
Simulating a Gas Distribution Network in a Distributed Object

Oriented System

Ant�nio Ribeiro Alcino Cunha Orlando Belo

�anr�alcino�obelo��di�uminho�pt

Department of Informatics� School of Engineering� University of Minho

Largo do Pa�o� ���� Braga Codex� PORTUGAL

Abstract

Today�s dynamic industrial process simulation problems require systematically new methodologies

and sophisticated computational tools� Such processes involve frequently discontinuities� environ�

ment structures changes and entities with high functional levels� Furthermore� there are cases where

we must integrate intelligent techniques and negotiation protocols� These characteristics are crucial

in distributed problems that require resource balance� low cost distribution plans� and stock opti�

mization� In order to analyse the application of a distributed object�oriented simulation system we

selected� as a case study� a gas distribution network in which we �nd all the referred characteristics�

This paper presents a brief description of the simulation scenario� the overall system�s structure� the

intelligent negotiation protocol used by system�s objects and the concurrent programming techniques

to implement it�

Field � Intelligent Simulation Environments�

Keywords � Industrial Simulation Environments� Concurrent Simulation� Dynamic Process Simula�
tion� Agent Based Negotiation Protocols� Object�Oriented Frameworks� Java Concurrent
Constructs�

� Introduction

Industrial processes are common �targets� for the application of simulation processes and techniques�
This situation is due to the fact that the experimentation of new working methods� or even the re�
engineering of the existing ones� are too expensive and di�cult to do directly in the implemented
systems� We may �nd applications of simulation to industrial processes covering a large variety of
issues� such as stock and white water system dynamics ��	� hardmetal tools production systems �
�	�
power plant industry �
�	� or manual 
ow lines on manufacturing processes �
�	�

In the past few years we have assisted to the emergence of new object�oriented techniques and their
successful application to real world problems� New object�oriented methodologies� frameworks� and
languages have been integrated and applied in simulation case studies� in modeling applications� or even
in the development of computational testbeds to simulation environments� Areas such as the design of
central solar heating plants �
�	� multi�facet modeling ��	� reactor process modeling �
	� and simulation�
optimization and visualization of biomechanical systems ��	 are some illustrative examples in which
object oriented techniques were applied�






The success and the quick adoption of object�oriented techniques on the simulation �eld is due to the
fact that object technology ��	 provides high level abstraction for modeling real�world systems� improves
and simpli�es system development� supports software extendibility and reusability� and reduces software
maintenance costs� The gap between the methodological and implementation levels veri�ed in the past
practically does not exists nowadays� Many of the current object�oriented methodologies are supported
by powerful tools that are able to generate software source code based on the object system speci�cation�

In this paper we describe the modeling and the simulation of a Gas Distribution Network �GDN� using a
distributed and concurrent object�oriented system� Other approaches to this kind of problem were done
before �

	� However� we present a di�erent view of the problem integrating in the distributed object�
oriented system agent based negotiation protocols� This combination will allow to simulate a GDN
where distributors are intelligent entities that are able to de�ne� together� new and better distribution
plans� balance their own capacity of gas stock� and negotiate among them eventual gas supplements in
cases of local stock rupture�

� Modeling the Gas Distribution Network

GAS Source

cg(d)

cg(b)

cg(e)cg(a)

cg(b)

cg(c)

da(k)

da(i)

da(j)

da(w)

Figure 
� The Gas Distribution Network Model�

The GDN �Figure 
� integrates essentially three main functional elements�

� gas sources � are the primer gas suppliers� they are responsible to feed the entire network system
in order to allow the ful�llment of the distribution agents� local gas tanks�

� distribution agents �da���� � responsible to satisfy the consumer groups� needs and manage their
local gas tanks�

� consumer groups �cg���� � �nal clients of the gas� they demand more or less amounts of gas to the
distribution agents according to the current needs of the local infrastructures � houses� industrial
plants� agriculture facilities� etc�

In our model we considered a single gas source� a set of distribution agents� and a set of consumer
groups� We assumed that� in an initial phase� the gas source supplies all the gas amounts demanded
by the distribution agents to ful�ll their local tanks� After this phase� the distribution agents begin
to evaluate the consumer needs of gas and� according their own capacity� try to satisfy them� When a

�



distribution agent detects potential breaks in gas distribution caused by excessive consumer gas demands�
it establishes a plan to avoid ruptures in its local gas stocks and consequent failures in gas distribution�

It is possible to detail the presented model in order to receive more levels of gas distributors� several gas
sources or even to de�ne pipeline capacities of gas transportation� Such characteristics could improve
the GDN�s model towards a more realistic one� However� it is detailed enough in order to reach our two
main goals� to improve the distribution processes through intelligent negotiation protocols and optimize
gas stocks on the distribution agents� tanks�

In Figure � we present the class �entity� diagram of the GDN model �this diagram follows the Booch
notation ��	�� In this diagram are only drawn the aggregation relationships� They state the system�s
overall integrity invariant� which guarantees that each client is only related to one distributor and that
each distributor belongs just to one gas source�

N

N
Short term
Negotiator

Client

Gas Source

Long term
Negotiator

Short term Bidder
price_per_unit

Tank ControllerDistributor
maximum_capacity

gas_level

rupture_level

security_level

Figure �� The Object Oriented Model�

Each distribution agent is constituted by four objects�

� Tank Controller �TC�� Responsible for controlling the gas tank of the distributor� Each tank is
characterized by its maximum capacity �mc� and by two alarm levels� a security level �sl�� that
determines when the distributor should start a long term negotiation with the primer supplier�
and a rupture level �rl�� that forces the distributor to engage into short term negotiations with
nearby distributors in order to be able to maintain its supplying capability� The actual amount
of gas in the tank is denoted as gl �gas level�� The main task of the TC is to warn the negotiator
agents when gl � sl or gl � rl�

� Long term Negotiator �LtN�� When the TC announces that the amount of gas in the tank is
under the security level this agent starts a negotiation process with the primer supplier in order to
reestablish the gas level� Basically� it implements the manager role of the Contract Net Protocol
�CNP� �
�� �	� a protocol that tries to reproduce the negotiations that occur in real markets when a
particular entity wants to �nd the best partner to execute a task or supply a product or service� It
is responsible to announce to the primer suppliers the amount of gas that the distributor is willing
to buy �the announcing phase of the CNP� and� afterwards� select the best partner according to
the bids received �the awarding phase��

� Short term Negotiator �StN�� This agent has the same functionality of the LtN� but instead of
negotiating with the primer supplier it negotiates with other distributors� in order to obtain the
gas within a short period of time�

� Short term Bidder �StB�� Responsible for answering the announces of the StN agents from other
distributors� It implements the contractor role of the CNP by submitting a bid with the price

�



proposed for the amount of gas required �the bidding phase of the CNP�� A parameter of this
agent is the price per unit �ppu� of gas�

The behaviour of the negotiator objects is not very complex� In the announcing phase they simply
send a message to all the bidders announcing that they are willing to buy a certain amount of gas� We
assumed that the LtN sends the announces to the primer supplier requesting an amount of mc�sl units
of gas� while the StN sends them to the StB objects of the distributors� requesting an amount of sl� rl

units� In the awarding phase they simply collect all the bids and choose the one with lowest price� An
award message is sent to the chosen distributor and a reject one is sent to all the others�

The StB has a more complicated behaviour� since it must handle the situations where multiple announces
�and hence bids� were made simultaneously� Let A be the current set of pending announces to which a
StB has answered with positive bids and that have not be awarded yet� Given a particular announce
a � A� let gas�a� be the amount of gas that is being negotiated in it� Let total �

P
a�A

gas�a� be the
total amount of gas that a distributor may have to provide if all bids are accepted �we assumed that
the distributors always honor their compromises�� Although in most situations total will not be the
amount of gas sold� when gl� total � rl we assume that the StBs answer with negative bids to all the
announces received �a negative bid is a bid where the StB states that it is not interested in selling gas��
This possibly inaccurate decision is necessary� since the rupture level de�nes the capacity that allows
the distributor to provide a minimum quality service to his clients�

In order to model more accurately real situations� the ppu parameter is a function that depends on the
amount of gas in the tank� Usually� the price that a distributor is willing to ask for a unit of gas when
its tank is almost empty is higher then when it is full� This occurs since in these situations the number
of clients that may not have their needs ful�lled is also higher�

To determine the price that will be proposed it is necessary to estimate the amount of gas available
to sell� However� it is impossible to predict if each bid will be accepted �this is true when the ppu of
each agent varies with time and hence can not become common knowledge among the distributors� and�
consequently� to predict this amount� In order to de�ne an heuristic to estimate this value� we choose
to characterize each StB with a parameter � that de�nes the distributor optimism level� A value for �
near � characterizes a pessimistic distributor that does not expect awards to bids it has sent� A value
near � characterizes an optimistic distributor that expects positive answers to almost all the bids� If
� � ��� we have a neutral behaviour� E�total�� the expected total amount of gas sold� is determined as
�� total� Given an announce a the price proposed by the StB is ppu�gl� E�total��� gas�a��

� Implementation of the GDN Model

One of the most important and innovative features of the Java language ��	 is its support for concurrent
programming� This is achieved by the incorporation of multithreading in the core language� Therefore�
Java is a good candidate to support the simulation of concurrent and distributed systems� Although the
multithreading support is present� it is necessary to provide the necessary synchronization techniques
between the running threads� This synchronization is done using monitors� a well known concept �rst
introduced by Hoare ��	�

Once that threads are light�weight processes with their own life cycle� it is necessary to provide a secure
and easy mechanism to support synchronization and message passing� In our Java support architecture�
this is done by using objects that behave like channels �according to the theoretical basis of Csp ��	
and by providing the methods to send and receive messages between asynchronous and possibly remote
threads� This is achieved using the core language support to provide thread�safe communication� that
is� the synchronized�wait�notify construct�

�



Object

Data

Integer User
Defined

Asynchronous
Rendez Vous

Channel IN
Channel OUT

Types

Broadcast

Other
Types 

Queue

Synchronization

receive()
send()

Channel

A

A

Figure �� The Object Oriented Architecture for the Simulation of Concurrent Systems�

An architecture was developed in order to simplify the construction process of concurrent and distributed
models� The classes provided encapsulate all the necessary synchronization and low level features of this
kind of complex modeling� The main class of our architecture �Figure �� is the Channel class� It provides
two methods� send�� and receive��� which write and read data into a channel� In order to establish
communication between two running threads an instance of Channel should be passed to those processes
at bootstrap time� Although the send�� and receive�� methods are naturally synchronous one may
want to model asynchronous behaviours between engaged processes� That is why the constructor of
a Channel instance also accepts a synchronization mechanism� By default� the synchronous one is
provided� ensuring a simple rendez�vous behaviour� A channel has the capability of send and receive

values� being therefore bi�directional� However to model the situations in which one only reads or
writes values� two subclasses were provided� ChannelIN and ChannelOUT� to simulate uni�directional
channels� We also provide some asynchronous environments in order to model the basic and common
asynchronous dialogues� Three environments were implemented�

� Asynchronous � to model a one position bu�er on which producers and consumers write and read
values� without concerning if past messages were read or if the same value is read more than once�
This is a non�deadlock environment�

� Queue � a normal asynchronous bu�er with more than one position� Well known examples of
application are the email queues� A writer does not wait that the message is consumed and just
write it in an available position of the queue� Some concern must be taken in order to ensure that
empty or full queues do not behave synchronously�

� Broadcast � extends the above model to multiple queues�

Our architecture is open in the sense that an user can write another synchronization environment� This
is done by subclassing the abstract class Synchronization�Types� Support to synchronization between
threads in di�erent machines is transparent to the user�

To complete our architecture we must address the Data class which provides the mechanisms to deal
with our data types� Some are provided� the basic ones� assuming that an end user will subclass Data
and de�ne his protocol data� that is� the message format�

In order to exemplify the implementation methodology we will show how to build part of the Distributor

�



and Client agents� Since that the most innovative part of our architecture is the enhanced support to
synchronization between threads� the following example will only encompass the code necessary to
establish communication between the TC object and the clients�

public class Distributor �

protected TankController tc�

protected Channel to�tank�

protected Client�� clients�

�� other instance variables

����

�� The Distributor constructor

Distributor� int number�clients� ����	 �

this�to�tank 
 new Channel� �� kind of synchronization �� 	�

�� the channel must be shared by the running thread

this�tc 
 new TankController�to�tank	�

����

cl 
 new Client�number�clients��

�� It is also necessary to share it with our clients

for�int i
��i

�i�
 clients�length	

clients�i��set�communication�port�to�tank	�

���

�

�

The TankController entity has to receive in his constructor the channel reference and need to modify
his inherited run�� method in order to describe properly his own life cycle�

public class TankController extends Thread �

protected Channel from�clients�

��Constructor

TankController�Channel chan	 �

this�from�clients 
 chan�

�

public void run�	 �

�� Task Controller life cycle implementation

����

�

�

Finally� the Client class looks like�
public class Client extends Thread �

protected Channel to�Tank�Ctr�

����

void set�communication�port�Channel chan	 �

this�to�Tank�Ctr 
 chan�

�

�

� Conclusions and Future Work

In these paper we presented a concurrent object�oriented simulation environment for a Gas Distribution
Network� The use of intelligent negotiation techniques enables to� improve the distribution processes
through intelligent negotiation protocols� optimize gas stocks on distribution agents� tanks� storing lesser
amounts of gas� and� increase distributors self�adaptation to unpredictable situations of gas demands�

By allowing the price per unit of gas to be function depending on the amount of gas in the distributor�s
tanks� it is possible to model most of the pricing policies that a real distributor may wish to use� The
optimism level of the distributors can also be modeled through a speci�c user de�ned parameter�

�



Java revealed itself as a good simulation environment� since it supports concurrent programming in
multi�platform distributed systems� However� writing source code for concurrent programming is usu�
ally an hard and error prone task� To overcome this shortcome� we proposed an architecture that
provides means of synchronization between running threads� The end user needs only to concentrate
on programming the high level functionality of the system� In the future we intend to augment this
architecture with a visual layer that will provide di�erent output interfaces to each of the objects in the
system�

References

�
	 B�Foss� S�Wasbo� and O�Ogard� Object�oriented Process Modelling Applied to a Reactor� In
Proceedings of the Eurosim Congress ���� pages �������� Vienna� Austria� September 
����

��	 Grady Booch� Object�Oriented Analysis and Design� Benjamin Cummings� 
����

��	 C�Hoare� Monitors� An Operating System Structuring Concept� Communications of the ACM�

��
����������� 
����

��	 C�Hoare� Communicating Sequential Processes� Prentice�Hall� 
����

��	 R� Davis and R� G� Smith� Negotiation as a metaphor for distributed problem solving� In A� Bond
and L� Gasser� editors� Readings in Distributed Arti�cial Intelligence� pages �������� Morgan Kauf�
mann� 
����

��	 David Flanagan� Java in a Nutshell� O�Reilly � Associates� 
����

��	 G�Kramann� J�Seybold� and R�Ruhle� Object�Oriented Modeling� Simulation� Optimization and
Visualization of Biomechanical Systems�

��	 H�Tummescheit� M�Klose� and T�Ernst� Modelica and Smile � A Case Study Applying Object�
Oriented Concepts to Multi�Facet Modeling� In Proceedings of the �th European Simulation Sym�
posium �ESS����� pages 
���
��� Passau� Germay� October 
����

��	 I�Laukkanen� J�Lappalainen� and K�Juslin� Simulation of Stock and White Water System Dynamics
of a Modern Paper Mill � A Case Study� In Proceedings of Eurosim��	 Simulation Congress� pages

���
��� Espoo� Helsinky� Finland� April 
����

�
�	 I�Pra�a� Simulation of Manual Flow Lines� In Proceedings of the �th European Simulation Sympo�
sium �ESS����� pages ������
� Passau� Germay� October 
����

�

	 L�Rothkrantz� R�vanVark� J�deVreught� and V�Broz� Simulation Studies in the Distribution of Gas
Flow� In Proceedings of the �th European Simulation Symposium �ESS����� pages �������� Passau�
Germay� October 
����

�
�	 O�Belo� A Hardmetal Tools and Wear Parts Production System Simulation� In Proceedings of the
	th European Simulation Symposium �ESS��
�� pages 
���
��� Genoa� Italy� October 
����

�
�	 R�Burelle and J�Salim� Real Time Simulation in the Power Plant Industry� In Proceedings of the
	th European Simulation Symposium �ESS��
�� pages �������� Genoa� Italy� October 
����

�
�	 R�Franke� Modelling and Optimal Design of a Central Solar Heating Plant with Heat Storage in
the Ground Using Modelica� In Proceedings of Eurosim��	 Simulation Congress� pages 
�������
Espoo� Helsinky� Finland� April 
����

�
�	 R� G� Smith� The contract net protocol� High�level communication and control in a distributed
problem solver� IEEE Transactions on Computers� C����
���

���


�� 
����

�


