
Type-Safe Two-Level Data Transformation

Alcino Cunha, José Nuno Oliveira, and Joost Visser

Universidade do Minho, Portugal

FM’06, August 24th



Introduction Data Refinement Implementation Example Conclusion

Outline

1 Introduction

2 Data Refinement

3 Implementation

4 Example

5 Conclusion



Introduction Data Refinement Implementation Example Conclusion

Motivation

Two-level Type-level transformation of a data format coupled
with the corresponding value-level transformation of
data instances.

Type-safe Type-checking guarantees that the data migration
functions are well-formed with respect to the
type-level transformation.

User-driven XML schema evolution coupled with document
migration.

Automated Data mappings for storing XML in relational
databases.



Introduction Data Refinement Implementation Example Conclusion

Motivation

Two-level Type-level transformation of a data format coupled
with the corresponding value-level transformation of
data instances.

Type-safe Type-checking guarantees that the data migration
functions are well-formed with respect to the
type-level transformation.

User-driven XML schema evolution coupled with document
migration.

Automated Data mappings for storing XML in relational
databases.



Introduction Data Refinement Implementation Example Conclusion

Motivation

Two-level Type-level transformation of a data format coupled
with the corresponding value-level transformation of
data instances.

Type-safe Type-checking guarantees that the data migration
functions are well-formed with respect to the
type-level transformation.

User-driven XML schema evolution coupled with document
migration.

Automated Data mappings for storing XML in relational
databases.



Introduction Data Refinement Implementation Example Conclusion

Ingredients

Concrete data models are abstracted as Haskell data types.

Type-level transformations are data refinements.

Strategic programming to compose flexible rewrite systems.



Introduction Data Refinement Implementation Example Conclusion

Data Refinement

An abstract type A is mapped to a concrete type B

Representation Injective and total.

Abstraction Surjective and possibly partial. A

to

''≤ B

from

gg



Introduction Data Refinement Implementation Example Conclusion

Examples of Refinements

Format evolution

A

inject
**

≤ A + B

isleft

gg A

pairwith(b)
**

≤ A× B

project

gg

Hierarchical to relational mappings

A ⇀ (B × (C ⇀ D))

unnjoin
--

≤ (A ⇀ B)× (A× C ⇀ D)

njoin

mm



Introduction Data Refinement Implementation Example Conclusion

Examples of Refinements

Format evolution

A

inject
**

≤ A + B

isleft

gg A

pairwith(b)
**

≤ A× B

project

gg

Hierarchical to relational mappings

A ⇀ (B × (C ⇀ D))

unnjoin
--

≤ (A ⇀ B)× (A× C ⇀ D)

njoin

mm



Introduction Data Refinement Implementation Example Conclusion

Composition of Refinements

Sequential composition

A

to

''≤ B

from

gg ∧ B

to′

''≤ C

from′

gg ⇒ A

to′·to
''≤ C

from·from′

gg

Nesting

A

to

''≤ B

from

gg ⇒ F A

F to
((

≤ F B

F from

hh



Introduction Data Refinement Implementation Example Conclusion

Composition of Refinements

Sequential composition

A

to

''≤ B

from

gg ∧ B

to′

''≤ C

from′

gg ⇒ A

to′·to
''≤ C

from·from′

gg

Nesting

A

to

''≤ B

from

gg ⇒ F A

F to
((

≤ F B

F from

hh



Introduction Data Refinement Implementation Example Conclusion

Strategic Programming

Apply refinement steps . . .

in what order?
how often?
at what depth?
under which conditions?

Compose rewrite systems from:

basic rewrite rules and
combinators for traversal construction.

Combinators

(>>>) :: Rule -> Rule -> Rule
(|||) :: Rule -> Rule -> Rule
nop :: Rule
many :: Rule -> Rule
once :: Rule -> Rule



Introduction Data Refinement Implementation Example Conclusion

Strategic Programming

Apply refinement steps . . .

in what order?
how often?
at what depth?
under which conditions?

Compose rewrite systems from:

basic rewrite rules and
combinators for traversal construction.

Combinators

(>>>) :: Rule -> Rule -> Rule
(|||) :: Rule -> Rule -> Rule
nop :: Rule
many :: Rule -> Rule
once :: Rule -> Rule



Introduction Data Refinement Implementation Example Conclusion

Strategic Programming

Apply refinement steps . . .

in what order?
how often?
at what depth?
under which conditions?

Compose rewrite systems from:

basic rewrite rules and
combinators for traversal construction.

Combinators

(>>>) :: Rule -> Rule -> Rule
(|||) :: Rule -> Rule -> Rule
nop :: Rule
many :: Rule -> Rule
once :: Rule -> Rule



Introduction Data Refinement Implementation Example Conclusion

Representation of Types

The Type of Types

data Type a where
Int :: Type Int
String :: Type String
One :: Type ()
List :: Type a -> Type [a]
Map :: Type a -> Type b -> Type (Map a b)
Either :: Type a -> Type b -> Type (Either a b)
Prod :: Type a -> Type b -> Type (a,b)
Tag :: String -> Type a -> Type a



Introduction Data Refinement Implementation Example Conclusion

Type-Changing Rewrite Rules

How to combine strategic programming with type-changing rules?

Masquerade Changes as Views

data Rep a b = Rep {to :: a -> b, from :: b -> a}

data View a where
View :: Rep a b -> Type b -> View (Type a)

The Type of Rules

type Rule = forall a . Type a -> Maybe (View (Type a))



Introduction Data Refinement Implementation Example Conclusion

Type-Changing Rewrite Rules

How to combine strategic programming with type-changing rules?

Masquerade Changes as Views

data Rep a b = Rep {to :: a -> b, from :: b -> a}

data View a where
View :: Rep a b -> Type b -> View (Type a)

The Type of Rules

type Rule = forall a . Type a -> Maybe (View (Type a))



Introduction Data Refinement Implementation Example Conclusion

Examples of Rules

Refine Lists by Maps

A?

seq2index
))

≤ IN ⇀ A

list

hh

Rule Implementation

listmap :: Rule
listmap (List a) = Just (View rep (Map Int a))

where rep = Rep {to = seq2index, from = list}
listmap _ = Nothing

Rewrite System for Hierarchical-to-Relational Mapping

flatten :: Rule
flatten = many (once (listmap ||| mapprodmap ||| ...))



Introduction Data Refinement Implementation Example Conclusion

Examples of Rules

Refine Lists by Maps

A?

seq2index
))

≤ IN ⇀ A

list

hh

Rule Implementation

listmap :: Rule
listmap (List a) = Just (View rep (Map Int a))

where rep = Rep {to = seq2index, from = list}
listmap _ = Nothing

Rewrite System for Hierarchical-to-Relational Mapping

flatten :: Rule
flatten = many (once (listmap ||| mapprodmap ||| ...))



Introduction Data Refinement Implementation Example Conclusion

Examples of Rules

Refine Lists by Maps

A?

seq2index
))

≤ IN ⇀ A

list

hh

Rule Implementation

listmap :: Rule
listmap (List a) = Just (View rep (Map Int a))

where rep = Rep {to = seq2index, from = list}
listmap _ = Nothing

Rewrite System for Hierarchical-to-Relational Mapping

flatten :: Rule
flatten = many (once (listmap ||| mapprodmap ||| ...))



Introduction Data Refinement Implementation Example Conclusion

Unleashing the Migration Functions

The target type is existentially quantified in a view.

Since its not known statically we can use a staged approach:
1 Apply the intended transformation to compute it dynamically

and get its string representation using showType.
2 Incorporate that string in the source and unleash the migration

functions.

forth :: View (Type a) -> Type b -> a -> Maybe b
back :: View (Type a) -> Type b -> b -> Maybe a

data Equal a b where Eq :: Equal a a
teq :: Type a -> Type b -> Maybe (Equal a b)



Introduction Data Refinement Implementation Example Conclusion

Evolution of a Music Album Format

Concrete XML Schema

<element name="Album" type="AlbumType"/>
<complexType name="AlbumType">

<attribute name="ASIN" type="string"/>
<attribute name="Title" type="string"/>
<attribute name="Artist" type="string"/>
<attribute name="Format"><simpleType base="string">

<enumeration value="LP"/><enumeration value="CD"/>
</simpleType></attribute>

</complexType>



Introduction Data Refinement Implementation Example Conclusion

Evolution of a Music Album Format

Abstract Haskell Type

albumFormat = Tag "Album" (
Prod (Tag "ASIN" String) (
Prod (Tag "Title" String) (
Prod (Tag "Artist" String) (

Tag "Format" (Either (Tag "LP" One)
(Tag "CD" One))))))

evolve =

once (inside "Format" (addalt (Tag "DVD" One))) >>>
once (inside "Album" (addfield (List String) query))



Introduction Data Refinement Implementation Example Conclusion

Evolution of a Music Album Format

Abstract Haskell Type

albumFormat = Tag "Album" (
Prod (Tag "ASIN" String) (
Prod (Tag "Title" String) (
Prod (Tag "Artist" String) (

Tag "Format" (Either (Tag "LP" One)
(Tag "CD" One))))))

evolve =

once (inside "Format" (addalt (Tag "DVD" One))) >>>
once (inside "Album" (addfield (List String) query))



Introduction Data Refinement Implementation Example Conclusion

Mapping Albums to Relational Tables

tordb =

once enum2int >>> removetags >>> flatten

Computing the Target Type

> let (Just vw) = evolve >>> tordb (List albumFormat)
> showType vw
Prod (Map Int

(Prod (Prod (Prod String String) String) Int))
(Map (Prod Int Int) String)



Introduction Data Refinement Implementation Example Conclusion

Mapping Albums to Relational Tables

tordb =

once enum2int >>> removetags >>> flatten

Computing the Target Type

> let (Just vw) = evolve >>> tordb (List albumFormat)
> showType vw
Prod (Map Int

(Prod (Prod (Prod String String) String) Int))
(Map (Prod Int Int) String)



Introduction Data Refinement Implementation Example Conclusion

Data Migration

Sample

lp = ("B000002UB2",("Abbey Road",("Beatles",Left ())))
cd = ("B000002HCO",("Debut",("Bjork",Right ())))

Migrating Data

> let dbs = Prod (Map ...) (Map (Prod Int Int) String)
> let (Just db) = forth vw dbs [lp,cd]
> db
({0 := ((("B000002UB2","Abbey Road"),"Beatles"),0),

1 := ((("B000002HCO","Debut"),"Bjork"),1)},
{(0,0) := "Come Together",
(0,1) := "Something",
...})



Introduction Data Refinement Implementation Example Conclusion

Data Migration

Sample

lp = ("B000002UB2",("Abbey Road",("Beatles",Left ())))
cd = ("B000002HCO",("Debut",("Bjork",Right ())))

Migrating Data

> let dbs = Prod (Map ...) (Map (Prod Int Int) String)
> let (Just db) = forth vw dbs [lp,cd]
> db
({0 := ((("B000002UB2","Abbey Road"),"Beatles"),0),

1 := ((("B000002HCO","Debut"),"Bjork"),1)},
{(0,0) := "Come Together",
(0,1) := "Something",
...})



Introduction Data Refinement Implementation Example Conclusion

Conclusion

Conclusions:

Type-safe formalization of two-level data transformations.
Haskell’s type system, namely GADTs, allows a direct and
elegant implementation.
Allows flexible rewrite systems but termination and confluence
is not guaranteed.
Restricted to single-recursive data types.

Current status:

Coupled transformation of data processing programs, such as
queries expressed in a point-free notation.
Front-ends for XML and SQL database schemas.

Future work:

Bi-directional programming.
Data types with invariants.
Mutually-recursive data types.



Introduction Data Refinement Implementation Example Conclusion

Conclusion

Conclusions:

Type-safe formalization of two-level data transformations.
Haskell’s type system, namely GADTs, allows a direct and
elegant implementation.
Allows flexible rewrite systems but termination and confluence
is not guaranteed.
Restricted to single-recursive data types.

Current status:

Coupled transformation of data processing programs, such as
queries expressed in a point-free notation.
Front-ends for XML and SQL database schemas.

Future work:

Bi-directional programming.
Data types with invariants.
Mutually-recursive data types.



Introduction Data Refinement Implementation Example Conclusion

Conclusion

Conclusions:

Type-safe formalization of two-level data transformations.
Haskell’s type system, namely GADTs, allows a direct and
elegant implementation.
Allows flexible rewrite systems but termination and confluence
is not guaranteed.
Restricted to single-recursive data types.

Current status:

Coupled transformation of data processing programs, such as
queries expressed in a point-free notation.
Front-ends for XML and SQL database schemas.

Future work:

Bi-directional programming.
Data types with invariants.
Mutually-recursive data types.


	Introduction
	Introduction

	Data Refinement
	Data Refinement

	Implementation
	Implementation

	Example
	Example

	Conclusion
	Conclusion


