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Motivation

Two-level Type-level transformation of a data format coupled
with the corresponding value-level transformation of
data instances.

Type-safe Type-checking guarantees that the data migration
functions are well-formed with respect to the
type-level transformation.

User-driven XML schema evolution coupled with document
migration.

Automated Data mappings for storing XML in relational
databases.
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Ingredients

Concrete data models are abstracted as Haskell data types.

Type-level transformations are data refinements.

Strategic programming to compose flexible rewrite systems.
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Data Refinement

An abstract type A is mapped to a concrete type B

Representation Injective and total.

Abstraction Surjective and possibly partial. A

to

''≤ B

from

gg
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Examples of Refinements

Format evolution

A

inject
**

≤ A + B

isleft

gg A

pairwith(b)
**

≤ A× B

project

gg

Hierarchical to relational mappings

A ⇀ (B × (C ⇀ D))

unnjoin
--

≤ (A ⇀ B)× (A× C ⇀ D)

njoin

mm
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Composition of Refinements

Sequential composition

A

to

''≤ B

from

gg ∧ B

to′

''≤ C

from′

gg ⇒ A

to′·to
''≤ C

from·from′

gg

Nesting

A

to

''≤ B

from

gg ⇒ F A

F to
((

≤ F B

F from

hh



Introduction Data Refinement Implementation Example Conclusion

Composition of Refinements

Sequential composition

A

to

''≤ B

from

gg ∧ B

to′

''≤ C

from′

gg ⇒ A

to′·to
''≤ C

from·from′

gg

Nesting

A

to

''≤ B

from

gg ⇒ F A

F to
((

≤ F B

F from

hh



Introduction Data Refinement Implementation Example Conclusion

Strategic Programming

Apply refinement steps . . .

in what order?
how often?
at what depth?
under which conditions?

Compose rewrite systems from:

basic rewrite rules and
combinators for traversal construction.

Combinators

(>>>) :: Rule -> Rule -> Rule
(|||) :: Rule -> Rule -> Rule
nop :: Rule
many :: Rule -> Rule
once :: Rule -> Rule
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Representation of Types

The Type of Types

data Type a where
Int :: Type Int
String :: Type String
One :: Type ()
List :: Type a -> Type [a]
Map :: Type a -> Type b -> Type (Map a b)
Either :: Type a -> Type b -> Type (Either a b)
Prod :: Type a -> Type b -> Type (a,b)
Tag :: String -> Type a -> Type a
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Type-Changing Rewrite Rules

How to combine strategic programming with type-changing rules?

Masquerade Changes as Views

data Rep a b = Rep {to :: a -> b, from :: b -> a}

data View a where
View :: Rep a b -> Type b -> View (Type a)

The Type of Rules

type Rule = forall a . Type a -> Maybe (View (Type a))
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Examples of Rules

Refine Lists by Maps

A?

seq2index
))

≤ IN ⇀ A

list

hh

Rule Implementation

listmap :: Rule
listmap (List a) = Just (View rep (Map Int a))

where rep = Rep {to = seq2index, from = list}
listmap _ = Nothing

Rewrite System for Hierarchical-to-Relational Mapping

flatten :: Rule
flatten = many (once (listmap ||| mapprodmap ||| ...))
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Unleashing the Migration Functions

The target type is existentially quantified in a view.

Since its not known statically we can use a staged approach:
1 Apply the intended transformation to compute it dynamically

and get its string representation using showType.
2 Incorporate that string in the source and unleash the migration

functions.

forth :: View (Type a) -> Type b -> a -> Maybe b
back :: View (Type a) -> Type b -> b -> Maybe a

data Equal a b where Eq :: Equal a a
teq :: Type a -> Type b -> Maybe (Equal a b)
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Evolution of a Music Album Format

Concrete XML Schema

<element name="Album" type="AlbumType"/>
<complexType name="AlbumType">

<attribute name="ASIN" type="string"/>
<attribute name="Title" type="string"/>
<attribute name="Artist" type="string"/>
<attribute name="Format"><simpleType base="string">

<enumeration value="LP"/><enumeration value="CD"/>
</simpleType></attribute>

</complexType>
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Evolution of a Music Album Format

Abstract Haskell Type

albumFormat = Tag "Album" (
Prod (Tag "ASIN" String) (
Prod (Tag "Title" String) (
Prod (Tag "Artist" String) (

Tag "Format" (Either (Tag "LP" One)
(Tag "CD" One))))))

evolve =

once (inside "Format" (addalt (Tag "DVD" One))) >>>
once (inside "Album" (addfield (List String) query))
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Mapping Albums to Relational Tables

tordb =

once enum2int >>> removetags >>> flatten

Computing the Target Type

> let (Just vw) = evolve >>> tordb (List albumFormat)
> showType vw
Prod (Map Int

(Prod (Prod (Prod String String) String) Int))
(Map (Prod Int Int) String)
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Data Migration

Sample

lp = ("B000002UB2",("Abbey Road",("Beatles",Left ())))
cd = ("B000002HCO",("Debut",("Bjork",Right ())))

Migrating Data

> let dbs = Prod (Map ...) (Map (Prod Int Int) String)
> let (Just db) = forth vw dbs [lp,cd]
> db
({0 := ((("B000002UB2","Abbey Road"),"Beatles"),0),

1 := ((("B000002HCO","Debut"),"Bjork"),1)},
{(0,0) := "Come Together",
(0,1) := "Something",
...})
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Conclusion

Conclusions:

Type-safe formalization of two-level data transformations.
Haskell’s type system, namely GADTs, allows a direct and
elegant implementation.
Allows flexible rewrite systems but termination and confluence
is not guaranteed.
Restricted to single-recursive data types.

Current status:

Coupled transformation of data processing programs, such as
queries expressed in a point-free notation.
Front-ends for XML and SQL database schemas.

Future work:

Bi-directional programming.
Data types with invariants.
Mutually-recursive data types.
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