 7560. Springer, 2012, pp. 146–161.

[16] J. Cunha, J. Fernandes, J. Mendes, H. Pacheco, and J. Saraiva,
“Bidirectional transformation of model-driven spreadsheets,” in ICMT
2012, ser. LNCS, vol. 7307. Springer, 2012, pp. 105–120.

[17] S. Gulwani, W. R. Harris, and R. Singh, “Spreadsheet data manipulation
using examples,” Commun. ACM, vol. 55, no. 8, pp. 97–105, 2012.

[18] V. Kuncak, M. Mayer, R. Piskac, and P. Suter, “Complete functional
synthesis,” in PLDI 2010. ACM, 2010, pp. 316–329.

[19] S. Srivastava, S. Gulwani, S. Chaudhuri, and J. S. Foster, “Path-based
inductive synthesis for program inversion,” in PLDI 2011. ACM, 2011,
pp. 492–503.

[20] D. Fylstra, L. Lasdon, J. Watson, and A. Waren, “Design and Use of
the Microsoft Excel Solver,” Interfaces, vol. 28, no. 5, pp. 29–55, 1998.

[21] R. Abraham and M. Erwig, “GoalDebug: A spreadsheet debugger for
end users,” in ICSE 2007. IEEE, 2007, pp. 251–260.

