
Towards Utility-based Programming

Alcino Cunha and José Barros

Departamento de Informática, Universidade do Minho
4710-057 Braga, Portugal

Tel: +351253604470, Fax: +351253604471
{alcino,jbb}@di.uminho.pt

Abstract. Many programs have an objective that can be precisely stated
as the maximization of a function defined over its local variables. This is
the case of utility-based software agents, which are reactive entities that
try to maximize their welfare, usually accessed by an utility function.
This paper introduces a programming language suitable for explicit pro-
gramming with utility functions. Starting from a standard concurrent
programming language, we added primitives to allow the parametriza-
tion of each process with an utility function that should be maximized.
For the moment, using techniques of Markov decision problems, we can
compile sequential programs, written in a restricted version of this new
language, into equally behaved programs written in the original one. Ma-
jor problems in developing such utility-based programming language are
the need to compare the utility of infinite executions or the need to deal
with uncertainty.

1 Introduction

Artificial Intelligence (AI) researchers do not agree about which aims one should
follow when developing an intelligent system. Usually, it is possible to identify
four major categories for this objectives [14]: to develop systems that think
like humans, systems that act like humans, systems that think rationally or
systems that act rationally. The main difference between an approach oriented
towards the human behavior and one built upon the notion of rationality, is that,
while on the later it is possible to define precisely the optimal way of acting
and thinking, on the former we have to cope with the frequent “irrationality”
and diversity of human behavior. Due to this difference, the AI community is
increasingly orienting its efforts towards rationality centered approaches, and
specially towards the development of useful systems that act rationally, usually
denominated intelligent agents.

There are several ways which can be used to characterize precisely the notion
of rational behavior. The most common consists of defining the agent’s objectives
as a set of goals, or states of computation, that must be reached. Although this
approach is very well studied and frequently used, it is not sufficiently flexible in
order to allow quality decision making in complex problems. A better approach
consists of defining the objectives as an utility function, that assigns to each



state a numerical value which represents the level of satisfaction “perceived” by
the agent in that state. With this approach, the rational behavior can be defined
as the one that allows the maximization of the utility function. An agent whose
objectives are defined by an utility function is denominated Utility-based Agent.

The above definition of rational behavior for an utility-based agent is still
not very precise, since it does not take into account the horizon of the decision
making process: nothing was said about when the utility function should be
maximized. There are several acceptable possibilities for the so called decision
criteria, such as, for example, to maximize the utility function at the next state
or at the end of the execution. This problem is further enhanced if we think that
agents are reactive entities, that interact continuously with the environment, and
usually programmed with an infinite life horizon. In this setting there is not a
consensual decision criteria to be used, and the choice of which one to use should
be left to the agent designer.

In the last years there as been an effort to develop languages to program intel-
ligent agents, giving rise to the Agent-Oriented Programming (AOP) paradigm.
This term was first coined by Yoav Shoham, when developing his language
AGENT0, in order to refer to a paradigm where agents are programmed di-
rectly in terms of the mentalistic or intentional notions developed by the AI
theorists to represent their properties [15]. Within the AOP paradigm several
other languages have been developed, such as, for example, PLACA [16], Con-
current METATEM [8], or AgentSpeak(L) [13].

The language introduced in this paper contributes to the AOP paradigm,
and is specially targeted at the development of utility-based agents. Most of
the typical agent programming languages try to match the high-level multi-
modal logical theory used to specify properties about agents. Our approach
differs significantly, for it consists in choosing an existing concurrent language,
and introduce the minimal number of constructs that allow one to specify the
agent’s “desires”, represented by the utility-function and the decision criteria.
The resulting language is rather low-level and resembles a typical concurrent
and imperative programming language. A concurrent language is used due to
the need of modeling the context where the agent interacts, usually populated
by other similar entities. Although it started in the AOP context, we believe that
this language can be used in many other contexts besides agent programming,
since there are many programs whose objective can be precisely stated as the
maximization of a function defined over its local variables.

The main problems in developing this language are the need to deal with
infinite horizons and with uncertainty in the decision process implicitly modeled
by a program. The first problem derives from the possible existence of infinite
loops in the programs. The second is a consequence of the concurrency primi-
tives. When several utility-based agents are modeled by different and concurrent
processes, it is no longer possible for each of them to predict with certainty what
is the present state of the world, and consequently, what is the precise result
of executing an instruction. In order to simplify the language development, we
divided the project into two major phases. First we study the sequential version



of the language, where only a process is allowed, in order to model an isolated
utility-based agent. Later we shall introduce the concurrency primitives. This di-
vision allows us to deal with the mentioned problems one at a time. This paper
presents some results of the first phase of the project.

This paper begins with the presentation of the syntax and semantics of the
sequential version of the language. We then present the compilation technique,
developed in order to translate utility-based programs into equally behaved ones
written in the original language. Afterwards we introduce some very preliminary
results concerning a refinement method for this new language. Finally, we present
some conclusions and future work, namely a brief discussion about the major
implications of introducing concurrency.

2 The Utility-based Simple Programming Language

The Utility-based Simple Programming Language (USPL) presented in this paper
is based on a subset of the Simple Programming Language (SPL), introduced by
Manna and Pnueli to specify reactive systems [11]. The main reasons to use SPL
as a starting point to develop our language were:

– As mentioned in section 1, our long term objective is to develop an utility-
based concurrent programming language. As such, it is convenient to start
from a concurrent language. The SPL, being a rather generic specifica-
tion language, accommodates several concurrent programming paradigms
and primitives, namely both communication by message passing and shared
memory. This flexibility is desirable because, at this point of developing, we
do not know which paradigm will better suit our purposes.

– Sometimes it will be necessary to impose conditions upon the programs (see,
for example, section 5 on the refinement process). These conditions will be
expressed in linear temporal logic, which is the language chosen by Manna
and Pnueli to specify and prove properties about SPL programs. Moreover,
there exists already a system, the Stanford Temporal Prover (STeP) [4], that
can be used to verify these conditions.

The sequential subset of SPL that we will use in USPL is very simple. There
are only two basic statements - guarded assignment (guard), and active awaiting
(await) - and three composite statements - concatenation (;), non-deterministic
choice (or), and while loop (while). This subset can be used to implement almost
every sequential instruction of SPL, such as conditionals, repeat loops, standard
assignment, or skip. The major limitation of USPL consists of a single type for
variables: the finite range of integers. This limitation was imposed at this stage
of development in order to guarantee a finite set of states. The initial value of a
variable can be restricted by a condition.

The major innovation of USPL is the possibility to parametrize the process
with an utility function - an expression defined over the variables that expresses
its preferences - and with a decision criteria, that defines the way these pref-
erences are extended to infinite computations. This innovation changes the ex-
pected behavior of the non-deterministic choice: now it models a decision node,



program ::= [declarations] process
declarations ::= declaration {; declaration}
declaration ::= mode variable : [ int .. int ] [where boolexp]
mode ::= in | out | local

process ::= id ( intexp , criteria ) :: [ instruction ]

criteria ::= look-at-end

| look-ahead int
| discounted 0.int

instruction ::= [ instruction ]

| instruction ; instruction
| instruction or instruction
| while boolexp do instruction
| guard boolexp do variable := intexp
| await boolexp

Fig. 1. The syntax of USPL.

where the choice should be done among the enabled instructions that lead to
the most preferred executions. The syntax of USPL is presented in figure 1. The
definition of some non-terminals is omitted, but it should be clear from context.

At present, only three decision criteria are allowed in USPL:

– look-at-end. With this criteria, the utility of running a program is the
final utility in execution. This criteria can not be applied to all programs,
since it requires that the utility remains constant after a certain point. If the
program is non-terminating this may not happen.

– look-ahead. This criteria is parametrized by an integer. This integer denotes
the depth of the decision tree that should be considered at each decision node.
The most popular variant of this criteria is look-ahead 1, that corresponds
to a greedy decision strategy.

– discounted. This criteria is parametrized by a discount factor γ. This factor
is used to weight differently the increments in utility through time. In a
decision node, an increment of utility that will occur t steps ahead will be
weighted by γt.

A very simple (and useless) example of an USPL program can be found in
figure 2. In this example, at each iteration of the cycle it is possible to either
increment or decrement the variable x. Since the utility function is −|x| and we
have a greedy decision criteria, the variable will be decremented when its value
is positive and incremented otherwise, therefore enhancing the convergence to
the termination condition of the cycle.

3 The semantics of USPL

As expected, the semantics of USPL is also inspired by the semantics of SPL.
A model for a SPL program is a Fair Transition System (FTS), whose major



local x:[-10..10]

P(0-abs(x), look-ahead 1) :: [

while !(x=0) do

[

guard !(x=10) do x := (x+1)

or

guard !(x=-10) do x := (x-1)

]

]

Fig. 2. The running example.

difference to a traditional transition system is the concept of fairness, introduced
in order to model correctly the concurrency.

Definition 1 An Utility-based Fair Transition System (UFTS) is defined by a
tuple 〈V,Θ, T , u, ρ〉, where:

– V is a finite set of system variables. π ∈ V is a special control variable that
will be used to store the control location of the program. Each variable has a
type, and the states of the system are defined as type-consistent interpreta-
tions of this set. Let Σ denote the set of states.

– Θ : Σ → B is a predicate that determines the initial execution states.
– T is a finite set of transitions. Each transition τ ∈ T is a function with

type Σ → P(Σ), that maps each state s ∈ Σ into a (possibly empty) set of
successor states τ(s) ⊆ Σ. A transition τ is enabled at state s if τ(s) 6= ∅.
There is a special idle transition τI ≡ λs.{s} that must always be present in
T .

– u : Σ → R is an utility function, that defines the preferences of the process.
– ρ : (Σ → R) → P(Σω) → P(Σω) is a decision criteria, that, given an utility

function and a set of executions, determines which are the preferred ones.
This function has the following restrictions:
• It must only choose between the given executions:

∀u, Ω · ρ u Ω ⊆ Ω

• If possible, it should choose something:

∀u, Ω 6= ∅ · ρ u Ω 6= ∅

Aside the utility function and the decision criteria, the major difference be-
tween an UFTS and a FTS is the fact that all transitions, except the idle one, are
just (or weakly fair), and so its not necessary to classify the transitions according
to the different types of fairness. In a FTS, besides V , Θ and T , we have the sets
J and C that determine, respectively, the just and compassionate transitions of
the program. The notion justice will be presented later, and since that, for the



chosen set of instructions, the compassion does not apply, this concept will not
be explained.

Each transition τ ∈ T can be represented by a first-order formula ρτ (V, V ′),
called the transition relation of τ , that expresses the relation between a state s
and its successors in τ(s). The transition relations may refer both primed and
unprimed versions of the system variables, in order to distinguish the values in
source and successor states. A state s′ is a successor of s by τ if ρτ evaluates to
true when one interprets each x ∈ V as s(x) and each x′ ∈ V ′ as s′(x′).

An infinite sequence of states σ ≡ s0, s1, s2, . . . is a just execution of an UFTS
if it satisfies the following requirements:

– Initiality: s0 is an initial state.
– Consecution: for each j = 0, 1, . . . there exists a transition τ that occurs

between sj and sj+1, that is, sj+1 ∈ τ(sj).
– Justice: for each diligent transition τ 6= τI , it is not the case that τ is

continuously enabled beyond some position j in σ without ever occurring.

Definition 2 Let Ω be the set of all just executions of an UFTS. An execution
σ ∈ Ω is a computation iff it belongs to the set ρ u Ω.

We will now present the method to calculate an UFTS from an USPL pro-
gram. The set of variables V includes all variables declared in the program, plus
a control variable π that is defined over an integer set with has as many val-
ues as different locations in the program. The initial condition Θ is defined as
(π = 0) ∧ ϕ, where ϕ is the conjunction of all conditions that appear after the
where clauses in the variable declarations.

In order to define the transition relations that characterize each USPL in-
struction, it is necessary to know the value of the control variable before and
after its execution. Assuming that a program has labels before and after each
instruction, we can define a function pos, that maps each label to its location,
as the function that identifies at most the following labels:

– In a process id ( intexp , criteria ) :: [ l: instruction l̂: ]

pos(l) = 0

– In an instruction l: [ m: instruction m̂: ] l̂:

pos(l) = pos(m) ∧ pos(l̂) = pos(m̂)

– In a concatenation l: m: instruction m̂: ; n: instruction n̂: l̂:

pos(l) = pos(m) ∧ pos(m̂) = pos(n) ∧ pos(n̂) = pos(l̂)

– In a choice l: m: instruction m̂: or n: instruction n̂: l̂:

pos(l) = pos(m) = pos(n) ∧ pos(l̂) = pos(m̂) = pos(n̂)



– In a loop l: while expbool do m: instruction m̂: l̂:

pos(l) = pos(m̂)

Usually, in a transition relation only a few variables of the set V are changed.
In order to simplify the definition of the transition relations, for a set U ⊆ V we
will define

pres(U) ≡
∧

u∈U

(u′ = u)

We then define the transition relations that correspond to each USPL instruc-
tions as follows:

– Guard. To an instruction of type l: guard c do u := e l̂: corresponds the
following transition relation:

c ∧ π = pos(l) ∧ π′ = pos(l̂) ∧ u′ = e ∧ pres(V − {π, u})

This transition may only occur when c is true in the source state. The only
variables that change its value are π, that will contain the new location, and
u, the variable to which e is attributed.

– Await. To an instruction of type l: await c l̂: corresponds the following
transition relation:

c ∧ π = pos(l) ∧ π′ = pos(l̂) ∧ pres(V − {π})

This case is almost identical to the previous. However, only π changes its
value.

– While. To an instruction of type l: while c do m: instruction m̂: l̂: corre-
sponds the following transition relations:

c ∧ π = pos(l) ∧ π′ = pos(m) ∧ pres(V − {π})
¬c ∧ π = pos(l) ∧ π′ = pos(l̂) ∧ pres(V − {π})

In this case we have two transition relations. The first one models the tran-
sitions that originate a new iteration of the loop, when c is verified in the
source state. The second one occurs when the termination condition ¬c is
true. Once again, only π changes its value.

– The choice and concatenation instructions do not originate any transition
relations.

The utility function is defined by evaluating the expression presented after
the process name. In order to formally specify the semantics of a decision criteria,
usually we first define a preference relation on just executions using the utility
function, and afterwards we choose the computations as the subset of most-
preferred executions. Given a preference relation �, this set will be denoted by
↑� Ω and is formally defined as:

σ ∈↑� Ω iff σ ∈ Ω ∧ ∀σ′ ∈ Ω · ¬(σ′ � σ)



In the next section we will show that the idle transition should be ignored
when other transitions are available. As such, in the definition of the preference
relations those transitions are not considered, that is, the only state that can
be repeated indefinitely in an execution is the last one1. The preference rela-
tion should be closed by idle transitions, that is, if . . . , s, . . . � . . . , t, . . . then
. . . , s, . . . � . . . , t, t, . . . and . . . , s, s, . . . � . . . , t, . . .. For example, for the decision
criteria look-ahead n and utility function u, we define the preference relation
yn

u as:

s0, s1, . . . yn
u t0, t1, . . . iff ∀j, k ∈ N0 · sj = tk ⊃ u(sj+n) > u(tk+n)

In the figure 3 we present the semantic model of the example of figure 2, that
was determined according to the method described above.

V = {x, π}
Θ = (π = 0)

T = {τ1, τ2, τ3, τ4, τI}
ρτ1 = (π = 0) ∧ (x 6= 0) ∧ (π′ = 1)

ρτ2 = (π = 0) ∧ (x = 0) ∧ (π′ = 2)

ρτ3 = (π = 1) ∧ (x 6= 10) ∧ (π′ = 0) ∧ (x′ = x + 1)

ρτ4 = (π = 1) ∧ (x 6= −10) ∧ (π′ = 0) ∧ (x′ = x− 1)

u = λs.− |s(x)|
ρ = λ u Ω . ↑y1

u
Ω

Fig. 3. Semantic model of the running example.

4 Translation of USPL programs into SPL

For USPL to be an useful language, it is desirable that it could be used as a
programming language for utility-based agents, or at least, as a specification
language, where one could prove properties about this kind of entities. In order
to address both objectives, we developed a mechanism to transform USPL pro-
grams into SPL. The goal is to obtain a SPL program whose valid computations
are exactly the same as the valid computations of the original program. This
transformation allows us to prove properties about utility-based agents, using
the techniques developed for the SPL by Manna and Pnueli. Since SPL is only
a specification language it does not have a compiler that allows one to execute
its programs. This is a drawback if we intend to use USPL as a programming
1 In fact, this happens because, given the chosen subset of instructions, the value of the

control variable before and after the execution of an instruction is always different.



language. However, considering only the subset of SPL instructions used in the
transformation process, it would be rather straightforward to develop a compiler
to this language.

The most simple way to achieve this transformation relies on viewing an
USPL program as a specification of a Markov Decision Problem (MDP)2. A
MDP consists of a Markov decision process, that is, a model of a decision agent
that interacts synchronously with its environment, plus an optimization criteria,
which is used in a similar way to the decision criteria in the USPL. A Markov
decision process is characterized by having the so called Markov property - all
transitions and rewards depend only on the current state. To solve a MDP
consists of finding an optimal decision strategy, that is, a function that tell
us what action to choose at each decision node.

Definition 3 A Markov decision process consists of a tuple 〈S, A, T,R〉 where:

– S is a finite set of possible states of the world.
– A is a finite set of possible actions that a decision agent can execute.
– T : S × A × S → [0, 1] is a state transition function, that maps each state

and action to a probability distribution on successor states.
– R : S × A → R is a reward function, that captures the increase or decrease

in utility an agent may get by executing each action at a given state.

In order to transform an USPL program into a MDP, the non-deterministic
choices must be considered as decision nodes, and the transitions enabled at those
nodes as the actions from which the decision maker must choose the preferred
ones. Considering S ≡ Σ and A ≡ T , the main differences between a MDP and
an UFTS are:

– In a MDP the non-determinism is quantified by a probability distribution.
Given the equivalences above, all the transitions of an UFTS can be stored
in a function of type S×A → P(S). Without further restrictions, it would be
necessary an external mechanism to quantify the non-determinism in order
to convert an UFTS into a MDP. However, looking at the semantics of the
instructions included in the USPL, we can see that they are all determin-
istic, that is, when a transition occurs at a state there is only one possible
successor. Given this fact, T can be determined as follows3:

T (s, τ, s′) =
{

1 if s′ ∈ τ(s)
0 if s′ 6∈ τ(s)

– The preferences are represented by rewards instead of an utility function.
The transformation between the two models is very simple:

R(s, τ) =
{

u(T (s, τ))− u(s) if T (s, τ) 6= ⊥
−∞ if T (s, τ) = ⊥

2 These problems are mentioned in many books from the operational research area.
Our presentation of MDP concepts is based on [12]

3 For convenience, and since the transition system is deterministic, we will some times
use an isomorphic definition for T with type S ×A ↪→ S.



Later we will see that the infinite negative rewards do not originate any kind
of problem. This subtlety is used because the reward function is total, but
we have to guarantee that the transitions that are not enabled in a state can
not be chosen at that state. Due to the existence of the idle transition there
is always at least one transition with finite reward:

∀s ∈ S,∃τ ∈ A · −∞ < R(s, τ) < +∞

– There are no fairness conditions in a MDP. This is the major problem in
the transformation, because one must guarantee that the process of choosing
the best transitions does not lead to executions that are not computations of
the original program. However, this problem is simplified because all diligent
transitions are just, and lead to a successor state that is necessarily different
from its predecessor. Given these conditions, it suffices to exclude from MDP
the idle transition in the states where there exists at least a diligent one that
is enabled. If the idle transition was the only one chosen at one of those states,
it would exist an execution that beyond some point would remain indefinitely
at that state. However, due to the fairness conditions, that execution is not
a computation of the original UFTS because a diligent just transition must
occur at some point. Thereafter, the following condition must be imposed
on T :

T (s, τI) = ⊥ iff ∃τ 6= τI · τ(s) 6= ∅

As seen above, to solve a MDP consists of finding an optimal decision strat-
egy, that is, a function that tells the decision maker which are the best actions
to execute at each decision node. In this case, the obtained strategies should
be non-deterministic and memoryless. A non-deterministic strategy defines for
each state a set of actions whose execution is indifferent to the decision agent.
Strategies can also be pure, when only an action is selected, or probabilistic
when the non-determinism is quantified by a probability distribution. However,
if we choose to synthesize pure strategies the resulting program would only have
one possible computation (and its variants induced by the idle transitions), and
it would not be possible to have all computations of the original USPL program.
Obviously, we also can not synthesize probabilistic strategies because our model
does not allows us to quantify the non-determinism. The choice of memoryless
strategies is less obvious. In order to implement the memory it would be nec-
essary to increase the set of variables of the resulting program, which would
lead to computations that would differ from the original ones. However, with
memoryless strategies it may not be possible to synthesize all the computations
generated by any decision criteria. That would be a major drawback, but for the
criteria allowed for the moment, well known results from the MDP theory seem
to indicate that memoryless strategies suffice to generate all the possible compu-
tations. In the future, if we decide to implement more decision criteria, probably
we will have to relax the notion of equivalence between programs written in
USPL and in SPL, in order to allow the inclusion of strategies with memory.

In order to calculate the optimal strategy π∗ (a strategy that generates all
possible computations of the original program), we use classical techniques de-



veloped to solve MDPs with minor modifications. One of the most usual is the
value iteration algorithm, that was introduced by Bellman in [3], and that is used
when the decision criteria is discounted. Given an UFTS 〈V,Θ, T , u, ρ〉 and an
optimal strategy π∗, the equivalent FTS obtained after restricting the original
transition system using that strategy is defined by the tuple 〈V ′, Θ′, T ′,J ′, C′〉
where4:

V ′ ≡ V

Θ′ ≡ Θ

T ′ ≡
{

ρτ ∧
∨

s∈Σ,τ∈π∗(s)

val(s) | τ ∈ T − {τI}
}
∪ {τI}

J ′ ≡ T ′ − {τI}
C′ ≡ ∅

After determining an FTS equivalent to the UFTS that models the original
program, we need to obtain an SPL program whose semantic model is precisely
that FTS. This process is done through a graph rewriting algorithm, and for the
selected subset of instructions it can be proved that this reconstruction is always
possible. In fact, the main reason to choose the syntax of figure 1 was precisely
the guarantee that one could obtain valid SPL programs after determining the
equivalent FTSs. The SPL program, obtained according to the method presented
in this section, that is equivalent to the program of figure 2 is presented in
figure 4.

local x:[-10..10]

P :: [

while !(x=0) do

[

guard (x<=0) do x := (x+1)

or

guard (x>=0) do x := (x-1)

]

]

Fig. 4. SPL program equivalent to the running example.

4 The function val maps each state to the boolean expression that represents the
interpretation of the variables in that state, and is defined as:

val = λs.
∧

x∈V

x = s[x]



5 Refinement

The transformation of USPL programs into SPL using MDP resolution tech-
niques is rather inefficient. The number of arithmetic operations needed in order
to determine the optimal strategy is polynomial in the number of states and
actions [10]. However, the number of states grows exponentially in the number
of variables, and in practice it is almost impossible to use these techniques to
compile reasonable programs. In order to address this problem we are investi-
gating two different approaches. In the first one we will continue to use MDPs,
but we will try to apply abstraction techniques with the objective of reducing
the number of states of the problem, such as the ones presented in [7] or [9]. The
second approach, that will be described briefly in this section, does not imply the
transformation of an USPL program into a MDP and is based on a particular
notion of refinement.

The objective of the refinement process is to transform gradually an USPL
program into the equivalent SPL one, using syntactical transformation rules that
preserve the set of valid computations of the original program. There are two
types of rules, namely, rules that allow the transformation of USPL programs di-
rectly into SPL ones, and rules that allow the transformation of USPL programs
into more simple USPL ones, typically into programs where decision nodes have
fewer branches. Usually the refinement rules can not be applied under all circum-
stances, and we need to impose conditions that must be verified in order to use
them. Some of this conditions concern the decision criteria used in the program,
but others restrict the behavior of the utility function through the executions.
The later conditions will be specified using linear temporal logic, and (as was
already mentioned in section 2) these can be verified using proving techniques
developed by Manna and Pnueli for the SPL language. The study of this refine-
ment process is still very preliminary, and for the moment there are still very
few rules, some of which are presented below.

In the following rules, P ′ denotes the SPL program that one obtains from an
USPL program P by simply removing the utility function and the decision crite-
ria that parametrize the process. The set of computations of P ′ is composed of
all the executions of P that verify the fairness conditions. U denotes the integer
expression that defines the utility function. The first two rules are examples of
rules that allow one to transform an USPL program into an equivalent SPL pro-
gram. The following two rules fall on the second class mentioned above, and allow
the transformation of USPL programs into equivalent, but more deterministic,
USPL programs.

Rule 1 If the utility function is constant, the resulting SPL program is identical
to the original one. This rule can be applied if the following condition is verified:

P ′ |= ∃k ·�(U = k)

Rule 2 In an USPL program with decision criteria look-at-end, if all execu-
tions end with the same utility, then the resulting SPL program is identical to



the original one. This rule can be applied if the following condition is verified:

∃k · P ′ |= ♦�(U = k)

Rule 3 In an USPL program with decision criteria look-at-end or look-ahead,
any constant part of the utility function expression can be eliminated. A program
P with an utility function

U = Ω + ∆

can be transformed into an equivalent USPL program with utility function

U = Ω

if the following condition is verified:

P ′ |= ∃k ·�(∆ = k)

Rule 4 If an USPL program with decision criteria look-ahead 1 has a choice
between guarded assignments (where I1 and I2 are arbitrary instruction blocks)

l: [guard c1 do x1 := e1; I1] or [guard c2 do x2 := e2; I2]

and verifies the condition

P ′ |= � (at l ∧ c1 ∧ c2 ⊃ U [x1 := e1] > U [x2 := e2])

then it is possible to replace it by the following instruction:

l: [guard c1 do x1 := e1; I1] or [guard c2 ∧ ¬c1 do x2 := e2; I2]

6 Conclusions and Future Work

Even at this early stage, USPL shows that it is possible to develop an imperative
programming language for utility-based agents. For the moment, the major diffi-
culties in developing this language where derived from subtleties of the semantic
model, such as the fairness conditions or the need of idle transitions. The need to
compare the utility of infinite executions was avoided due to the inclusion of the
decision criteria and the use of MDP resolution techniques. However, it seems
that the need to specify a decision criteria makes programming with USPL a
little more difficult. Its rather easy to translate the objectives into an utility
function, but when the program can have infinite executions it is not very easy
to decide which decision criteria to use, or to decide how to parametrize it.

USPL can also be seen as a language for specifying a particular class of MDPs,
combining in an intuitive programming paradigm a decision-theoretic and agent
programming flavor. We have little knowledge of similar work. The only language
known to us that is being developed with the same objective is DTGolog [5],
which is based on the situation calculus and on the logic programming paradigm.
This language resembles more precisely a MDP structure, allowing probabilistic



transitions and specifying the objectives by rewards instead of an utility function.
Although DTGolog is more powerful that USPL, we believe that programming
is easier with the later, because of its imperative style and qualitative decision
model. It is known that it is often very difficult or even impossible to quantify the
probabilities of the transitions [6]. We also believe that specifying the objectives
with an utility function is easier than through rewards.

All the techniques presented in this paper are being included in a prototype
system, developed in the functional programming language Haskell [1]. So far, it
allows one to translate sequential USPL programs to SPL, to apply interactively
the refinement rules and generate the specifications to be proved on STeP.

There is still a lot to be done in order to make USPL a fully usable and well
founded language. Concerning the sequential version presented in this paper,
it is necessary to verify formally that the strategies determined by the process
presented in section 4 are indeed optimal, in the sense that they generate all the
valid computations according to definition 2. The same applies to the refinement
rules. It is necessary to prove that the transformations preserve the set of valid
computations. Obviously, it is also necessary to find more refinement rules, so
that the refinement can be used only by itself. As mentioned in the section 5,
we also intend to apply abstraction techniques in order to reduce the set of
states of an MDP, so that we can apply the developed compilation method to
real problems. Particularly, we believe that the factoring algorithm presented in
[7] is specially suited to our framework. This algorithm tries to find the coars-
est homogeneous refinement of an initial partition (where states are aggregated
according to equal rewards) of the state space of an MDP. An homogeneous
partition is one in which for each action, states in the same set have the same
probability of being carried to each other set. We already have some preliminary
results that show that this abstraction technique induces a huge reduction in the
state space of most USPL programs.

Although there is still some work to be done in the sequential version of
USPL, the major innovation will be the introduction of concurrency primitives
in the language. As stated in section 1, the existence of more than one process
will induce uncertainty in the decision model of each one of them. This fact will
turn obsolete the compilation technique presented in this paper, since it was not
conceived to deal with uncertainty. This evolution will be done in two stages.
First it will only be allowed to model a single utility-based agent, that is, only
one process will be parametrized by the utility function and the decision criteria.
This means that the behavior of all other entities is perfectly know a priori.
In this stage we believe that the optimization can be done using the standard
extension of MDPs that deals with uncertainty, the Partially Observable Markov
Decision Problems. In the last stage we will study the case where more than one
process models an utility-based agent. Since that the decision process will have
to deal not only with uncertainty, but also with the rationality of other entities,
in order to correctly predict their behavior, we will surely need to use techniques
from game theory, namely, from the theory of Repeated Games with Incomplete
Information [2].



References

1. L. Augustsson, D. Barton, B. Boutel, W. Burton, J. Fasel, K. Hammond, R. Hinze,
P. Hudak, T. Johnsson, M. Jones, J. Launchbury, E. Meijer, J. Peterson, A. Reid,
C. Runciman, P. Wadler, S. Jones (editor), and J. Hughes (editor). Haskell 98: A
non-strict, purely functional language. Technical report, 1998.

2. Robert Aumann and Michael Maschler. Repeated Games With Incomplete Infor-
mation. The MIT Press, 1995.

3. R. Bellman. Dynamic Programming. Princeton University Press, 1957.
4. Nokolaj Bjorner, Anca Browne, Eddie Chang, Michael Colón, Bernd Finkbeiner,

Arjun Kapur, Zohar Manna, Henny Sipma, and Tomás Uribe. STeP: The Stan-
ford Temporal Prover Educational Release (User’s Manual). Computer Science
Department, Stanford University, October 1997.

5. Craig Boutilier, Ray Reiter Mikhail Soutchanski, and Sebastian Thrun. Decision-
theoretic, high-level agent programming in the situation calculus. In Proceedings
of the AAAI National Conference on Artificial Intelligence, pages 355–362, 2000.

6. Ronen Brafman and Moshe Tennenholtz. Modeling agents as qualitative decision
makers. Artificial Intelligence, 94(1–2):217–268, 1997.

7. Thomas Dean and Robert Givan. Model minimization in markov decision pro-
cesses. In Proceedings of the Fourteenth National Conference on Artificial Intelli-
gence (AAAI’97), pages 106–111, 1997.

8. Michael Fisher. A survey of concurrent metatem - the language and its applications.
In D. Gabbay and H. Ohlbach, editors, Temporal Logics - Proceedings of First
International Conference, volume 827 of LNAI, pages 480–505. Springer-Verlag,
1994.

9. Milos Hauskrecht, Nicolas Meuleau, Leslie Kaelbling, Thomas Dean, and Craig
Boutilier. Hierarchical solution of markov decision processes using macro-actions.
In Proceedings of the Fourteenth International Conference on Uncertainty in Arti-
ficial Intelligence, 1998.

10. Michael Littman, Thomas Dean, and Leslie Kaelbling. On the complexity of solving
markov decision processes. In Proceedings of the Eleventh International Conference
on Uncertainty in Artificial Intelligence, 1995.

11. Zohar Manna and Amir Pnueli. Temporal verification of reactive systems: safety.
Springer-Verlag, 1995.

12. Martin Puterman. Stochastic Models, volume 2 of Handbooks in Operations Re-
search and Management Science, chapter 8, pages 331–434. North-Holland, 1990.

13. Anand Rao. Agentspeak(l): Bdi agents speak out in a logical computable language.
In W. Van de Velde and J. Perram, editors, Agents Breaking Away (Proceedings of
MAAMAW’96), volume 1038 of LNCS, pages 42–55. Springer-Verlag, 1996.

14. Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Pren-
tice Hall, 1995.

15. Yoav Shoham. Agent-oriented programming. Artificial Intelligence, 60(1):51–92,
1993.

16. S. R. Thomas. PLACA, an Agent Oriented Programming Language. PhD thesis,
Computer Science Department, Stanford University, 1993.


