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Abstract. Functional programs are particularly well suited to formal manipulation by equational
reasoning. In particular, it is straightforward to use calculational methods for program transfor-
mation. Well-known transformation techniques, like tupling or the introduction of accumulating
parameters, can be implemented using calculation through the use of thefusion(or promotion) strat-
egy. In this paper we revisit this transformation method, but, unlike most of the previous work on
this subject, we adhere to a pure point-free calculus that emphasizes the advantages of equational
reasoning. We focus on the accumulation strategy initially proposed by Bird, where the transformed
programs are seen as higher-order folds calculated systematically from a specification. The machin-
ery of the calculus is expanded with higher-order point-free operators that simplify the calculations.
A substantial number of examples (both classic and new) are fully developed, and we introduce
several shortcut optimization rules that capture typical transformation patterns.

1. Introduction

Functional programming is particularly appropriate for equational reasoning. This has been known for a
long time, at least since Burstall and Darlington [8] introduced the fold/unfold technique, and Backus [2]
proposed his calculational methodology.

In fold/unfold program transformation one applies a number of semantically sound rules to an initial
program, with the aim of arriving at a better, equivalent transformed program. “Better” here may have
different interpretations: time and space complexity improvements are obvious criteria, but removal of
recursion is also a common goal (allowing us to convert programs into purely iterative forms). This
is an activity that involves steps that are not easily automated, and as such typically requires human



2 A. Cunha, J. S. Pinto / Point-free Program Transformation

intervention. For instance, the transformation rules include the possibility of defining new auxiliary
functions, and then folding them in the body of the program being manipulated (see section 3.1 for
an example). In fact, fold/unfold can be best described as a framework for program transformation,
based on which a number of transformation strategies and techniques have been studied.Tupling[8] and
deforestation[34] are examples of such techniques.

In this paper we use a different framework for reasoning about functional programs –by calculation.
Some classic strategies for program transformation have been introduced using this framework, such as
Bird’s accumulationstrategy [4]. Essentially a program calculus consists of a collection of equational
laws allowing us to prove semantic equivalence between programs, or else to derive programs from other
programs, or from theirspecifications. Quoting Backus [2]:

Associated with the functional style of programming is an algebra of programs [. . . ]
This algebra can be used to transform programs and to solve equations whose “unknowns”
are programs in much the same way one transforms equations in high-school algebra.

One advantage of the calculational approach is that one can use the programming language itself to
express properties and reason about the programs, rather than having a different formalism. Although
not so general as the fold/unfold technique, this approach is also easier to mechanize because it only
implies a local program analysis and the application of simple rewrite rules (typically with simple or no
side-conditions to verify), and since it does not require any global analysis it can also be implemented in
a modular way [33].

The program calculus used in this paper is built upon two basic ingredients. The first is a set of
recursion patterns, higher-order operators that encapsulate typical patterns of recursion, such as the well-
knownfold operator on lists. These operators enjoy a nice set of equational laws, and their importance to
functional programming has been compared to the abandoning of arbitrarygotosin favour of structured
control primitives in the imperative setting. The second is apoint-freestyle of programming in which
programs are expressed as combinations of simpler functions, without ever mentioning their arguments.
The calculus uses a reduced set of combinators, derived from standard categorical constructions, again
characterized by a rich set of equational laws.

While recursion patterns are already widely used by functional programmers, the same cannot be
said about point-free programming. Although there are some obvious advantages in using this style – the
absence of variables and lambda abstractions simplifies the presentation and implementation of reduction
rules – most authors still resort to pointwise, both for programming and for calculation, arguing that the
intuitive meaning of point-free programs may be easily lost (it has even been jokingly called thepointless
style). Quoting Gibbons on the advantages of calculating in the point-free style [13]:

This is the point of pointless calculations: when you travel light – discarding variables
that do not contribute to the calculation – you can sometimes step lightly across the surface
of the quagmire.

In this paper we use a purely point-free style only for calculations. Our initial definitions will be ex-
pressed in pointwise Haskell [21], which must be converted into the language of the calculus (point-free
style with recursion patterns) before being transformed by calculation. At the end of the transformation,
the resulting functions will be converted back into the original domain. A useful comparison here is that
of mathematical transforms such as the Fourier transform or the Laplace transform, which allow us to
express functions in different domains in which certain manipulations are easier to perform.
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The main goal of this paper is to revisit some classic work in the area of program transformation using
pure point-free calculations. The paper is focused on the transformation of programs by introducing new
accumulating parameters, according to the strategy initially proposed by Bird [4], where the transformed
programs are seen as higher-order folds calculated systematically from specifications. We present a
systematic approach to this program transformation technique, together with a substantial number of
examples. This systematization leads to a set of generic transformation schemes, that could be used as
shortcut optimization rules in an automatic program transformation system.

A second goal is the improvement of the machinery that is used to perform point-free calculations in
a higher-order setting. Quoting Gibbons again [12]:

We are interested in extending what can be calculated precisely because we are not
interested in the calculations themselves [. . . ]

In other words, we aim at extending the calculus with new useful operators that help reducing the burden
of proofs just to the creative parts.

Organization of the paper. Section 2 contains all the necessary background material on recursion
patterns and the point-free program calculus; acquaintance with basic notions of program semantics is
assumed; rudiments of category theory will be helpful but not essential. This section briefly presents the
historic development of the field. Section 3 introduces the theme of the paper by presenting a classic
example fully worked in three styles: (i) using unfold-fold transformation; (ii) using point-level calcu-
lation; (iii) using the point-free calculus. This example also introduces the use of accumulations and
tail-recursion, to be used throughout the paper. In section 4 it is shown how accumulations can be sys-
tematically calculated for programs over lists, binary trees, and rose trees in a point-free setting. In
section 5 we extend this approach to functions with two accumulating parameters. Although specifica-
tions are typically folds (the simplest form of structural recursion), this approach can be generalized to
other forms of recursion, as shown in section 6. Section 7 reviews some related approaches, and section 8
concludes the paper. Appendix A contains an extended set of laws concerning the point-free combinators
introduced in section 2.

2. Point-free Programming with Recursion Patterns

In his 1977 ACM Turing Award lecture, John Backus proposed a new functional style of programming
whose main features were the absence of variables and the use offunctional formsto combine existing
functions into new functions [2]. The main idea was to develop a calculus of programs that could be used
for program transformation. The choice of the functional forms was based not only on their programming
power, but also on the power of the associated algebraic laws. Most of the now standard point-free
combinators (presented later in this section) were already introduced by Backus.

This approach was later endorsed by Bird and Meertens, who popularized a style of programming
(the so-called “Bird-Meertens formalism”) where final programs were derived from their specifications
(typically, an inefficient combination of easy to understand functions) through a set of equational laws
[4, 5, 24]. The now well-known notions of folding andfusion(or promotion) over lists were presented
in this work, enabling for the first time the effective use of the calculational approach in program trans-
formation. The main difference with respect to the initial approach by Backus was the occasional use of
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the pointwise style. As Backhouse pointed out [1], the importance of the Bird-Meertens formalism lies
not on the foundational conceptsper se(at the time already known), but on their application to develop
a concise calculational method for program transformation.

Malcolm [23] later showed that the concepts introduced by Bird and Meertens arise naturally for any
data type when viewed in a categorical setting. The categorical approach to data types and functional
programming in general had been previously clarified by Hagino [17]; category theory turned out to be a
natural setting for defining the basic building blocks of data types (including sophisticated concepts such
as mutually recursive data types, types defined using other parameterized data types, and infinite data
types). As will be shown below, the definitions of most of the combinators used in the point-free style of
programming are immediate from standard categorical constructions.

The generalization proposed by Malcolm was done in the context of total functions and totally de-
fined elements, but later Meijer, Fokkinga, and Paterson [11, 25] extended it to the domain of partial
functions and elements, thus enabling the power of full recursion, and providing a more appropriate
semantic domain to modern lazy programming languages, like Haskell.

There are many introductory texts to this style of programming, covering the subject of this section
[25, 7, 15].

2.1. Basic Combinators and Functors

The semantic characterization of modern lazy programming languages (like Haskell) is usually based
on pointed complete partial orders (sets equipped with a partial order, a least element denoted⊥, and
closed under limits of ascending chains), and continuous functions (monotonic functions that preserve
limits). We remark however that most of the research done in program transformation in a calculational
setting uses a less natural semantics based on sets and total functions that makes difficult the treatment
of arbitrary recursion and partiality.

The study of algebraic programming in this setting was pioneered by Meijer, Fokkinga and Pater-
son [25], and the presentation of the material in this section (based on a categorical account of the
denotational semantics, with functions modeled by arrows in theCpo category, and types by objects in
that category) is strongly influenced by their work.

Functors. A functor F is a mapping between categories (it maps objects to objects and arrows to
arrows) such that

F f : F A → F B ⇐ f : A → B functor-TYPE

F (f ◦ g) = F f ◦ F g functor-COMPOSE

F idA = idFA functor-ID

For our purposes (and in general in the context of programming language semantics),endofunctorsin
Cpo will be used, mapping types to types, and functions to functions.

The simplest functor is the identity functorId, whose action on types is defined asId A = A, and on
functions asId f = f . Also important is the constant functor: given a typeA, the functorA is defined
on types asA B = A, and on functions asA f = idA.

A bifunctor is a mapping from a pair of categories to a category, with the expected requirements
concerning composition and identity. Given two functorsF andG and a bifunctor?, a new functor
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F ?̂ G can be defined bylifting ? as follows:

(F ?̂ G) A = (F A) ? (G A)
(F ?̂ G) f = (F f) ? (G f)

Given a typeA, a functorA? can also be defined bysectioning? asA? = A ?̂ Id, which corresponds to
treating as a constant the first parameter of the functor.

In the following we introduce a number of type constructors, such as products and coproducts. Each
constructor comes equipped with its own set of combinators and laws. In the categorical setting, type
constructors are universal constructions, and the laws can all be derived from their universal properties.

Products. The product of two types is defined as the cartesian product:

A×B = {(x, y) |x ∈ A, y ∈ B}

We also define theprojectionfunctions and thesplit function combinator, denoted〈·, ·〉.

π1 (x, y) = x

π2 (x, y) = y
〈f, g〉 x = (f x, g x)

The fact that the cartesian product is a categorical product inCpo is justified by the following uniqueness
law.

f = 〈g, h〉 ⇔ π1 ◦ f = g ∧ π2 ◦ f = h ×-UNIQ

It is also useful to define a product function combinator as:

f × g = 〈f ◦ π1, g ◦ π2〉 ×-DEF

Observe that this definition allows us to see product as a bifunctor. Some useful functions that can be
defined on products are the following natural isomorphisms.

swap : A×B → B ×A

swap = 〈π2, π1〉
(f × g) ◦ swap = swap ◦ (g × f) swap-NAT

assocr : (A×B)× C → A× (B × C)
assocr = 〈π1 ◦ π1, π2 × id〉

(f × (g × h)) ◦ assocr = assocr ◦ ((f × g)× h) assocr-NAT

Strictness. From the point of view of program calculation, the major difference between usingSet
andCpo as underlying category is that some of the laws that characterize the basic combinators will
have strictness side-conditions. As we will shortly see, this is due to the fact that the separated sum is
not a categorical coproduct inCpo. Strictness is defined as follows:

f strict ⇔ f ◦ ⊥ = ⊥ strict-DEF

Sometimes the notion of left-strictness will also be required:

f left-strict ⇔ f ◦ (⊥× id) = ⊥ lstrict-DEF

f strict ⇐ f left-strict lstrict-STRICT
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Sums. In lazy functional languages coproducts are typically implemented as separated sums, with a
new bottom element added:

A + B = {0} ×A ∪ {1} ×B ∪ {⊥A+B}

Related to this definition we have theinjectionfunctions and theeithercombinator, denoted[·, ·].

i1 x = (0, x)
i2 x = (1, x)

[f, g] ⊥ = ⊥
[f, g] (0, x) = f x

[f, g] (1, x) = g x

The separated sum is not a categorical coproduct inCpo because the uniqueness law only holds for strict
functions:

f = [g, h] ⇔ f ◦ i1 = g ∧ f ◦ i2 = h ∧ f strict +-UNIQ

Likewise to products, the separated sum can be turned into a functor by defining its operation on arrows,
which corresponds to introducing the sum function combinator:

f + g = [i1 ◦ f, i2 ◦ g] +-DEF

Exponentials. The exponentiation of typeB to typeA is defined as the set of all functions with domain
A and codomainB:

BA = {f | f : A → B}

Associated to exponentials, are theapplyfunction and thecurry combinator (denoted· ).

ap (f, x) = f x

f x y = f (x, y)

The following uniqueness law guarantees that this notion of exponentiation is a categorical exponentia-
tion in Cpo:

f = g ⇔ g = ap ◦ (f × id) ∧-UNIQ

Finally, the definition of the exponentiation combinator allows us to turn this operation into a functor:

fA = f ◦ ap ∧-DEF

Notice that when the type in superscript is not relevant we will use the symbol•.

Miscellanea. The one element type is denoted by1, and its unique element also by1. Since the types
A and1 → A are isomorphic, an elemente : A can be seen as a functione : 1 → A. Given a function
f : A → B (possibly an element ifA = 1), we define the constant operator that always returnsf as
follows.

f : C → BA

f = f ◦ π2

const-DEF
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Constants enjoy the following fusion property:

f ◦ g = f const-FUSION

To facilitate the point-free treatment of conditional expressions, it is useful to define theguardcom-
binator associated to a given predicatep : A → Bool. Assuming thatBool = 1 + 1:

p? : A → A + A

p? = (π1 + π1) ◦ distr ◦ 〈id, p〉
guard-DEF

Note that ifp returns⊥ for some input, thenp? will also return⊥. The functiondistr distributes a value
with respect to a sum, and has typeA× (B + C) → A×B + A× C.

2.2. Recursive Data Types

In a typed functional programming language a new data type is defined by declaring its constructors and
the respective types. Theoretically, a data type is defined as the fixed point of a pattern (orbase functor)
that captures the signature of the constructors.

For example, suppose that the base functor of a data typeT is F1 +̂ . . . +̂ Fn, such that

T = µ(F1 +̂ . . . +̂ Fn)

This means thatT hasn constructors, each with typeCi : Fi T → T . For instance, lists of typeA can
be defined by

List A = µ(1 +̂ A ×̂ Id)

that captures the two typical constructors of this data type (recall that a function of type1 → List A
corresponds to an element of typeList A).

nil : List A

cons : A× List A → List A

Since the functor of lists will be used many times during the paper, we will denote it just byFListA for
lists of typeA, or simplyFList when the type of the elements is clear from context. The action of this
functor on types is given byFListA B = 1 + A×B, and on functions byFListA f = id + id× f . As a
second example of a recursive type, we present the definition of binary leaf trees:

LTree A = µ(A +̂ Id ×̂ Id)
leaf : A → LTree A

branch : LTree A× LTree A → LTree A

In Haskell these data types can be implemented as follows (we use the standard Haskell definition of
lists).

data [a] = [] | a : [a]
data LTree a = Leaf a | Branch (LTree a) (LTree a)
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A polynomial functoris either the identity functor, the constant functor, or one of the liftingsF ×̂G
andF +̂G, whereF andG are polynomial functors. Aregular functorcan additionally be built from type
functors (defined in the next section). Reynolds [29] proved that inCpo, given a locally continuous and
strictness-preserving base functorF , there exists a unique data typeµF and two unique strict functions
inF : F (µF ) → µF andoutF : µF → F (µF ) that are each other’s inverse. Fokkinga and Meijer
[11] showed that all polynomial, and even all regular functors, are locally continuous and strictness-
preserving. This guarantees that, for example, all the above data types are well defined.

Notice thatinF is defined as the “either” of all constructors ofµF . For example, for lists we have

inFList : 1 + A× List A → List A

inFList = [nil, cons]

2.3. Catamorphisms and Maps

Each regular data type is characterized by a number of standard ways of traversing it recursively in order
to produce a result. The most basic of these recursion patterns is iteration, which computes the result
by replacing the constructors of the input data type by other functions. Such functions are calledfolds
or catamorphisms, and can be written (without explicit recursion) using a higher-order operator that is
written once and for all.

Given a functiong : F A → A (sometimes called agene), the catamorphism generated byg is
generically defined as follows.

(|g|)F : µF → A

(|g|)F = µ(λf · g ◦ Ff ◦ outF )
cata-DEF

This function obeys the following uniqueness law, proved in [11] using fixpoint induction.

f = (|g|)F ∧ g strict ⇔ f ◦ inF = g ◦ Ff ∧ f strict cata-UNIQ

Instantiating the catamorphism definition to the particular case of lists results in the well knownfoldr
operator on lists. To see that this is so, let us assumeg = [z, f ] : 1 + A × B → B wherez : B and
f : A × B → B, and proceed with the following calculation. For simplicity, we omit the strictness
conditions.

foldr = (|[z, f ]|)FList

= { cata-UNIQ }
foldr ◦ inFList = [z, f ] ◦ FList foldr

= { definitions ofFList andinFList }
foldr ◦ [nil, cons] = [z, f ] ◦ (id + id × foldr)

= {+-FUSION,+-ABSOR,×-FUNCTOR}
[foldr ◦ nil, foldr ◦ cons] = [z, f ◦ (id × foldr)]

= {+-EQUAL }
foldr ◦ nil = z ∧ foldr ◦ cons = f ◦ (id × foldr)

= { η-expansion}
(foldr ◦ nil) x = z x ∧ (foldr ◦ cons) (x, xs) = (f ◦ (id × foldr)) (x, xs)

= { definition of composition, product, and constants}
foldr nil = z ∧ foldr (cons (x, xs)) = f (x, foldr xs)
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These two equations are the same that define the Haskell functionfoldr: the constantz is returned
when the list is empty, andf is used to combine the head of the list with the result of recursively
processing the tail. The only difference is thatfoldr uses curried parameters.

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)

An example of a very simple catamorphism is the function that, given a list of naturals, returns the sum
of all the elements in the list (zero : Int denotes the natural0 andplus : Int× Int → Int the sum function).

sum : List Int → Int

sum = (|[zero, plus]|)

Catamorphisms obey the following fusion law (easily derived from the uniqueness law), very useful
in program transformation, and which forms the basis for all the techniques presented in this paper.

f ◦ (|g|)F = (|h|)F ⇐ f strict ∧ f ◦ g = h ◦ Ff cata-FUSION

The following strictness property can be derived from cata-UNIQ.

(|f |)F strict ⇐ f strict cata-STRICT

Type Functors. The base functor of a parameterized data typeT A can be seen as the sectioning of
a bifunctor?. This allows us to see a parameterized data type as atype functor. Its action on objects
is given by the definitionT A = µ(A?), and its action on functions corresponds to the standard map
function of the type, that can be defined generically using a catamorphism:

mapT f = (|in ◦ (f ? id)|)A? ⇐ T A = µ(A?) map-DEF

For example, the bifunctor that characterizes lists is defined by

A ?List B = 1 + A×B

f ?List g = id + f × g

and allows us to defineList A = µ(A ?List) = µ(FListA). As expected, the map function for lists can be
defined as follows (obtained from map-DEF after some simple calculations).

mapList f = (|[nil, cons ◦ (f × id)]|)

The following is a classic law relating fold and map.

(|f |)A? ◦mapT g = (|f ◦ (g ? id)|)A? ⇐ T A = µ(A?) ∧ f strict fold-map-FUSION
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This law can be used, for instance, to optimize (by calculation) the following two-pass function for
computing the sum of the squares of a list. In the followingsq = mult◦〈id, id〉, wheremult : Int× Int →
Int is the function that implements the integer product.

sumsq : List Int → Int

sumsq = sum ◦mapList sq

Applying fold-map-FUSION and+-ABSORwe get the following single pass implementation.

sumsq : List Int → Int

sumsq = (|[zero, plus ◦ (sq× id)]|)

This example in itself is well-known in the program transformation community. It can be achieved for
instance using fold/unfold transformation.

3. A Motivating Example

Consider the reverse function on lists. Obtaining the accumulator-based linear time version of this func-
tion from the single-argument quadratic time version is a classic example of a program transformation.

In this section we use this example to briefly review different transformation techniques for optimiz-
ing programs by introducing accumulating parameters. The resulting functions are calledaccumulations.
We also introduce a composition operator, which enriches the point-free calculus allowing us to express
certain properties (such as the associativity of a binary operator) in a higher-order setting.

3.1. Transformation with Fold/Unfold Rules

Our initial definition ofreverse in Haskell is

reverse :: [a] -> [a]
reverse [] = []
reverse (x:xs) = (reverse xs) ++ [x]

We will now apply fold/unfold rule-based transformation (see for instance [28] for a review) in order to
obtain the efficient version.

reverse l

= { definition ofreverse (using conditionals instead of pattern-matching)}
if (l == []) then [] else reverse (tail l) ++ [head l]

= { unfold}
if (l == []) then []

else (if (tail l == []) then []

else reverse (tail (tail l)) ++ [head (tail l)]) ++ [head l]

= { distributing (++ [head l]) over the conditional and applying associativity of++ }
if (l == []) then []

else if (tail l == []) then [] ++ [head l]

else reverse (tail (tail l)) ++ ([head (tail l)] ++ [head l])
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These transformation steps are oriented by the so-calledforced folding(or need-for-folding) princi-
ple [10], which states that after the unfold step, the program should be manipulated so that a folding step
can be applied to a different sub-expression. Hopefully these manipulations will lead to improvements
at all levels of the recursion tree.

Continuing with our example, at this point one would like to be able to fold the last expression above
using the definition of reverse; however, the presence of the expression[head l] in both cases of the
conditional expression prevents this step. We must appeal to thegeneralization strategy[8], according
to which we introduce a new function definition

aux (l,y) = (reverse l) ++ y

This definition can indeed be transformed until a fold step is performed.

aux (l,y)

= { definition ofaux }
(reverse l) ++ y

= { unfold}
(if (l == []) then [] else (reverse (tail l) ++ [head l])) ++ y

= { distributing++ y over the conditional and applying associativity of++ }
if (l == []) then [] ++ y else reverse (tail l) ++ ([head l] ++ y)

= { fold }
if (l == []) then [] ++ y else aux (tail l, [head l] ++ y)

Next we use the definition of++ to simplify the above expression, yielding the definition

aux (l,y) = if (l == []) then y else aux (tail l, (head l):y)

Finally, we notice that the++ operator has a right-identity, allowing us to write

reverse l

= { right-identity of++ }
(reverse l) ++ []

= { definition ofaux }
aux (l,[])

The definition ofaux, together with this last equation, is the final result of the transformation. In
Haskell one would write

reverse :: [a] -> [a]
reverse l = aux (l, [])

aux :: ([a], [a]) -> [a]
aux ([], y) = y
aux (x:xs, y) = aux (xs, x:y)

Remark. Notice that the transformed program istail-recursive, i.e. the result of the recursive call
is passed directly as the result of the invoking call. Linear tail-recursive functions can be converted
into iterative code (i.e. with recursion totally removed) using a straightforward transformation scheme.
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Removal of recursion is a major goal of program transformation, even when it can be only partially
achieved, as is the case with functions over trees. In section 4.4 it will be seen, for the case of binary
trees, that only one of the two recursive calls is made tail-recursive.

The asymptotic improvement in the execution time is a somewhat casual side-effect of the transfor-
mation – it is a consequence of the associativity property of the append operator, and the fact that it
runs in linear time on the size of its first argument. In section 4.1 we consider the transformation of the
function which calculates the product of the numbers in a list. Since arithmetic product is calculated in
constant time, this transformation does not alter the asymptotic execution time; it is however still a useful
transformation since it produces a tail-recursive definition.

3.2. Transformation by Calculation

The first application of the calculational approach to program transformation, as popularized by Richard
Bird and Lambert Meertens in the mid-80s, was precisely the derivation of functions with accumulations
from inefficient specifications [4]. In this seminal paper, Bird introduced the fundamental idea behind this
method for transformation: first the recursive functions are specified using a standard recursion pattern;
then fusion is used together with the generalization strategy (as used in fold/unfold transformation), in
order to derive a hopefully more efficient implementation with an accumulating parameter. We remark
that fusion was here calledpromotionand the fold recursion pattern had not yet been isolated in a higher-
order operator such asfoldr.

The functions resulting from such transformations have two arguments (the second of which is
the accumulator). In order to be able to write them using the fold recursion pattern, Bird resorted to
currying: accumulations are written as higher-order folds, returning a function as result. Apart from
some refinements in the basic laws and notation, this same technique was later used by several au-
thors [25, 19, 26, 31]. However, in none of these works the calculations were done in pure point-free
style, and in some of them the generic fusion law for catamorphisms presented in section 2.3 was not
used. Instead, they use the pointwise specialization of this law for particular data types, such as the
following for thefoldr operator on lists.

f (foldr g e l) = foldr h c l

⇐
f strict ∧ f e = c ∧ ∀x, r · f (g x r) = h x (f r)

foldr-FUSION

Turning now to our running example, we will start from where the application of the generalization
strategy led us in the previous section (except that the new function is in curried style). Notice that in the
remaining of the paper the nameft will be used to denote the accumulation obtained by transformingf .

reverset l y = (reverse l) ++ y

Following the approach just described, to obtain the desired accumulation we must now fuse the con-
catenation operator with thereverse function, using lawfoldr-FUSION. In order to do that it is necessary
to redefine reverse using thefoldr operator (notice thatwrap x = cons(x, nil)):

reverse : List A → List A

reverse = foldr (λxr. r ++ (wrap x)) nil
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Dropping the accumulating parameter from our specification we get the following definition, where the
Haskell prefix notation(++) is used for the concatenation operator.

reverset l = (++) (foldr (λxr. r ++ (wrap x)) nil l)

This is a suitable expression to applyfoldr-FUSION, wheref is the curried version of the concatenation
operator. Given that++ is a strict function in its first argument, there remain two premises of this law to
verify, which will in turn allow us to determinec andh:

(++) nil = c

λxr. (++) (r ++ (wrap x)) = λxr. h x ((++) r)

whereλ-abstraction has been used to encode universal quantification.
Sincenil is a left-identity of concatenation, thenc = id. In order to determineh we calculate:

λxr. (++) (r ++ (wrap x))
= { η-expansion}

λxr.λy. (r ++ (wrap x)) ++ y

= {associativity of++ }
λxr.λy. r ++ ((wrap x) ++ y)

= {definitions of++, wrap }
λxr.λy. r ++ (cons(x, y))

It is now clear thath can be defined as

h x z = λy. z (cons(x, y))

The result of applying the fusion law is thus the following higher-order fold:

reverset : List A → List A → List A

reverset = foldr (λxzy. z (cons(x, y))) id

After expanding the definition offoldr we obtain the curried version of the function in the previous
section, to be invoked asreverse l = reverse_t l []:

reverse_t :: [a] -> [a] -> [a]
reverse_t [] y = y
reverse_t (x:xs) y = reverse_t xs (x:y)

To sum up, the creative step involved in this technique is exactly the same as when using fold/unfold
transformations – writing the specification corresponds to using the generalization strategy. However, for
the particular technique of accumulations, experienced functional programmers should have no problem
in writing specifications directly. A major advantage of the calculational approach is that by structuring
recursion in fixed patterns, it is possible, as will be largely exemplified in this paper, to define laws that
combine in a singleshortcutstep whole sequences of transformation steps.



14 A. Cunha, J. S. Pinto / Point-free Program Transformation

3.3. Transformation in the Point-free Style

The third method, which will be used extensively in the remaining of the paper, consists in applying the
same transformation principle as in the previous section, except that all the calculations are done in the
point-free style with generic recursion patterns. Before this can be done, the initial specification needs to
be written according to the principles exposed in section 2. Programmers with experience in the point-
free style may be able to write this definition directly. In the following we present (using our running
example) a systematic method for converting recursive functions into the point-free style.

First, we state the pointwise equations implicit in the Haskell definition. We denote the uncurried
version of the concatenation operator bycat.

reverse nil = nil

reverse (cons(x, xs)) = cat (reverse xs, wrap x)

The next step eliminates the variables in order to obtain a point-free specification. This is the most
creative step, and usually implies the (sometimes not so trivial) introduction of “housekeeping” functions,
since the parameters must be equally structured in both sides of each equation. In this particular case we
useswap to get the following definition (recall that a constant can be seen as a function with domain1).

(reverse ◦ nil) 1 = nil 1

(reverse ◦ cons) (x, xs) = (cat ◦ swap ◦ (wrap× reverse)) (x, xs)

After eliminating the arguments we proceed with standard point-free calculations until we get a specifi-
cation with the formreverse ◦ inFList = g ◦FList reverse, which by the uniqueness law of catamorphisms
allows us to definereverse = (|g|).

reverse ◦ nil = nil ∧ reverse ◦ cons = cat ◦ swap ◦ (wrap × reverse)

= {+-EQUAL }
[reverse ◦ nil, reverse ◦ cons] = [nil, cat ◦ swap ◦ (wrap × reverse)]

= {+-FUSION, ×-FUNCTOR}
reverse ◦ [nil, cons] = [nil, cat ◦ swap ◦ (wrap × id) ◦ (id × reverse)]

= {+-ABSOR}
reverse ◦ [nil, cons] = [nil, cat ◦ swap ◦ (wrap × id)] ◦ (id + id × reverse)

= { definitions ofFList andinFList }
reverse ◦ inFList = [nil, cat ◦ swap ◦ (wrap × id)] ◦ FList reverse

Now, sincereverse is a strict function, cata-UNIQ can be applied to produce the desired point-free
definition.

reverse : List A → List A

reverse = (|[nil, cat ◦ swap ◦ (wrap× id)]|)1+̂A×̂Id

Turning to the specification that will allow us to derive the accumulation, it can now be written in
point-free style as

reverset = cat ◦ reverse

The derivation will be based on the generic fusion law cata-FUSION. According to this law (and since
cat is strict), in order to obtain the desired definition ofreverset as a catamorphismreverset = (|h|)FList,
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we must find a functionh such that

cat ◦ [nil, cat ◦ swap ◦ (wrap× id)] = h ◦ FList cat = h ◦ (id + id× cat)

In both fold/unfold and the pointwise calculational transformations seen in the previous sections, one
of the major steps was the application of the associativity property ofcat (this is in general the case for
all transformations involving accumulations). So the question arises of how to express this property in
point-free style.

Consider an arbitrary operator⊕. One possibility for expressing its associativity is to use the equation

⊕ ◦ (id×⊕) ◦ assocr = ⊕ ◦ (⊕× id)

This formulation is not very practical because the operator that will be fused is in curried form. Bearing
in mind that it is our goal in this paper to enrich the calculus so as to simplify the derivations as much
as possible, we need to introduce operators particularly tailored to express properties in a higher-order
setting. For the particular case of associativity, it suffices to introduce an uncurried composition operator
defined as

comp (f, g) = f ◦ g

or in point-free style (using, as expected, the exponential combinators):

comp : (CB ×BA) → CA

comp = ap ◦ (id× ap) ◦ assocr
comp-DEF

Using this combinator, associativity of⊕ can be expressed more usefully by the following equation.

⊕ ◦ ⊕ = comp ◦ (⊕×⊕) ⊕-ASSOC

The following calculation shows that the latter formulation is a consequence of the former.

⊕ ◦ ⊕
= {∧-FUSION}

⊕ ◦ (⊕× id)

= {⊕ ◦ (id ×⊕) ◦ assocr = ⊕ ◦ (⊕× id) }
⊕ ◦ (id ×⊕) ◦ assocr

= {∧-CANCEL, ×-FUNCTOR}
ap ◦ (⊕× id) ◦ (id × ap) ◦ (id × (⊕× id)) ◦ assocr

= {×-FUNCTOR}
ap ◦ (id × ap) ◦ (⊕× (⊕× id)) ◦ assocr

= { assocr-NAT }
ap ◦ (id × ap) ◦ assocr ◦ ((⊕×⊕) × id)

= {∧-FUSION}
ap ◦ (id × ap) ◦ assocr ◦ (⊕×⊕)

= { comp-DEF}
comp ◦ (⊕×⊕)
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Equipped with this formulation of associativity, calculating the accumulation becomes very simple.
Notice that the fact thatnil is a left-identity ofcat can be expressed by the equationcat ◦ nil = id, and
the effect of concatenation with the singleton list can be described by the equationcat ◦ wrap = cons.

cat ◦ [nil, cat ◦ swap ◦ (wrap × id)]

= {+-FUSION}
[cat ◦ nil, cat ◦ cat ◦ swap ◦ (wrap × id)]

= { nil is a left-identity ofcat, cat-ASSOC}
[id, comp ◦ (cat × cat) ◦ swap ◦ (wrap × id)]

= { swap-NAT, ×-FUNCTOR}
[id, comp ◦ swap ◦ (cat ◦ wrap × cat)]

= { concatenation with a singleton list,×-FUNCTOR}
[id, comp ◦ swap ◦ (cons × id) ◦ (id × cat)]

= {+-ABSOR}
[id, comp ◦ swap ◦ (cons × id)] ◦ (id + id × cat)

The result of the transformation is thus

reverset : List A → (List A → List A)
reverset = (|[id, comp ◦ swap ◦ (cons× id)]|)1+̂A×̂Id

To see that this is the expected point-free definition ofreverset, we convert it back to pointwise. The
calculation is similar to the one concerningfoldr in section 2.3.

reverset = (|[id, comp ◦ swap ◦ (cons × id)]|)FList

= { cata-UNIQ, definitions ofFList andinFList }
reverset ◦ [nil, cons] = [id, comp ◦ swap ◦ (cons × id)] ◦ (id + id × reverset)

= {+-FUSION, ×-FUNCTOR}
[reverset ◦ nil, reverset ◦ cons] = [id, comp ◦ swap ◦ (cons × reverset)]

= {+-EQUAL }
reverset ◦ nil = id ∧ reverset ◦ cons = comp ◦ swap ◦ (cons × reverset)

= { η-expansion, definitions of the basic combinators}
reverset nil = id ∧ reverset (cons (x, xs)) = (reverset xs) ◦ (cons x)

= { η-expansion, definitions of the basic combinators}
reverset nil y = id y ∧ reverset (cons (x, xs)) y = reverset xs (cons (x, y))

Remark. The following calculation shows that this solution to the premises of cata-FUSION is not
unique.



A. Cunha, J. S. Pinto / Point-free Program Transformation 17

cat ◦ [nil, cat ◦ swap ◦ (wrap × id)]

= {+-FUSION}
[cat ◦ nil, cat ◦ cat ◦ swap ◦ (wrap × id)]

= { nil is a left-identity ofcat, ∧-CANCEL }
[id, cat ◦ ap ◦ (cat × id) ◦ swap ◦ (wrap × id)]

= { swap-NAT, ×-FUNCTOR}
[id, cat ◦ ap ◦ swap ◦ (wrap × cat)]

= {×-FUNCTOR, +-ABSOR}
[id, cat ◦ ap ◦ swap ◦ (wrap × id)] ◦ (id + id × cat)

This leads to the following definition of the accumulation.

reverset : List A → (List A → List A)
reverset = (|[id, cat ◦ ap ◦ swap ◦ (wrap× id)]|)

and in pointwise:

reverse_t :: [a] -> [a] -> [a]
reverse_t [] y = y
reverse_t (x:xs) y = (reverse_t xs [x]) ++ y

This is of course a useless transformation – the resulting function runs in quadratic time and is not
tail-recursive. This shows that some notion of a strategy is necessary for the calculations to be relevant
for our goals. The distinctive feature of a useful transformation in this particular case is its use of the
associativity property of append, not used in the latter transformation.

4. Calculating Accumulations in the Point-free Style

The methodology presented for deriving accumulations using the point-free style is still not very amenable
for mechanization: the calculations require human intervention, not only to decide which law to apply
at each point, but also to identify a good target to guide the derivation. As we have seen, it is possible
to derive accumulations that are not “better” than the original functions. As such, in this section we
will present a set of transformation schemes, categorized by data type, whose derivation is performed
once and for all, and that guarantee the usefulness of the transformation. To apply these transformation
schemes one has to prove very few side conditions (typically, just the associativity of some operator).
These schemes could thus be used asshortcutoptimization rules in an automatic transformation system.
We also demonstrate the application of these rules in a substantial number of examples.

We first present a transformation scheme that encapsulates the methodology for deriving accumula-
tions in the calculational style using fusion. Among others, it is presented also in [7, 19]. We adapt it
here to theCpo setting. This scheme is too general to be useful, but will later be instantiated for specific
data types.

Proposition 4.1. Let⊕ : A×B → B be a left-strict operator with right-identitye : B; then for allx

(|f |)F x = (|g|)F x e ⇐ ⊕ ◦ f = g ◦ F ⊕
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Proof:
This equation can be expressed in point-free as(|f |) = ap ◦ 〈(|g|), e〉, and proved as follows. Notice that
(|g|) = ⊕ ◦ (|f |) is a direct consequence of the hypothesis and cata-FUSION (strictness of⊕ results from
the left-strictness of⊕ and∧-STRICT).

(|f |)
= { e is a right-identity of⊕}

⊕ ◦ 〈id, e〉 ◦ (|f |)
= {×-FUSION, const-FUSION}

⊕ ◦ 〈(|f |), e〉
= {∧-CANCEL }

ap ◦ (⊕× id) ◦ 〈(|f |), e〉
= {×-ABSOR}

ap ◦ 〈⊕ ◦ (|f |), e〉
= { (|g|) = ⊕ ◦ (|f |) }

ap ◦ 〈(|g|), e〉

ut

4.1. Tail-recursive Accumulations over Lists: Associative Operators

We start with the most classic example of applying the accumulation strategy: optimizing the iteration
of an associative operator over a list.

Proposition 4.2. Given a left-strict associative operator⊕ : B×B → B with right identitye, an element
c : B, a functionf : A → B, and two functions defined over lists as

h : List A → B

h = (|[c,⊕ ◦ swap ◦ (f × id)]|)
ht : List A → B → B

ht = (|[⊕ ◦ c, comp ◦ swap ◦ (⊕ ◦ f × id)]|)

Thenh l = ht l e.

Proof:
The following calculation allows us to apply proposition 4.1, withF instantiated to the base functor of
lists.

⊕ ◦ [c,⊕ ◦ swap ◦ (f × id)]

= {+-FUSION, ⊕ left-strict,∧-STRICT}
[⊕ ◦ c,⊕ ◦ ⊕ ◦ swap ◦ (f × id)]

= {⊕-ASSOC}
[⊕ ◦ c, comp ◦ (⊕×⊕) ◦ swap ◦ (f × id)]

= { swap-NAT, ×-FUNCTOR}
[⊕ ◦ c, comp ◦ swap ◦ (⊕ ◦ f ×⊕)]

= {×-FUNCTOR, +-ABSOR}
[⊕ ◦ c, comp ◦ swap ◦ (⊕ ◦ f × id)] ◦ (id + id ×⊕)

ut
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In pointwise this proposition captures the transformation of the function

h nil = c

h (cons(x, xs)) = (h xs)⊕ (f x)

into the tail-recursive
ht nil y = c⊕ y

ht (cons(x, xs)) y = ht xs ((f x)⊕ y)

Remark. This proposition is strongly related to thefirst duality theoremof [6] that states the conditions
under which afoldr can be converted into afoldl. The latter function is well known in the functional
programming community, and encodes precisely a (restricted) notion of tail-recursive accumulations
over lists. It is defined in the standard libraries of Haskell as follows.

foldl :: (b -> a -> b) -> b -> [a] -> b
foldl f z [] = z
foldl f z (x:xs) = foldl f (f z x) xs

In the point-free calculus it is easier to write the following version offoldl that takes its two last arguments
in the reverse order, and where⊕ : A×B → B has the arguments swapped with respect tof.

foldl ⊕ : List A → B → B

foldl ⊕ = (|[id, comp ◦ swap ◦ (⊕× id)]|)

Given this definition, and the definition offoldr of section 2.3, the first duality theorem says that,
given an associative operator⊕ with unit e, we have

foldr (⊕ ◦ swap) e = foldl ⊕ e

From this theorem and some facts about maps, we could easily derive the following alternative for-
mulation of proposition 4.2.

foldr (⊕ ◦ swap) c (mapListf l) = c⊕ (foldl⊕ (mapListf l) e)

Example 4.1. (Reverse)
It is immediate to see that thereverse function of section 3.3 can be transformed directly by applying
proposition 4.2, with the expected result.

Example 4.2. (Product)
We now want to apply proposition 4.2 to derive a tail-recursive implementation of the function that
multiplies all the numbers in a list.

product :: [Int] -> Int
product [] = 1
product (x:xs) = x * (product xs)
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In point-free style this can be written as

product : List Int → Int

product = (|[one,mult]|)

At first examination it seems that proposition 4.2 cannot be applied; however, sincemult is a commutative
operator andidInt × idInt = idInt×Int the above definition is equivalent to the following.

product : List Int → Int

product = (|[one,mult ◦ swap ◦ (id× id)]|)

Now proposition 4.2 can be applied straightforwardly, resulting in the following accumulation (notice
that sinceone is the unit ofmult thenmult ◦ one = id).

productt : List Int → Int → Int

productt = (|[id, comp ◦ swap ◦ (mult× id)]|)

The final tail-recursive implementation in Haskell is

product :: [Int] -> Int
product l = product_t l 1

product_t :: [Int] -> Int -> Int
product_t [] y = y
product_t (x:xs) y = product_t xs (x*y)

Notice that we could also usefoldr to define the accumulations. In this case we would have:

product_t :: [Int] -> Int -> Int
product_t = foldr (\x r y -> r (x*y)) id

This example shows that it is not always immediate to apply the transformation rule of proposi-
tion 4.2. For many operators (namely for commutative operators) the redefinition of the initial catamor-
phism is trivial; the next example presents a situation where this is not so obvious.

Example 4.3. (Insertion Sort)
Consider the following definition of insertion sort.

isort :: (Ord a) => [a] -> [a]
isort [] = []
isort (x:xs) = insert x (isort xs)

whereinsert is the function that performs an ordered insertion in a list. This function can be written as
the catamorphism

isort = (|[nil, insert]|)
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where the type ofinsert is A × List A → List A. This is clearly not an associative operator (nor would
it be with a different order of the arguments). In order to apply the transformation scheme, the definition
has to be considerably modified. First, we notice that

insert = merge ◦ (wrap× id)

wheremerge is the (associative) merge function on sorted lists, which has the empty list as its right
identity. Taking into account thatmerge is also commutative, insertion sort can be redefined as follows.

isort = (|[nil,merge ◦ swap ◦ (wrap× id)]|)

This definition is suitable for transformation using proposition 4.2, with the result (notice thatinsert =
merge ◦ wrap)

isortt = (|[id, comp ◦ swap ◦ (insert× id)]|)

Thus the tail-recursive definition:

isort :: (Ord a) => [a] -> [a]
isort l = isort_t l []

isort_t :: (Ord a) => [a] -> [a] -> [a]
isort_t [] y = y
isort_t (x:xs) y = isort_t xs (insert x y)

This example illustrates that the application of proposition 4.2 may require the introduction of new
functions (as in the generalization strategy) with which to write the initial catamorphism. These may
possibly be later eliminated after the shortcut is applied.

4.2. Tail-recursive Accumulations over Lists: Associative Dual Operators

The previous result can be generalized in order to be applicable to a slightly more general class of
programs. A binary operator⊕ is said to have anassociative dualoperator� [3] if

(x⊕ y)⊕ z = x⊕ (y � z)

In point-free notation the above equality can be written as

⊕ ◦ ⊕ = comp ◦ (⊕×�)

Proposition 4.3. Given a left-strict operator⊕ : B × C → B with right identitye and associative dual
operator� : C × C → C, an elementc : B, a functionf : A → C, and two functions defined as

h : List A → B

h = (|[c,⊕ ◦ swap ◦ (f × id)]|)
ht : List A → C → B

ht = (|[⊕ ◦ c, comp ◦ swap ◦ (� ◦ f × id)]|)

Thenh l = ht l e.
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Proof:
Similar to proposition 4.2 (the associative dual law has a similar formulation to associativity). ut

Example 4.4. (Tree Sorts)
Consider again the definition of insertion sort from example 4.3:

isort = (|[nil,merge ◦ swap ◦ (wrap× id)]|)

There is no reason why an accumulator of a different type cannot be used, such as a binary tree. Without
looking at the details of how such trees are implemented, we consider an abstract data typeTree A to be
used as accumulator. This type comes equipped with the following functions.

treeToList : Tree A → List A (obtains a sorted list of the elements stored in the tree)

mkTree : A → Tree A (produces a tree from a single element)

mergeTree : Tree A× Tree A → Tree A (merges two trees)

Using these we define the function that inserts an element in a tree as

insertTree : A× Tree A → Tree A

insertTree = mergeTree ◦ (mkTree× id)

In order to use trees as accumulators, we now simply try to rewrite the definition ofisort such that
wrap can be replaced bymkTree. The following calculation uses as hypothesis a property that we can
reasonably expect to be verified by our implementation of trees, namelytreeToList ◦mkTree = wrap.

merge ◦ swap ◦ (wrap × id)

= { treeToList ◦ mkTree = wrap }
merge ◦ swap ◦ (treeToList ◦ mkTree × id)

= {×-FUNCTOR}
merge ◦ swap ◦ (treeToList × id) ◦ (mkTree × id)

= { swap-NAT }
merge ◦ (id × treeToList) ◦ swap ◦ (mkTree × id)

If we define⊕ = merge ◦ (id× treeToList) we may then write

isort = (|[nil,⊕ ◦ swap ◦ (mkTree× id)]|)

and moreover the reader will have no difficulty in accepting that the intended implementation of trees
should be such thatmergeTree is the associative dual operator of⊕, i.e.

(l ⊕ t1)⊕ t2 = l ⊕ (mergeTree t1 t2)

The conditions of proposition 4.3 are then verified, yielding the tail-recursive function:

sortt = (|[⊕ ◦ nil, comp ◦ swap ◦ (mergeTree ◦mkTree× id)]|)

This definition may be further simplified taking into account⊕ ◦ nil = treeToList and the definition of
insertTree.

sortt = (|[treeToList, comp ◦ swap ◦ (insertTree× id)]|)
In Haskell we have
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sort_t :: (Ord a) => [a] -> Tree a -> [a]
sort_t [] y = treeToList y
sort_t (x:xs) y = sort_t xs (insertTree x y)

Possible implementations of trees include ordinary binary search trees (with the obvious ordered
insertion operation andtreeToList implemented by an inorder traversal) and leaf trees (withtreeToList
implemented as a fold that for each node converts both left and right sub-trees to sorted lists and then
merges them together). In both cases, if insertion operations are designed to preserve a balanced shape,
O(n lg n) sorting algorithms result.

4.3. Other Accumulations over Lists

We will now further generalize our transformation scheme, to allow for transformations that, while still
based on compositions with associative operators (or operators that have an associative dual), do not
result in tail-recursive functions.

Proposition 4.4. Given a left-strict operator⊕ : B × C → B with right identitye and associative dual
operator� : C × C → C, an elementc : B, a functionf : A → C, and two functions defined as

h : List A → B

h = (|[c,⊕ ◦ swap ◦ (f × g)]|)
ht : List A → C → B

ht = (|[⊕ ◦ c, comp ◦ swap ◦ (� ◦ f × k)]|)

whereg andk are functions such that⊕ ◦ g = k ◦ ⊕, thenh l = ht l e.

Proof:
Again, this is a similar proof to proposition 4.2, where the equality⊕ ◦ g = k ◦ ⊕ is used . ut

The next example illustrates the application of this shortcut law; it also introduces a new higher-order
point-free operator (in the same spirit ascomp). Again, it becomes clear that enriching the calculus with
such operators simplifies the calculations considerably.

Example 4.5. (Initial Sums)
Consider the following function (a slight variation of an example from [19]) that computes the initial
sums of a list.

isums :: [Int] -> [Int]
isums [] = []
isums (x:xs) = map (x+) (0 : isums xs)

This definition can be optimized by introducing an accumulating parameter that at each point will store
the sum of all previous elements in the list. This accumulation can be calculated by fusion from the
equationisumst = ⊕ ◦ isums, where

⊕ : List Int× Int → List Int

⊕ (l, x) = mapList (plus x) l
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Instead of applying fusion directly, we will use proposition 4.4. We begin by definingisums in the
point-free style as a catamorphism using the operator⊕.

isums : List Int → List Int

isums = (|[nil,⊕ ◦ swap ◦ (id× cons ◦ 〈zero, id〉)]|)

In order to apply the transformation we must identify the right identity of⊕ and its associative dual.
The former is obviouslyzero; the latter is� = plus since the following property holds.

(l ⊕ x)⊕ y = mapList (plus y) (mapList (plus x) l) = mapList (plus (plus (x, y))) l = l ⊕ (x� y)

To keep the presentation short, rather than expressing the operator⊕ in the point-free style and proving
certain obvious properties about it, we will take these for granted and concentrate on the part of the
point-free proof that is of interest to us. We must identify a functionk such that

k ◦ ⊕ = ⊕ ◦ cons ◦ 〈zero, id〉

For that, we need to express the equation(cons (x, l)) ⊕ y = cons (plus (x, y), l ⊕ y) in the point-free
calculus. The obvious choice is to express this as⊕◦ (cons× id) = cons◦ (plus×⊕)◦〈π1× id, π2× id〉.
However, likewise to associativity, a formulation of this property involving the curried version of the
operator will ease the burden of the calculations. This implies introducing a new split combinator defined
pointwise assplit (f, g) = 〈f, g〉, and in point-free by the following equation.

split : (BA × CA) → (B × C)A

split = (ap× ap) ◦ 〈π1 × id, π2 × id〉
split-DEF

Using this combinator, the above property can be expressed by the equation

⊕ ◦ cons = cons• ◦ split ◦ (plus×⊕) isums-AUX

as the following calculation shows.

⊕ ◦ cons

= {∧-FUSION}
⊕ ◦ (cons × id)

= {⊕ ◦ (cons × id) = cons ◦ (plus ×⊕) ◦ 〈π1 × id, π2 × id〉 }
cons ◦ (plus ×⊕) ◦ 〈π1 × id, π2 × id〉

= {∧-CANCEL, ×-FUNCTOR, ×-ABSOR}
cons ◦ (ap × ap) ◦ 〈plus ◦ π1 × id,⊕ ◦ π2 × id〉

= {×-CANCEL, ×-DEF}
cons ◦ (ap × ap) ◦ 〈π1 ◦ (plus ×⊕) × id, π2 ◦ (plus ×⊕) × id〉

= {×-FUNCTOR×-FUSION}
cons ◦ (ap × ap) ◦ 〈π1 × id, π2 × id〉 ◦ ((plus ×⊕) × id)

= {∧-FUSION, ∧-ABSOR}
cons• ◦ (ap × ap) ◦ 〈π1 × id, π2 × id〉 ◦ (plus ×⊕)

= { split-DEF}
cons• ◦ split ◦ (plus ×⊕)



A. Cunha, J. S. Pinto / Point-free Program Transformation 25

We can now show very easily thatk = cons• ◦ split ◦ 〈id, id〉.

⊕ ◦ cons ◦ 〈zero, id〉
= { isums-AUX }

cons• ◦ split ◦ (plus ×⊕) ◦ 〈zero, id〉
= {×-ABSOR, zero is a left-identity ofplus }

cons• ◦ split ◦ 〈id,⊕〉
= { const-FUSION}

cons• ◦ split ◦ 〈id ◦ ⊕,⊕〉
= {×-FUSION}

cons• ◦ split ◦ 〈id, id〉 ◦ ⊕

Finally we can apply proposition 4.4 in order to get the desired accumulation (notice that⊕ ◦ nil = nil).

isumst : List Int → Int → List Int

isumst = (|[nil, comp ◦ swap ◦ (plus× cons• ◦ split ◦ 〈id, id〉)]|)

After converting this definition to pointwise Haskell we get the following implementation. Although this
is not a tail-recursive function, it runs in linear time rather than quadratic time as was the case for the
initial specification.

isums :: [Int] -> [Int]
isums l = isums_t l 0

isums_t :: [Int] -> Int -> [Int]
isums_t [] y = []
isums_t (x:xs) y = (x+y) : isums_t xs (x+y)

4.4. Accumulations over Leaf-labelled Trees

We now turn to a different inductive type, that of leaf-labeled binary trees. In general, folds over this
type (functions whose result on a node is a function of the results on both left and right sub-trees) cannot
be made fully tail-recursive; however one of the two recursive invocations can in certain circumstances
be tail-recursive, if an accumulator is used. The current value of the accumulator is passed unchanged
to one of the recursive calls, and the result of this call is then used as the new accumulator value for
the second call. The next proposition shows how this pattern of computation can be calculated in the
point-free calculus, and introduces a shortcut rule for it.

Proposition 4.5. Given a left-strict associative operator⊕ : B×B → B with right identitye, a function
f : A → B, and two functions defined on leaf trees as

h : LTree A → B

h = (|[f,⊕]|)
ht : LTree A → B → B

ht = (|[⊕ ◦ f, comp]|)

Thenh t = ht t e.



26 A. Cunha, J. S. Pinto / Point-free Program Transformation

Proof:
Direct consequence of proposition 4.1, withF instantiated to the base functor of leaf trees (F ⊕ =
id +⊕×⊕), and the following calculation.

⊕ ◦ [f,⊕]

= {+-FUSION, ⊕ left-strict,∧-STRICT}
[⊕ ◦ f,⊕ ◦ ⊕]

= {⊕-ASSOC}
[⊕ ◦ f, comp ◦ (⊕×⊕)]

= {+-ABSOR}
[⊕ ◦ f, comp] ◦ (id + ⊕×⊕)

ut

Example 4.6. (Leaves)
Proposition 4.5 can be used to optimize the definition of theO(n2) left-to-right traversal function.

leaves :: LTree a -> [a]
leaves (Leaf x) = [x]
leaves (Branch l r) = (leaves l) ++ (leaves r)

This function can be defined in the point-free style as follows.

leaves : LTree A → List A

leaves = (|[wrap, cat]|)

Considering thatcat ◦ wrap = cons we obtain the following fasterO(n) version with accumulations.

leavest : LTree A → List A → List A

leavest = (|[cons, comp]|)

The implementation of this optimized version with explicit recursion is

leaves :: LTree a -> [a]
leaves t = leaves_t t []

leaves_t :: LTree a -> [a] -> [a]
leaves_t (Leaf x) m = x:m
leaves_t (Branch l r) m = leaves_t l (leaves_t r m)

Remark. This example has been presented by Bird and de Moor [7] using exactly the same point-free
definitions. However, their calculation uses a pointwise definition ofcomp, which prevents them from
reasoning about associativity in the point-free style.
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4.5. Accumulations over Rose Trees

A different variety of binary trees is that in which the nodes, rather than the leaves, are labeled. Rather
than considering that type here, we turn to a node-labeled type that allows for a variable branch factor.
This type can be generated by the following regular functor, defined using the type functor of lists.

Rose A = µ(A ×̂ List)
node : A× List(Rose A) → Rose A

This data type has a single constructor and can represent non-empty trees only. It can be implemented
in Haskell asdata Rose a = Node a [Rose a]. Notice that folds over this type are functions that
combine the contents of each node with a list of recursive results.

Proposition 4.6. Given a left-strict associative operator⊕ : B×B → B with right identitye, an element
c : B, a functionf : A → B, and two functions defined on rose trees as

h : Rose A → B

h = (|⊕ ◦ swap ◦ (f × (|[c,⊕]|))|)
ht : Rose A → B → B

ht = (|comp ◦ swap ◦ (⊕ ◦ f × (|[⊕ ◦ c, comp]|))|)

Thenh t = ht t e. Notice that, in both functions, the outer catamorphism traverses a rose tree (functor
A ×̂ List), while the inner one traverses a list (functor1 +̂ A ×̂ Id).

Proof:
Direct consequence of proposition 4.1 and the following calculation, withF instantiated to the base
functor of rose trees (F ⊕ = id×mapList⊕).

⊕ ◦ ⊕ ◦ swap ◦ (f × (|[c,⊕]|))
= {⊕-ASSOC}

comp ◦ (⊕×⊕) ◦ swap ◦ (f × (|[c,⊕]|))
= { swap-NAT, ×-FUNCTOR}

comp ◦ swap ◦ (⊕ ◦ f ×⊕ ◦ (|[c,⊕]|))
= { cata-FUSION, ⊕ left-strict,∧-STRICT}2666666666664

⊕ ◦ [c,⊕]

= {+-FUSION, ⊕ left-strict,∧-STRICT}
[⊕ ◦ c,⊕ ◦ ⊕]

= {⊕-ASSOC}
[⊕ ◦ c, comp ◦ (⊕×⊕)]

= {×-FUNCTOR, +-ABSOR}
[⊕ ◦ c, comp ◦ (⊕× id)] ◦ (id + id ×⊕)

comp ◦ swap ◦ (⊕ ◦ f × (|[⊕ ◦ c, comp ◦ (⊕× id)]|))
= {+-ABSOR}

comp ◦ swap ◦ (⊕ ◦ f × (|[⊕ ◦ c, comp] ◦ (id + ⊕× id)|))
= { fold-map-FUSION}

comp ◦ swap ◦ (⊕ ◦ f × (|[⊕ ◦ c, comp]|) ◦ mapList⊕)

= {×-FUNCTOR}
comp ◦ swap ◦ (⊕ ◦ f × (|[⊕ ◦ c, comp]|)) ◦ (id × mapList⊕)

ut
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Example 4.7. (Postorder)
Consider the following Haskell function that performs a postorder traversal of a rose tree.

post :: Rose a -> [a]
post (Node x l) = (aux l) ++ [x]

where aux [] = []
aux (x:xs) = (post x) ++ (aux xs)

This function can be expressed in point-free style as

post : Rose A → List A

post = (|cat ◦ swap ◦ (wrap× (|[nil, cat]|))|)

where a catamorphism is used to process the list of results of recursive calls. Proposition 4.6 then allows
us to transform this into the following linear time accumulation (we also use some obvious facts about
cat to further simplify the result).

postt : Rose A → List A → List A

postt = (|comp ◦ swap ◦ (cons× (|[id, comp]|))|)

The optimized version can be implemented in Haskell as follows.

post :: Rose a -> [a]
post r = post_t r []

post_t :: Rose a -> [a] -> [a]
post_t (Node x l) m = aux l (x:m)

where aux [] m = m
aux (x:xs) m = post_t x (aux xs m)

5. Functions with more than one accumulator

We now get back to the accumulation pattern seen in section 4.4 for leaf-trees. Recall that the value of
the accumulator received when processing a node was passed directly to one of the recursive calls, and
the result of this call used as the accumulator value for the second call. This is not however the only
possibility; certain functions require that the value of the accumulator at the root be received also by the
second recursive call. In this situation two accumulators have to be used.

This section presents a concrete example of such a derivation, for the function that determines the
height of a binary tree. The example requires the introduction of another point-free operator in the
calculus; this is an alternative exponentiation operator that implements a post composition: in addition
to fA g = f ◦ g we will also defineAf g = g ◦ f .

Givenf : B → C, this combinator has the following point-free definition.

Af : AC → AB

Af = ap ◦ (id× f)
pexp-DEF
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Likewise to the normal exponentiation we will use• for the superscript when the information about the
type is not relevant.

Example 5.1. (Height)
We begin with the following straightforward implementation.

height :: LTree a -> Int
height (Leaf x) = 0
height (Branch l r) = 1 + max (height l) (height r)

This can be written as the catamorphism

height : LTree A → Int

height = (|[zero, succ ◦max]|)

The specification ofht uses two accumulators: the first,d, will store the depth of the current node
while traversing the tree; the second,m, will store the maximum depth so far. The specification for
fusion is thus, in pointwise and point-free respectively,

heightt t d m = max (plus (height t, d),m)

heightt = max• ◦ plus ◦ height

This specification allows us to apply fusion in two steps: first we fuseheight with plus to introduce
the first accumulating parameter, and then we fuse the result withmax• for the second. For the first
calculation the following properties aboutplus, max, andsucc need to be expressed in point-free style.

plus (max (x, y), z) = max (plus (x, z), plus (y, z))
plus (succ x, y) = plus (x, succ y)

The first is similar to the one that motivated the introduction of thesplit combinator in example 4.3; the
second can be written using the new exponentiation combinator – a simple proof allows us to obtain this
as a consequence of the straightforwardplus ◦ (succ× id) = plus ◦ (id× succ).

plus ◦max = max• ◦ split ◦ (plus× plus) plus-MAX

plus ◦ succ = •succ ◦ plus plus-SUCC

For the fusion withplus we proceed with the following calculation. Notice that this operator is strict
due to∧-STRICT and the left strictness ofplus.

plus ◦ [zero, succ ◦ max]

= {+-FUSION, plus strict}
[plus ◦ zero, plus ◦ succ ◦ max]

= { zero is a left-identity ofplus, plus-SUCC}
[id, •succ ◦ plus ◦ max]

= { plus-MAX }
[id, •succ ◦ max• ◦ split ◦ (plus × plus)]

= {+-ABSOR}
[id, •succ ◦ max• ◦ split] ◦ (id + plus × plus)
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The result of the first fusion is thenheightt = max•◦(|[id, •succ◦max•◦split]|). The next calculation
uses the following laws about the exponentiation combinators andsplit. See [9] for proofs.

f• ◦ g = f ◦ g const-EXP

f• ◦ •g = •g ◦ f• pexp-EXP

split ◦ (f• × g•) = (f × g)• ◦ split split-EXP

Notice thatmax• is strict due to the left-strictness ofmax, ∧-STRICT, and the definition of the
exponentiation operator.

max• ◦ [id, •succ ◦ max• ◦ split]

= {+-FUSION, max• strict}
[max• ◦ id, max• ◦ •succ ◦ max• ◦ split]

= { const-EXP, pexp-EXP}
[max , •succ ◦ max• ◦ max• ◦ split]

= {∧-FUNCTOR, max-ASSOC}
[max , •succ ◦ (comp ◦ (max × max))• ◦ split]

= {∧-FUNCTOR, split-EXP}
[max , •succ ◦ comp• ◦ split ◦ (max• × max•)]

= {+-ABSOR}
[max , •succ ◦ comp• ◦ split] ◦ (id + max• × max•)

This calculation yields an accumulation defined as follows.

heightt : LTree A → Int → Int → Int

heightt = (|[max , •succ ◦ comp• ◦ split]|)
After expanding the definitions of the combinators we get the following implementation, where one of
the recursive calls has been made tail-recursive.

height :: LTree a -> Int
height t = height_t t 0 0

height_t :: LTree a -> Int -> Int -> Int
height_t (Leaf x) d m = max d m
height_t (Branch l r) d m = height_t l (d+1) (height_t r (d+1) m)

Remark. The notion of post composition already appeared in [13] as a mean to express some properties
about higher-order functions. Similarly tocomp in [7], it was defined in pointwise style.

6. Transforming Hylomorphisms into Accumulations

The goal of this section is to show that the application of the techniques presented in this paper is not
restricted to catamorphisms. In fact, almost every recursive definition can be expressed as ahylomor-
phism[25], a recursion pattern that corresponds to the composition of a catamorphism with an instance
of another recursion pattern we have not yet mentioned:anamorphisms.
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Anamorphisms. Although already known for a long time, anamorphisms are still not very popular
among programmers [16]. They correspond to the dual construction of catamorphisms, in the sense
that they encode the simplest way of producing values of a recursive type. Given a function of type
g : B → F B, the anamorphism generated byg (denotedbd(g)ce) is defined as follows.

bd(g)ceF : B → µF

bd(g)ceF = µ(λf · inF ◦ Ff ◦ g)
ana-DEF

Functiong (sometimes called thegeneof the pattern) is used to control the generation of values of
typeµF . As was the case for catamorphisms, a standard Haskell function (calledunfoldr) exists that
encodes this recursion pattern for the particular case of lists.

unfoldr :: (b -> Maybe (a,b)) -> b -> [a]
unfoldr f b = case f b of Nothing -> []

Just (a,b) -> a : unfoldr f b

Notice that the type of the first parameter is isomorphic to the expectedB → 1+A×B, since theMaybe
data type is declared in the standard Haskell libraries asdata Maybe a = Nothing | Just a. When
g returnsNothing the generation of the list stops; otherwiseg returns a pair with a value for the head of
the list and a seed used to recursively generate the tail of the list.

As an example of an anamorphism we give the following function that produces the list of all values
from a given inputn down to 1. pred : Int → Int and iszero : Int → Bool are, respectively, the
predecessor and test for zero functions.

from : Int → List Int

from = bd((id + 〈id, pred〉) ◦ iszero?)ce

Hylomorphisms. By constructing an intermediate data-structure with an anamorphism and then pro-
cessing it with a catamorphism, more complex forms of recursion can be captured. The following equiv-
alence ensures that a single recursive definition results from such a composition.

(|g|)F ◦ bd(h)ceF = µ(λf · g ◦ Ff ◦ h) hylo-FUSION

More precisely, this law states that the catamorphism and the anamorphism can be fused together in a sin-
gle definition, avoiding the construction of the intermediate data structure. We remark that it is possible
to automatically derive pointwise hylomorphisms from almost any explicitly recursive definition [18].

From the above law it is clear that the computations after and before recursion are performed, re-
spectively, by the parameters of the catamorphism and the anamorphism. A consequence of this fact is
that if, by using an accumulation parameter, the catamorphism can be transformed into a tail recursive
definition, the resulting hylomorphism will also necessarily be tail recursive. The next example shows
how to transform a function that does not fit the simple fold recursion pattern.

Example 6.1. (Factorial)
To exemplify the application of the accumulation technique to a function that cannot be directly defined
as a catamorphism, consider the standard definition of factorial.
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fact :: Int -> Int
fact 0 = 1
fact (n+1) = (fact n) * (n+1)

This function can be expressed as the hylomorphism

fact : Int → Int

fact = product ◦ from

whereproduct is the catamorphism of example 4.2, which can be transformed into a tail recursive func-
tion productt by introducing an accumulating parameter. By definingfactt = productt ◦ from, then
applying hylo-FUSION and unfolding the fixpoint operator, we get the following equation.

factt = [id, comp ◦ swap ◦ (mult× id)] ◦ (id + id× factt) ◦ (id + 〈id, pred〉) ◦ iszero?

This can be simplified tofactt = [id, comp ◦ swap ◦ 〈mult, factt ◦ pred〉] ◦ iszero?. The factorial function
can then be rewritten asfact n = factt n one, bearing in mind thatone is the unit ofmult . In pointwise
Haskell, this corresponds, as expected, to the following tail-recursive implementation.

fact :: Int -> Int
fact n = fact_t n 1

fact_t :: Int -> Int -> Int
fact_t 0 y = y
fact_t n y = fact_t (n-1) (n * y)

7. Related Work

There have been some attempts to develop automatic systems for program transformation using shortcut
fusion in pointwise style. One of the most successful is the MAG system developed by Sittampalam and
de Moor [26, 31]. This system is not fully automatic, but relies on the notion ofactive source, that is, the
original (inefficient) definitions are stored together with sufficient hints (namely, the specification that
results from the generalization strategy, and the creative steps of the derivation) that enable the system to
derive the efficient version. It has been applied to perform transformations using both the accumulation
and tupling strategies.

At the core of this system lies a term rewriting mechanism that, given a set of transformation rules,
tries to apply them from left to right in the order in which they appear in the active source, repeating
this process until no rule can be applied. The use of a shortcut fusion rule instead of fold/unfold trans-
formations makes it unnecessary to apply equations in more than one direction. In order to cope with
the side-conditions of the fusion rule, this mechanism includes a higher-order matching algorithm that is
capable of deriving mechanically new function definitions (like theh function in foldr-FUSION). MAG
does not require the original functions to be defined directly as catamorphisms, since such definitions
can be derived automatically. The technique that allows to do this was introduced in [22], and basically
consists in trying to fuse the original definition with the identity fold (defined asfoldr cons nil for lists).
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Among the drawbacks of this system we have the fact that it does not include a strictness analyzer,
leaving to the user the manual verification of part of the side-conditions of the fusion rule. Another
drawback is that the rewriting system is quite limited; for a transformation to succeed, the user must
be careful about the order in which the transformation rules are stated in the active source. The same
foresight applies to the definitions themselves. As the authors say [31]:

. . . to use MAG to mechanize a fusion derivation, one must first have some idea of what
the derivation will be – what MAG does for the programmer is to deal with the details of the
derivation, and to make it repeatable without needing to store it with the program.

Hu, Iwasaki, and Takeichi have used a calculational approach to several program transformation
techniques, including deforestation [18], tupling [20], and accumulations [19]. In this latter work, the
authors present a methodology for deriving accumulations using fusion, where the expected structure of
the parameters of catamorphisms is used to facilitate the derivations. Unlike in the MAG system, the
generic definition of catamorphisms (and fusion) is used, but most of the expressions are still defined
in the pointwise style. Although the authors suggest that their method is amenable to automation, they
present no hints on how to do it. Due to the generality of the transformation laws and the use of pointwise
definitions, it is likely that it would also require some form of higher-order matching.

Meijer, Fokkinga, and Paterson [25] have introduced a transformation rule quite similar to proposi-
tion 4.2, for deriving accumulations from functions defined over lists. Besides dealing with associative
operators, it also covers operators with associative duals. This generality complicates the formalization
of the rule by not making the associativity properties explicit, and introducing side-conditions whose
mechanical verification is not trivial: to apply the rule one needs to discover new operators, which again
implies the use of a higher-order matching algorithm. The rule is expressed in a mixed style that includes
both point-free and pointwise definitions: the former is used for writing the catamorphisms, and the latter
for defining the (associativity-like) properties of the operators.

The work of Sheard and Fegaras on the derivation of accumulations [30] also bears some similarities
to ours (even though no fusion or point-free style are used). A syntactic transformation algorithm is
defined for recognizing folds that are amenable to be implemented as accumulations, and automatically
converts them into the higher-order folds that define them. For the particular case of lists, the transfor-
mation is similar to the one defined by proposition 4.2, with the occurrences of the associative operator
being replaced by composition. The authors also acknowledge similarities between this transformation
and the classic continuation-passing style transformation. The main advantage of this approach is that
the transformation algorithm can be generically applied to folds over any data-type, as long as the in-
volved operator is associative. As such it also covers for instance, proposition 4.5 for transformation of
functions over leaf trees.

Accumulations are usually defined as higher-order catamorphisms. However, other approaches have
been proposed using different recursion patterns. For instance, it is known that some accumulations
can be expressed as regular first order anamorphisms. That is the case of the so-calleddownwards
accumulations, functions that label each node of a data structure by applying a function to its ancestors
(i.e. information flows in a top-down fashion). Malcolm used anamorphisms to define this kind of
accumulations for infinite lists [23], and later, Gibbons presented a generic definition that works for any
regular data type [14]. Given a binary operator⊕ : B × A → A, we could slightly change Malcolm’s
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definition to work on finite lists as follows.

da ⊕ : List B ×A → List A

da ⊕ = bd((π1 + 〈π2, (id×⊕) ◦ assocr ◦ (swap× id)〉) ◦ distl ◦ (out× id))ce

This function can be implemented in Haskell as follows (notice that it is very similar to the standard
Haskell functionscanl).

da :: ((b, a) -> a) -> ([b], a) -> [a]
da op ([], b) = []
da op (x:xs, b) = b:(da op (xs, op (x, b)))

With da we can define the function that computes the initial (reversed) segments of a list as follows.

inits : List A → List List A

inits = da cons ◦ 〈id, nil〉

Using these definitions, Malcolm proves the following shortcut fusion rule, that can be used to im-
prove the efficiency of a function of typeList B → List A. The operator⊕ has typeB × A → A and
e : A. Gibbons also generalized this rule to work with any regular data type.

(mapList(|[e,⊕]|) ◦ inits) l = da⊕ (l, e)

Notice that this rule does not have side conditions (not even the associativity of⊕ is required). The left
side of the equation can be seen as a clear specification of downwards accumulations for the particular
case of lists, while the right side is the expected efficient implementation. As an example, this rule can
be used to transform the following (very easy to understand) specification of a function very similar to
isums of example 4.5

isums′ : List Int → List Int

isums′ = mapListsum ◦ inits

into the efficient implementationisums′ l = da plus (l, zero).
Without resorting to higher-order, it is still possible to express a wide range of accumulations using

the hylomorphism recursion pattern. Pardo followed this approach in order to define a generic accumula-
tion operator that supersedes the one proposed by Gibbons [27]. Although no further specialization was
carried out, he defines a general transformation rule similar to proposition 4.1 using the new operator.
Although powerful, this definition of accumulations is not as expressive as the one used in this paper –
for example, it is not possible to define the accumulation of example 4.6.

There is some research work in program transformation with accumulations that is not concerned
with deriving accumulations from recursive definitions, but rather with studying fusion of functions
already defined as accumulations [19, 14, 27, 32]. This work aims at developing the calculus in order to
prove facts likeproduct (reverset l nil) = productt l one.
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8. Conclusions

In this paper we have shown how the classic accumulation strategy can be applied using calculation in
a pure point-free style. We have briefly compared this approach with the standard fold/unfold transfor-
mations, and pointwise calculation. The main similarity between all these techniques is the need for
a creative step for writing the initial specification that will be transformed (the generalization step of
fold/unfold transformations). Our emphasis was on finding generic transformation schemes for various
data types, that can be used as shortcut optimization rules in an automatic transformation system. We
have also presented a point-free derivation of a function with two accumulating parameters, emphasizing
the modularity of the calculational approach – the accumulating arguments were introduced in separate,
simpler fusion steps. Although we have focused on a specific transformation strategy, it is our belief
that exactly the same approach can be followed for other transformation techniques, such as tupling or
deforestation.

In order to cope with calculations in a higher-order setting, we have felt the need to internalize
uncurried versions of some of the basic combinators as point-free definitions. This was the case for the
composition and split combinators. Fundamental properties, like the associativity of curried operators,
can be succinctly expressed using these definitions, leading to major simplifications in the calculations.
We have also introduced a new point-free exponentiation operator, equivalent to the right-sectioning of
the composition combinator.

Other contributions of the paper include the generalization of the approach to a broader class of
recursive definitions (by using hylomorphisms), and a clarification of the strictness side-conditions that
characterize the accumulation strategy in theCpo domain. As was shown, strictness analysis can also
be made by calculation – the strictness side-conditions were derived from a basic set of laws concerning
the strictness properties of the basic combinators and recursion patterns.

There are some limitations in our methodology: first, it is still not clear how to automatically derive
point-free expressions from the typical pointwise definitions most programmers use; second, as shown
in example 4.3, it is sometimes necessary to (non-trivially) change the initial definition of a program to
enable the application of the transformation rules.

In the near future we intend to develop a transformation system for point-free programs, based on
a term-rewriting approach. The idea is to take advantage of the pure point-free style to circumvent
the need for a higher-order matching algorithm for finding the “unknowns” in the transformation rules.
This means that we can follow a simpler approach, as in Bird’s functional calculator [6]. With this
system we hope to provide practical evidence of the advantages of using a point-free style for program
transformation by calculation.
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A. Some Laws About Products, Coproducts, and Exponentials

〈π1, π2〉 = id ×-REFLEX

π1 ◦ 〈f, g〉 = f ∧ π2 ◦ 〈f, g〉 = g ×-CANCEL

〈f, g〉 ◦ h = 〈f ◦ h, g ◦ h〉 ×-FUSION

(f × g) ◦ 〈h, i〉 = 〈f ◦ h, g ◦ i〉 ×-ABSOR

(f × g) ◦ (h× i) = f ◦ h× g ◦ i ×-FUNCTOR

〈f, g〉 = 〈h, i〉 ⇔ f = h ∧ g = i ×-EQUAL

〈f, g〉 strict ⇔ f strict ∧ g strict ×-STRICT



38 A. Cunha, J. S. Pinto / Point-free Program Transformation

[i1, i2] = id +-REFLEX

[f, g] ◦ i1 = f ∧ [f, g] ◦ i2 = g +-CANCEL

f ◦ [g, h] = [f ◦ g, f ◦ h] ⇐ f strict +-FUSION

[f, g] ◦ (h + i) = [f ◦ h, g ◦ i] +-ABSOR

(f + g) ◦ (h + i) = f ◦ h + g ◦ i +-FUNCTOR

[f, g] = [h, i] ⇔ f = h ∧ g = i +-EQUAL

∀f, g · [f, g] strict +-STRICT

ap = id ∧-REFLEX

f = ap ◦ (f × id) ∧-CANCEL

f ◦ (g × id) = f ◦ g ∧-FUSION

fA ◦ g = f ◦ g ∧-ABSOR

(f ◦ g)A = fA ◦ gA ∧-FUNCTOR

f = g ⇔ f = g ∧-EQUAL

f strict ⇔ f left-strict ∧-STRICT


