
Using Term Rewriting to Solve Bit-Vector
Arithmetic Problems
(Poster Presentation)

Iago Abal1, Alcino Cunha1, Joe Hurd2, and Jorge Sousa Pinto1

1 HASLab / INESC TEC & Universidade do Minho, Braga, Portugal
2 Galois, Inc., Portland, OR, USA

Among many theories supported by SMT solvers, the theory of finite-precision
bit-vector arithmetic is one of the most useful, for both hardware and soft-
ware systems verification. This theory is also particularly useful for some spe-
cific domains such as cryptography, in which algorithms are naturally expressed
in terms of bit-vectors. Cryptol is an example of a domain-specific language
(DSL) and toolset for cryptography developed by Galois, Inc.; providing an
SMT backend that relies on bit-vector decision procedures to certify the cor-
rectness of cryptographic specifications [3]. Most of these decision procedures
use bit-blasting to reduce a bit-vector problem into pure propositional SAT. Un-
fortunately bit-blasting does not scale very well, especially in the presence of
operators like multiplication or division. For example, the equality x2

[n] − 1[n] =

(x[n] + 1[n]) × (x[n] − 1[n]) is a simple consequence of distributivity and asso-
ciativity laws; but even for small values of n the bit-level representation of this
formula is so huge that it is intractable by current SAT solvers. The main rea-
son for this is the loss of high-level algebraic structure present in the origi-
nal decision problem. The point here is that one can exploit algebraic proper-
ties concerning the domain of bit-vectors to rewrite this problem into an eq-
uisatisfiable, but computationally less hard, problem. For instance, the above
equality can be proved valid as follows (subscripts are omitted for clarity):
x2 − 1 = (x + 1) × (x − 1) ≡ {distributivity × 3; associativity} x2 − 1 =
x2+x−x−1 ≡ {inverse; right identity} x2−1 = x2−1 ≡ {reflexivity} true.
Modern SMT solvers already include a simplification phase that performs some
rewriting on the input problem prior to bit-blasting [4]. Nevertheless, SMT
solvers have to deal with a wide range of application domains, and hence the set
of rewrite rules employed for simplification inevitably excludes many rules that
are useful for some particular domains but may be inconvenient for others.

The present work was motivated by the difficulties reported by the Galois Cryp-
tol team in achieving automatic equivalence checking for public-key cryptography
(PKC). PKC is particularly hard because it involves multiplication and modu-
lar exponentiation on long bit-vectors. Hence, the bit-level representation of any
PKC algorithm is usually so huge that such equivalence problems are too hard for
current SAT solvers, unless a significant amount of rewriting is performed before
bit-blasting. SMT solvers employing high-level rewriting-based techniques have
been shown to be promising, but they are still insufficiently powerful to handle

A. Cimatti and R. Sebastiani (Eds.): SAT 2012, LNCS 7317, pp. 493–495, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



494 I. Abal et al.

hard problems, such as those resulting from PKC. This problemmay be addressed
by combining custom rewrite patterns, somehow encapsulating domain-specific
proof strategies, with standard bit-vector decision procedures. Our first attempt
consisted in extending SMT specifications with algebraic properties provided in
the form of quantified formulas, expecting the SMT solver to use them as rewrite
rules. Unfortunately, we have found that most of the times SMT solvers do not
use these rules effectively, and even become quite unpredictable in the presence of
universal quantifiers. After this failed attempt, we prototyped a rewriting system
in Maude [1] that focuses on simplifying PKC equivalence problems. Employ-
ing a set of 200 handcrafted rewrite rules and a very simple rewriting strategy
enabled us to achieve quite promising results. For instance, this system proved
the correctness of a 16-bit peasant multiplier and SHA-1 implementations in a
few seconds, while the 3.2 version of Z3 [2] times out (16 hours) for the peasant
case and quickly runs out of memory (2 GB) solving the SHA-1 one. Using this
rewriting system as a preprocessing step for Z3 we also achieved good speedups
for some equivalence problems, such as a speedup of 2 for an 8-bit modular
exponentiation algorithm.

Even though there is still considerable work to be done in order to reach a
reasonable degree of automation for PKC equivalence checking, the above results
show the potential of the term-rewriting approach. In the same way that proof
assistants allow defining custom tactics to encapsulate specific proof techniques,
our intention is to encode those proof tactics as rewrite patterns in the context
of SMT solving. This allows simplifications that drastically reduce the size of the
input problem before bit-blasting, leading to better overall performance. Ideally,
SMT solvers should allow easy customization of their solving strategies with such
rules —we are aware of some recent work in this direction. It is worth noting
that we are not relying on complex combinations of rewriting strategies, which
would make our approach more fragile and less scalable. Finally, Maude turned
out to be a good platform for experimentation, but it significantly restricts the
strategies that we could employ and presents some limitations with respect to
achieving perfect subterm sharing. Thus we are presently working on a frame-
work to specify custom rewriting-based simplifications for fixed-size bit-vector
arithmetic, that should allow us to overtake the above limitations.

Acknowledgement. This work is funded by National Funds through the FCT
- Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science
and Technology) within project PTDC/EIA-CCO/105034/2008.

References

1. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: The Maude 2.0 System. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706,
pp. 76–87. Springer, Heidelberg (2003)



Using Term Rewriting to Solve Bit-Vector Arithmetic Problems 495

2. de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

3. Erkök, L., Matthews, J.: Pragmatic equivalence and safety checking in Cryptol.
In: Proceedings of the 3rd Workshop on Programming Languages Meets Program
Verification, PLPV 2009, pp. 73–82. ACM, New York (2008)

4. Franzen, A.: Efficient Solving of the Satisfiability Modulo Bit-Vectors Problem and
Some Extensions to SMT. Ph.D. thesis, University of Trento (March 2010)


