
ENHANCING LOAD DISTRIBUTION STRATEGIES THROUGH
SIMULATION

Alcino Cunha Luís Paulo Santos Orlando Belo

Departamento de Informática, Escola de Engenharia, Universidade do Minho, 4710 Braga, Portugal

Email: {alcino,psantos,obelo}@di.uminho.pt

KEYWORDS

Model Analysis, Artificial Intelligence in Simulation, Discrete
Simulation, Intelligent Simulation Environments and Com-
puter Systems.

ABSTRACT

Load distribution is a well known critical problem in every
distributed system. From operating systems to agent ori-
ented applications it is not difficult to find cases where pro-
cessing nodes are overloaded when, at the same time, other
peers present low levels of activity. In agent oriented appli-
cations, where the appeal to cooperation is almost a constant
event, these unbalanced situations may generate serious cases
of contention, deadlock or simply large idle times. The imple-
mentation of load distribution strategies in a distributed sys-
tem may help significantly to improve its overall performance
and reduce effectively such undesirable situations. In order
to study the effects of different load distribution policies in
agent based applications a generic load distribution simulation
system was design and implemented. The system allows the
specification of multiorganisational distributed systems with
dynamic load patterns. Its main characteristics and function-
alities are presented in this paper.

LOAD DISTRIBUTION STRATEGIES ANAL-
YSIS

The quantitative analysis of new load distribution strategies is
a fundamental step to assess its initially proposed goals. This
analysis must be done prior to the definitive implementation
of these strategies, to avoid wasting human and material re-
sources due to an incomplete analysis. Due to its great flexi-
bility, numerical simulation is one of the most used methods
to analyse load distribution mechanisms, either to specify the
underlying processing system or to specify its workload.

There are two main methods to perform a priori quanti-
tative analysis of load distribution mechanisms: theanalyt-
ical and thenumerical simulation method. In the former

method, where analytical expressions are used to model load
distribution mechanisms, there is the possibility of quanti-
fying all fundamental system variables and the knowledge
of the expressions that define the relative dependence of
those variables (Rodrigues 1988). Most of the models are
based on queuing networks to represent the processing sys-
tem and the executing tasks. Examples of this method can
be found in (Eager, Lazowska & Zahorjan 1986)(Theimer
& Lantz 1989). The second method, instead of requiring a
detailed knowledge of the equations that relate system vari-
ables, just requires the knowledge of the internal functioning
of the various components of the distributed mechanism. Re-
sults are implicitly obtained as a consequence of the interac-
tion between these components, computationally reproduced
(Ramamritham, Stankovic & Zhao 1989)(Kremien, Kramer &
Magee 1993)(Kremien & Kramer 1992)(Zhou 1988).

However, there are authors that build prototypes of some
load distribution mechanisms, to analyse its performance on
real physical systems. An artificial, or synthetic, workload is
applied to the system, and its behaviour with several differ-
ent load distribution strategies analysed. These prototypes do
not need all characteristics of a real load distribution mecha-
nism, namely those related with liability. Nevertheless, most
of the functionality essential to distribution must be imple-
mented (Kunz 1991)(Lüling, Monien & Ramme 1992).

Each of these methods presents advantages and disadvan-
tages:

� due to the difficulty in finding expressions that ade-
quately model the relations between the various system
variables, the analytical method is only appropriated for
very simple balancing policies and is not well suited for
strategies with complex behaviours;

� the analytical method greatest advantage is that results
are obtained very fast, even when iterative numerical
methods are used;

� simulation with artificial workloads requires a great deal
of time to develop the prototypes of the mechanism being
analysed, because these must operate on a real system;

� this method implies exclusive dedication of the process-
ing system to the process being analysed. Although this

can be feasible on some parallel machines, it is very dif-
ficult on distributed multi-user systems, due to the huge
number of users and operating system tasks;

� both the analytical method and the simulation with an
artificial workload are very inflexible with respect to the
analysis of different physical configurations, due, respec-
tively, to the difficulty of obtaining expressions associ-
ated with complex configurations and the difficulty, or
impossibility, of changing the physical configuration of
the underlying processing system;

� the numerical simulation method requires the develop-
ment of a simulator that supports the distribution mecha-
nisms being analysed. However, this task is simpler than
building prototypes for simulation with artificial work-
loads; this method is the most flexible with respect to
the ability of analysing different system configurations,
different load patterns and different configurations of the
distributed elements;

� numerical simulation can take a relatively large amount
of time if the number of entities involved is large.

Due to the flexibility presented, the numerical simulation
method seems to be the best suited to analyse,a priori, new
load distribution mechanisms. The simulation model hereby
presented allows: 1) the definition of the underlying system
configuration - being able to simulate parallel or distributed
systems on multiorganisational environments; 2) the defini-
tion of different configurations of the distribution elements -
allowing different arrangements for the various components
of the distribution mechanism, namely, the information, trans-
fer, selection and location policies; and 3) the definition of
different load patterns. Formally, this model is characterised
as (Rodrigues 1988): abstract, numerical, dynamic, explicit
and stochastic.

THE SIMULATION PROCESS

Due to the huge amount of time the simulation process can
take to complete, it was divided on two different steps: 1)the
actual simulation, where results are generated using a given
configuration, stored in a file; and 2)the results analysis,
which is performed later, using the results file generated by
the simulator.

With this separation the simulation process can be executed
in batch mode. Another advantage is that not all statistics need
to be calculated during the simulation, which would be slower
and would require the predefinition of all the desired statistics.
It would also require a new execution of the simulation each
time a different statistic becomes necessary.

All procedures necessary for the simulation process,
namely, the simulator itself and the statistical analysis of the
results, were developed in SICStus (Carlsson & Widen 1993)
Prolog. This language presents some significative advantages,
like:

� the ability to model complex algorithmic behaviours;

� significant inference capabilities;

� small development times, which allows a larger number
of distribution mechanisms to be modelled, enabling a
more effective analysis.

THE CONFIGURATION FILE

The configuration file is a fundamental element of the simu-
lation process, because it expresses the simulator’s flexibility
and constitutes the final user interface. The configuration for a
parallel machine with 4 nodes and a mesh topology, with load
distribution agents using a random strategy. The grammar that
rules the configuration file language is presented in figure 1.

<configuration> ::= <comment>* <header> <entity>+
<comment> ::= string
<header> ::= <seed> <begin> <end> <monitoring>

<control_messages> <message_header>
<seed> ::= seed(integer, integer, integer).
<begin> ::= simulation_begin(integer).
<end> ::= simulation_end(integer).
<monitoring> ::= report_interval(integer).
<control_messages> ::= control_messages_size(integer).
<message_header> ::= message_header_size(integer).
<entity> ::= <comment>|<group>|<node>|

<communication_line>|<load>|<task>|<agent>
<group> ::= group(identifier, string).
<node> ::= node(identifier,identifier,<identifier_list>,

<node_resources>,(integer, integer)).
<identifier_list> ::= [identifiers*]
<node_resources> ::= [<node_resource>+]
<node_resource> ::= (identifier, integer, <type>)
<type> ::= active | passive
<communication_line> ::= communication_line(identifier,

identifier, integer).
<load> ::= load(identifier,<distribution1>,<task_list>).
<distribution1> ::= exactly(integer) | expneg(integer)
<task_list> ::= [<task_load>+]
<task_load> ::= (integer, identifier)
<task> ::= task(identifier,<distribution1>,

<distribution2>,<task_resources>,(<distribution2>,
<distribution2>),<distribution1>).

<distribution2> ::= <distribution1> | none
<task_resources> ::= [<task_resource>+]
<task_resource> ::= (identifier, <distribution1>, <type>)
<agent> ::= <aleatory_agent> | ...
<aleatory_agent> ::= aleatory(identifier, identifier,

integer, integer,<non_empty_identifier_list>).
<non_empty_identifier_list> ::= [identifier+]

Figure 1: Configuration language grammar.

To facilitate the simulation process, a syntactic and seman-
tic analysis of the configuration file is performed and the even-
tual errors presented to the user.

Simulation control

In this section the parameters of the simulation control predi-
cates common to all entities are presented, namely:

� Seed.Adjusts the seed of the random number generator.
Essential to perform different simulations with the same
configuration, increasing the confidence level on the re-
sults.

� Monitoring start. Used by the statistical analysis pred-
icates. Indicates from which instant must the tasks ar-
riving to the system be considered, ignoring an ini-
tialisation period necessary to achieve a steady state
(Rodrigues 1988), essentially with respect to the number
of tasks in the system.

� Simulation end. Indicates the instant when the simula-
tion finishes.

� Printing period. Indicates the time interval between
successive printings of the simulation actual time and
garbage collection of Prolog’s stacks.

� Control messages size.Size, in bytes, of control mes-
sages sent between the simulation entities, as, for in-
stance, task distribution requests or polling messages.
This parameter must be set carefully in order to obtain
realistic results.

� Header. Size, in bytes, of any message header. Indicates
the minimum size of a message circulating in the net-
work. It depends of the communication protocol being
simulated.

Nodes

A node is characterised by the following parameters:

� Identification. Unique identifier, that univocally identi-
fies each node in the system.

� Organisation. Used to model a system with multiple
organisations.

� Connecting lines. Defines the network topology and,
if the node is connected to various lines, indicates the
overheads associated with routing messages destined to
other nodes.

� Resources. Defines the system’s heterogeneity at the
processing level. Each resource is characterised by its
identification (unique inside each node), its capacity and
its type (active or passive). Scheduling priorities are de-
fined by assigning a certain percentage of a resource to
a given task. If no assignments are done, each active
resource is equitably distributed by the tasks currently
being executed. The percentage assigned to each task
depends on the total number of tasks. Passive resources
can also be shared if its capacity attribute is set to��.
The passive resources capacities required by a task are
assigned to it during its total execution time.

� Load pattern. Used to model the node’s load pattern.
Each list’s element represents a time interval (initial in-
stant, final instant) and the respective load pattern, al-
lowing the definition of a time variable pattern. This is
very important to model real distributed systems, charac-
terised by low-level load periods (e.g., at night) followed

by overloaded periods (e.g., business hours). The pos-
sibility of defining different load patterns for each indi-
vidual node allows the modelling of, for instance, differ-
ent peak hours between geographically distant nodes, or
even between nodes of the same system.

� Message processing times.Indicate the CPU time taken
to pack/unpack messages being sent or received by this
node and message routing overheads (applicable only if
the node is connected to several lines). The indicated
values are weights which must be multiplied by the mes-
sage size; the total time being the time taken by a pro-
cessor with unitary capacity (to facilitate the comparison
between the various nodes times). To allow the definition
of heterogeneous systems, these parameters are specific
for each node.

Communication lines

These are characterised by the following parameters:

� Identification. Unique identifier, that univocally identi-
fies each communication line.

� Responsible node.Defines which node controls the ac-
cess and rating of the line. Implicitly, it also defines
which organisation owns the line.

� Capacity. Expresses the line bandwidth in bytes per
1000 simulation units. If each simulation unit corre-
sponds to a millisecond then the capacity is expressed
in bytes per second.

The message routing strategy operates as follows. At the
beginning each node and line calculates its own routing ta-
bles. These tables indicate which line (in case of nodes) or
which node (in case of lines) a message must follow to reach
another system’s node. At the present time these tables are
built using the faster path (theoretically) between the calculat-
ing entity and all other nodes in the system. This process must
be improved in the future, because it doesn’t assure the most
efficient behaviour in all cases.

The predicate built for sending messages allows multicast,
i.e., the set of receivers might be any subset of the universe
of nodes in the system. Point-to-point communication results
from specifying only one node, broadcast results from speci-
fying all nodes.

System load

To specify the system load it’s necessary to specify the load
patterns and the tasks used on those patterns. A load pattern
is characterised by the following parameters:

� Identification. Unique identifier, that univocally identi-
fies each load pattern.

� Tasks interarrival time. Identifies the theoretical distri-
bution that models the average time between tasks arrival
to a node.

� Tasks histogram.Defines which type of tasks are gener-
ated. Each list element indicates the percentage of each
type of task.

Tasks types are characterised by the following parameters:

� Identification. Unique identifier, that univocally identi-
fies each task type.

� Duration. Task duration (theoretical distribution) if it is
executed on a node with active resources capacity identi-
cal to those presented on a task’s resource requirements
list. The real execution time calculation on any node is
done as follows: first, the smaller ratio between the active
resources assigned to the task (be it shared or dedicated)
and the respective resources on the task’s requirements
list is calculated. Afterwards, this ratio is multiplied by
the task execution time, to obtain its real execution time.
This time is systematically reestimated as tasks enter or
leave the node’s execution list.

� Execution deadline.indicates the maximum time to ex-
ecute the task, calculated from the instant when the task
enters the system. If there is no deadline the parame-
ter nao_tem must be used. If there is a deadline, the
distribution agent assumes it knows the task’s execution
parameters.

� Resources list.Indicates the resources a node must own
to be able to execute the task. The active resources capac-
ity doesn’t indicate the capacity that must be allocated
to the task. It is only used to calculate the real execu-
tion time, as has been explained before. The passive re-
sources must exist in the node and must be allocated to
the task during its entire execution time.

� Communication requirements.Defines the interval be-
tween successive messages addressed to the task’s orig-
inal node and its size. When such a message is sent
the task is withdrawn from execution, being scheduled
again when an acknowledge message arrives, sent from
the original node. This last node only incurs the over-
heads of packing and unpacking the original message and
its answer.

� Task size. Size of the task’s code and data in bytes.
Useful to calculate messages size when tasks migrate be-
tween nodes.

THE SIMULATOR FUNCTIONING

The simulator follows an event-scheduling philosophy
(Rodrigues 1988). An entity that generates an event must
plan all future events originated by the present one. The main
event, which unchains the whole process, is a task arrival to

the system. The first arrivals are planned on instant zero of
the simulator. Afterwards, each time an arrival occurs, the
next ones are planned. This planning method is identical to
all other events.

INTERFACE LEVEL

RF

SIMULATOR ENGINE

CF PDKB

UNIX PLATFORM

Figure 2: Simulator’s architecture overview.

Figure 2 presents an overview of the simulator system ar-
chitecture, whereCF stands forConfiguration File, RF for
Results File andPDKB for Pattern Directed Knowledge Base.

All active entities (nodes, communication lines and distri-
bution agents) were created using pattern based systems de-
velopment (Bratko 1990). This approach is ideal to describe
reactive entities behaviour, that act according to the detection
of events addressed to itself or with interest for its internal
processes.

The simulator’s kernel was developed using pattern systems
(see figure 3). It constitutes the simulation ’engine’, managing
the events and the progress of time. It is responsible for:

� Initialisation. The following actions are performed
when a simulation begins: initialise the environment,
plan the event that will finish the simulation, plan the
first monitoring event and plan the event that will initiate
the simulation in all entities. After detecting this event,
each entity initialises its own environment and, if it is a
node, plans its first task arrival.

� Monitoring. Prints the simulation time and performs the
garbage collection of the Prolog interpreter stacks.

� Trigger agents events.An event is characterised by its
description, the instant when it will occur and the list of
entities it affects. When the time comes to trigger an
event, all entities present in its list must be activated.

� Remove agents which do not affect entities.To opti-
mise the simulator, all events that will no longer affect
any entity are removed.

� Time progress. When, for the actual instant, all events
have been processed, the simulation time is advanced to
the next planned event instant. Using event-scheduling it
is guaranteed that nothing happens meanwhile.

� End. When the finishing event is triggered in all entities,
the kernel itself finishes, removing all events planned to
occur after this instant.

To assure that the real time of the simulation grows at most
linearly with respect to the simulated time, it must be assured
that the Prolog interpreter base and its control stacks are kept
with almost constant size through the simulation. To assure
the former the simulation results are saved to a file as soon as
they are obtained. As to the later, the backtracking capability
of the Prolog interpreter had to be switched off.

% /// Starts simulation process
% ///
simulator ::

[not(tempo(_))]
--->
[semente(X, Y, Z), setrand(rand(X, Y, Z)),
assert(tempo(0)), assert(tarefa(0)),
assert(tarefa_aux(-1)), todas_entidades(Todos),
assert(evento(0, Todos, inicia_simulacao)),
fim_simulacao(Fim),
assert(evento(Fim, Todos, fim_simulacao)),
imprime_tempo(Imp),
assert(evento(Imp, simulador, imprime_tempo)),
format(’Inicio da simulacao.~n’, [])].

% /// Ends simulation process
% ///
simulator ::

[tempo(T),
evento(T, [], fim_simulacao)]
--->
[retractall(evento(_, _, _)),
retractall(tempo(_)),
format(’Fim da simulacao.~n’, []),
stop].

% /// Triggers events on agents
% ///
simulator ::

[tempo(T),
evento(T, [(_, Tipo_agente)|_], _)]
--->
[run(Tipo_agente)].

% /// Increments time
% ///
simulator ::

[tempo(T),
not(evento(T, _, _))]
--->
[findall(X, evento(X, _, _), Tempos),
min_list(Tempos, NovoT),
replace(tempo(T), tempo(NovoT))].

Figure 3: Excerpt of the simulator’s kernel.

CONCLUSIONS

In this article was presented a simulation platform to study and
analyse different load distribution strategies. Additionally, it
allows the specification of multiorganisational distributed sys-
tems with dynamic load patterns (Cunha & Belo 1997). Be-
sides enabling the comparison of various distribution strate-
gies, it is also a system administration tool, that allows to
test the effects of introducing a new distribution strategy. The
simulator may help significantly to improve the overall per-
formance and reduce effectively eventual contention or idle
situations that may occur on systems with inadequate load dis-
tribution policies. It is planned, for future work, the simulator

generalization in order to handle generic resource schedulling
problems and create a new integrated tool which allows an
easier definition of systems configuration and results analyse.

REFERENCES

Bratko, I. (1990),PROLOG: Programming for Artificial Intel-
ligence, International Computer Science Series, second
edn, Addison-Wesley.

Carlsson, M. & Widen, J. (1993),SICStus Prolog User’s Man-
ual, Swedish Institute of Computer Science.

Cunha, A. & Belo, O. (1997), A multi-agent approach for load
distribution in multi-enterprise environments,in ‘15th
IASTED International Conference on Applied Informat-
ics (AI’97)’, Innsbruck, Austria.

Eager, D. L., Lazowska, E. D. & Zahorjan, J. (1986),
‘Adaptive load sharing in homogeneous distributed sys-
tems’,IEEE Transactions on Software Engineering SE-
12(5), 662–675.

Kremien, O. & Kramer, J. (1992), ‘Methodical analysis of
adaptive load sharing algorithms’,IEEE Transactions on
Parallel and Distributed Systems 3(6), 747–760.

Kremien, O., Kramer, J. & Magee, J. (1993), Scalable load-
sharing for distributed systems,in ‘HICSS-26’.

Kunz, T. (1991), ‘The influence of different workload descrip-
tions on a heuristic load balancing scheme’,IEEE Trans-
actions on Software Engineering 17(7), 725–730.

Lüling, R., Monien, B. & Ramme, F. (1992), A study on dy-
namic load balancing algorithms, Technical Report TR-
001-92, Paderborn Center for Parallel Computing.

Ramamritham, K., Stankovic, J. A. & Zhao, W. (1989),
‘Distributed scheduling of tasks with deadlines and re-
source requirements’,IEEE Transactions on Computers
38(8), 1110–1123.

Rodrigues, A. G. (1988),Simulação, Universidade do Minho.

Theimer, M. M. & Lantz, K. A. (1989), ‘Finding idle ma-
chines in a workstation-based distributed system’,IEEE
Transactions on Software Engineering 15(11), 1444–
1458.

Zhou, S. (1988), ‘A trace-driven simulation study of dynamic
load balancing’,IEEE Transactions on Software Engi-
neering 14(9), 1327–1341.

