
Fast Distributed Computation of Distances in Networks

Paulo Sérgio Almeida Carlos Baquero Alcino Cunha

Abstract— This paper presents a distributed algorithm to
simultaneously compute the diameter, radius and node eccen-
tricity in all nodes of a synchronous network. Such topological
information may be useful as input to configure other algo-
rithms. Previous approaches have been modular, progressing
in sequential phases using building blocks such as BFS tree
construction, thus incurring longer executions than strictly
required. We present an algorithm that, by timely propagation
of available estimations, achieves a faster convergence to the
correct values. We show local criteria for detecting convergence
in each node. The algorithm avoids the creation of BFS trees
and simply manipulates sets of node ids and hop counts.
For the worst scenario of variable start times, each node i

with eccentricity ecc(i) can compute: the node eccentricity in
diam(G)+ecc(i)+2 rounds; the diameter in 2 diam(G)+ecc(i)+
2 rounds; and the radius in diam(G) + ecc(i) + 2 radius(G)
rounds.

I. INTRODUCTION

This paper presents a distributed algorithm to simultane-

ously compute the diameter D, radius R and node eccentric-

ity ecc(i) in all nodes of a network. An early knowledge of

this topological information is useful since it is often used

as input to other algorithms. For instance, the diameter or

eccentricity can be used to simplify termination in leader

election algorithms [8] and calibrate time-to-live parameters

[7]; the radius and eccentricity allow determining center

nodes [6], which are nice candidates to serve as coordinators

in other distributed algorithms.

We assume a synchronous network model, while allowing

variable start times, in which one or more nodes can start

the algorithm with no prior coordination. The algorithm is

designed to be fast in a precise sense; we are concerned

with, not just asymptotic complexity, but exact bounds in

the number of rounds.

The classic approach to this problem [8] is to compute

the eccentricities by parallel construction of breadth first

search (BFS) trees rooted at each node. Once eccentricities

are known, each BFS tree can be reused to do a global

computation, starting from the leafs and converging to each

root node, allowing each to compute the maximum and

minimum eccentricity (the network diameter D and radius

R). Considering a graph G = (V,E), this classic approach

has total message complexity of Θ(|V | |E| log |V |) bits. The

diameter and radius are known at all nodes in at most 4D+2
rounds.

These time bounds can be improved if one departs from

this modular multi-phase approach, where BFS trees are first

constructed to compute eccentricities. This paper introduces

The authors are with HASLab / INESC TEC and Universidade do Minho,
Portugal. Email: {psa,alcino,cbm}@di.uminho.pt

an algorithm that propagates candidate values in a timely and

continuous fashion, resulting in a faster convergence to the

correct values. The challenge in this strategy is that a suitable

termination method must be devised to detect, in each node,

when the candidate values have converged. Under the same

message complexity of the classic approach, the proposed

algorithm reduces the number of rounds to compute the

diameter to at most 3D+1 rounds and the radius to at most

2D + 2R rounds. To be more precise, with this algorithm

each node i with eccentricity ecc(i) computes:

• the node eccentricity at most by round diam(G) +
ecc(i) + 2;

• the diameter at most by round 2 diam(G) + ecc(i) + 2;

and

• the radius at most by round diam(G) + ecc(i) +
2 radius(G).

The paper is organized as follows. Section II presents

the computing model and introduces notation. The algorithm

is presented in Section III. Example runs of the algorithm,

proofs of local convergence criteria and global convergence

bounds are also included in this section. The related work is

discussed in Section IV, and the conclusions are presented

in Section V.

II. NETWORK MODEL AND NOTATION

We assume a synchronous network model, similar to

the one described in [8]. The network is composed by a

set of nodes connected by links, which we assume to be

bidirectional; i.e., we have a simple, connected, unweighted,

undirected graph G = (V,E) with |V | ≥ 2 nodes and

|E| ≥ 1 links. We assume globally unique identifiers for

nodes, but no knowledge of the network topology or the

number of nodes.

Computation proceeds in synchronous rounds. At each

round, nodes first look at their state and compute what

messages are sent, through a message-generation function;

then nodes look at their state and messages received and

compute the new state after the round, through a state-

transition function. We assume no link or process failures.

In order to obtain an asynchronous version of the algorithm

a synchronizer α [1] can be used. We operate under a

maximum bandwidth of O(|V | log |V |) bits, per link per

round.

We assume the general case with variable start times.

Nodes start as quiescent, a state in which they do not send

messages nor transition to different states. Nodes wakeup

when they receive a message from a special environment

node (not part of G, connected to every node), or from an

already active node.

51st IEEE Conference on Decision and Control
December 10-13, 2012. Maui, Hawaii, USA

978-1-4673-2064-1/12/$31.00 ©2012 IEEE 5215978-1-4673-2066-5/12/$31.00 ©2012 IEEE

We use d(i, j) to denote the distance between nodes i and

j (the length of the shortest path between nodes i and j);

ecc(i) for the eccentricity of node i (the maximum d(i, j)
between node i and any other node j); diam(G) for the

network diameter (the maximum eccentricity over all nodes);

radius(G) for the network radius (the minimum eccentricity

over all nodes); and nbrs(i) for the set of neighbors of node

i (nodes connected to node i by a link).

III. ALGORITHM

The algorithm is presented in Figure 1. At each round, a

node i sends the same message to all its neighbors (state vari-

able Oi). A message is a non-empty set of tuples; the empty

set represents absence of a message. The tuples in a message

can be 〈BFS, , 〉, 〈DIAM, 〉 or 〈RAD, 〉, where BFS, DIAM

and RAD are constants. Nodes do not need to distinguish

between messages that arrive from different neighbors; the

second parameter of the state-transition function (parameter

Mi) is the set of messages received by node i from all

neighbors.

Each node when awoken broadcasts a BFS message with

its id and a hop counter, which starts at 0. Nodes keep the set

of ids of all received BFS messages. When a node receives a

BFS message from a node not yet known, it increments the

hop counter and rebroadcasts it.

Nodes know their eccentricity is at least the largest hop

count received in a BFS message, which they keep in a

variable (ei). Nodes also keep in two other variables (di,

ri) a lower bound estimate for the diameter and an upper

bound estimate for the radius. When a node increases the

diameter estimate; it broadcasts a DIAM message with the

new value. A node increases its diameter value when (1)

its eccentricity surpasses its diameter estimate or (2) it

receives a DIAM message whose value is higher that its

diameter value. Estimation of the radius is also driven by

eccentricity, but must be deferred until each node detects

its correct eccentricity. When that happens, and also when a

lower estimate for the radius is received, a RAD message is

broadcast.

It is easy to see that at some point every node will

have awakened; later everyone will have received a BFS

from everyone else and will have their eccentricity stored

in the respective variable; and later still nodes will receive

some DIAM message with the network diameter, originating

from some maximum eccentricity node (a periphery node).

Similarly, a RAD message originating from a minimum

eccentricity node (a center node) will arrive eventually at

all nodes.

The relevant question is convergence detection, i.e., when

will nodes know that their eccentricity, diameter and radius

variables have converged to the correct values. For this

purpose, and inspired by the approach in [9], nodes have a

variable which stores the number of consecutive rounds for

which no new BFS messages arrived. Later, we will show

how this variable can be used for convergence detection.

In order to analyze the communication complexity of the

whole execution of the algorithm, we can first observe that

state variables:
ei, node eccentricity, initially ei = 0
di, network diameter, initially di = 0
ri, network radius, initially ri = ∞
si, status, initially si = QUIESCENT

Ii, set of node ids, initially Ii = {}
ci, consecutive rounds with no new BFS, initially ci = 0
Oi, message to be sent, initially Oi = {}

message-generation function:
msgi(〈ei, di, ri, si, Ii, ci, Oi〉, j) = Oi j ∈ nbrs(i)

state-transition function:
transi(〈ei, di, ri, si, Ii, ci, Oi〉,Mi) =
〈e′i, d

′

i, r
′

i, s
′

i, I
′

i, c
′

i, O
′

i〉

where

M =
⋃

{m | m ∈ Mi}
if si = QUIESCENT ∧ M = {} then

〈e′i, d
′

i, r
′

i, s
′

i, I
′

i, c
′

i, O
′

i〉 = 〈ei, di, ri, si, Ii, ci, Oi〉
else

M ′ = {〈BFS, j, h+ 1〉 | 〈BFS, j, h〉 ∈ M, j 6∈ Ii}
M ′′ = M ′ ∪ {〈BFS, i, 0〉 | si = QUIESCENT}
if M ′′ = {} then

c′i = ci + 1
else

c′i = 0

e′i = max({ei} ∪ {h | 〈BFS, , h〉 ∈ M ′})
d′i = max({di} ∪ {d | 〈DIAM, d〉 ∈ M} ∪ {e′i})
r′i = min({ri} ∪ {r | 〈RAD, r〉 ∈ M} ∪ {e′i | c

′

i = 2})
s′i = ACTIVE

I ′i = Ii ∪ {j | 〈BFS, j, 〉 ∈ M ′′}
Md = {〈DIAM, d′i〉 | d

′

i > di}
Mr = {〈RAD, r′i〉 | r

′

i < ri}
O′

i = M ′′ ∪Md ∪Mr

Fig. 1. Algorithm.

each BFS message can be encoded in Θ(log |V |) bits, since

its dominated by the size of the ids. Each node retransmits

exactly one BFS message for every other node, totaling

Θ(|V | |E| log |V |) bits. Since the diameter can only increase

at most D times, each node broadcasts at most D DIAM mes-

sages, totaling O(D |E| logD) bits. Similarly for RAD mes-

sages. Thus, total message complexity is Θ(|V | |E| log |V |)
bits.

A. Example Runs

Prior to the formal proofs of the algorithm properties, we

now convey some intuition by illustrating its execution in

two different graphs. The first graph is a path with eleven

nodes, depicted in Figure 2. Nodes 0 and 10 and are the only

two nodes in the periphery, thus defining the diameter; node

5 is the single node in the graph center. We consider a run

where node 0 is activated and we will observe how the local

5216

5217

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 5 10 15 20 25 30 35

L
o

c
a

l
v
a

ri
a

b
le

s

Rounds

e

d

r

2r

c

Fig. 7. T shaped graph, start at 14, probing at node 14.

Definition 3.1: Ai(r)
.
= {j | d(i, j) ≤ r ∧ sj(r −

d(i, j)) = ACTIVE}.

Ai(r) denotes the “area of visibility” of node i after1 round

r: the set of nodes whose BFS messages arrive at i no later

than round r. It is easy to see that Ai is monotonic: Ai(r) ⊆
Ai(r + 1).

Lemma 3.1: After any round r, Ii(r) = Ai(r).

Proof: If j ∈ Ii(r) then i must have received no later

than round r a BFS message starting at j; it traveled d(i, j)
hops, which means that d(i, j) ≤ r and j was active after

round r − d(i, j); therefore j ∈ Ai(r). If j ∈ Ai(r), then

d(i, j) ≤ r and j was active after round r − d(i, j). This

implies that j’s BFS message arrives at i not later than round

r; therefore, j ∈ Ii(r).

Lemma 3.2: If ci(r + 2) ≥ 2, then Ai(r) = V .

Proof: If Ai(r) 6= V then there are two nodes, u ∈
Ai(r) and v 6∈ Ai(r) which are adjacent, i.e., d(u, v) =
1. This means that su(r − d(i, u)) = ACTIVE and sv(r −
d(i, v)) = QUIESCENT. Since u and v are adjacent, then

sv(r+1−d(i, u)) = ACTIVE. There are three possible cases:

(1) d(i, u) = d(i, v), in which case v became active in round

r+1−d(i, v), and i receives the BFS from v at round r+1;

(2) d(i, v) = d(i, u)+1, in which case sv(r+2− d(i, v)) =
ACTIVE, and i receives the BFS from v at either round r+1
or round r + 2; (3) d(i, v) = d(i, u) − 1, cannot happen,

as it contradicts sv(r − d(i, v)) = QUIESCENT. In any case,

ci(r+1) = 0 or ci(r+2) = 0. Therefore, since ci can only

increase 1 unit per round, it follows that if ci(r + 2) ≥ 2,

then Ai(r) = V .

Lemma 3.3: After any round r, ei(r) = max({0} ∪
{d(i, j) | j ∈ Ii(r)}).

Proof: Trivial induction on the number of rounds.

Theorem 3.1 (eccentricity convergence): If ci(r+2) ≥ 2,

then ei(r) = ecc(i).

Proof: Combine the previous three lemmas.

1When referring to state variables, we do not use the expression “at round
r” to avoid ambiguity between beginning or end of round. Throughout the
paper we use “after round r” as a shorthand for “when round r has finished”,
i.e., “at the end of round r”.

Lemma 3.4: If for some r and n ≥ 2, ci(r+n) = n, then

for all k, ci(r + k) = k.

Proof: After the first round r such that ci(r + 2) = 2,

by the first two lemmas Ii(r) = V . This implies that for

r′ ≥ r, ci(r
′ + 1) = ci(r

′) + 1.

Theorem 3.2 (diameter convergence): When ci(r) ≥ 2
and ci(r) > di(r), then di(r) = diam(G).

Proof: By contradiction. Assume ci(r) ≥ 2 and ci(r) >
di(r) but di(r) < diam(G). By Theorem 3.1, ei(r) = ecc(i).
Also, it is trivial that di(r) ≥ ei(r). Then, as in a graph all

the eccentricities between the radius and the diameter are

present [3], there exists two nodes u and v with d(u, v) =
di(r) + 1. Assume without loss of generality that d(i, u) ≥
d(i, v). From the previous lemma, for r′ = r − ci(r), it

follows that ci(r
′+k) = k. As ci(r

′+2) = 2, by Lemma 3.2,

Ai(r
′) = V ; therefore su(r

′ − d(i, u)) = ACTIVE. Then,

dv(r
′−d(i, u)+d(u, v)) ≥ d(u, v) (BFS from u has reached

v). Furthermore, di(r
′−d(i, u)+d(u, v)+d(i, v)) ≥ d(u, v)

(DIAM message from v has reached i). Since d(i, u) ≥
d(i, v), then di(r

′+d(u, v)) ≥ d(u, v). Recall that d(u, v) =
di(r) + 1, and let r′′ = r′ + d(u, v) = r− ci(r) + di(r) + 1.

From the assumption ci(r) > di(r), it means that r′′ ≤ r,

which together with di(r
′′) ≥ di(r) + 1 contradicts the

monotonicity of di.

Theorem 3.3 (radius convergence): When ci(r) ≥
2ri(r), then ri(r) = radius(G).

Proof: We assume networks with at least one link and

two nodes, which means ri(r) ≥ 1. If ci(r) ≥ 2ri(r), we

have ci(r) ≥ 2, which means that, from Lemma 3.4, all

BFSs have already reached node i after round r′ = r−ci(r),
and from r′ on we have ci(r

′ + k) = k. Assume, by

contradiction, that ri(r) > radius(G). Then, at most after

round r′ + ri(r) − 1, all BFSs have reached some node u

in the center of the network. At most two rounds later, after

round r′′ = r′ + ri(r) + 1, we have cu(r
′′) ≥ 2 and u

has sent a RAD message with the network radius. At most

ri(r) − 1 rounds later, after round r′′′ = r′ + 2ri(r) this

message arrives at i and ri(r
′′′) = radius(G). But assuming

ci(r) ≥ 2ri(r) it means that r′′′ ≤ r, which contradicts

ri being monotonically decreasing. As ri results from some

eccentricity and is always an upper bound of the radius, we

must have ri(r) = radius(G).

C. Convergence Bounds

We now determine upper bounds on the number of rounds

for convergence of eccentricity, diameter and radius. Given

that we have described the algorithm for the general case of

variable starting times, what matters is the number of rounds

after the first activation; i.e., ignoring an initial sequence

of rounds with all nodes inactive. Therefore, in this section

we consider that the first node became active after round 0;

round 1 is when the first non-environment message is sent.

Proposition 3.1 (eccentricity bound): Node i can deter-

mine its eccentricity at most in diam(G)+ecc(i)+2 rounds.

Proof: After round diam(G) all nodes are active, so

the last BFS arrives at i at most after round diam(G) +

5218

ecc(i). Two rounds later the ci variable reaches 2 and from

Lemma 3.1 the eccentricity has already converged.

Proposition 3.2 (diameter bound): Node i can determine

the network diameter at most in 2 diam(G) + ecc(i) + 1
rounds.

Proof: After round diam(G) all nodes are active, so

the last BFS arrives at i at most after round diam(G) +
ecc(i). Subsequently ci starts increasing and after further

diam(G) + 1 rounds the local condition ci > di is met.

As we are considering networks with at least one link, i.e.,

diam(G) ≥ 1, then at this round we have also ci ≥ 2 and

from Theorem 3.2 the diameter has converged.

Proposition 3.3 (radius bound): Node i can determine the

network radius at most in diam(G) + ecc(i) + 2 radius(G)
rounds.

Proof: After round diam(G) all nodes are active, so the

last BFS arrives at i at most after round diam(G) + ecc(i);
afterwards ci starts increasing and after round r = diam(G)+
ecc(i)+2 radius(G) we have ci(r) ≥ 2 radius(G). Also, after

at most round diam(G) + radius(G) all BFS have arrived

at all center nodes; two rounds later, at most after round

r′ = diam(G)+radius(G)+2, each center node sends a RAD

message containing radius(G). There are two possibilities:

(1) ecc(i) > 1, the RAD message from a center node j arrives

at i at most radius(G) rounds later, which means that at most

after round r′′ = diam(G)+2 radius(G)+2 we have ri(r
′′) =

radius(G); given that r′′ ≤ r, then ri(r) = radius(G), and

the local radius convergence criteria ci(r) ≥ 2ri(r) is met;

(2) ecc(i) = 1, in which case radius(G) = 1, i is a center

node, and at round r′ we have ri(r
′) = radius(G); as in this

case r′ = r, we have ci(r) ≥ 2ri(r) as well.

Corollary 3.1: All nodes know: their eccentricity at most

in 2D + 2 rounds; the diameter at most in 3D + 1 rounds;

and the radius at most in 2D + 2R rounds.

D. Termination

To keep the presentation clear and avoid cluttering, we did

not include in the algorithm the mechanics of termination;

i.e., each node reaching a “terminated” state in which it

stops sending messages. In general distributed termination

is independent from reaching some result, and nodes may

have to keep propagating messages for some time.

In this case, however, it is easy to see that when a node

has determined both the radius and diameter through the local

convergence criteria, all neighbors will have the same criteria

met after at most one more round. (After one more round,

each node j neighbor from i, will have cj with at least the

same value node ci had, and both rj and dj will have the

same values as in node i.) Therefore, after having met both

criteria for radius and diameter, a node needs only execute

one more round and stop.

E. Improving Storage Requirements

In the previously described algorithm each node accu-

mulates in the I variable all ids received in all previous

rounds. Although it has made the description intuitive and

streamlined proofs, it means that, regardless of network

topology, by the end of the execution each node will need

to store Θ(|V |) ids.

Here we show that it is enough to keep in the state only

the ids received in the two previous rounds. While this mod-

ification does not change the worst case space requirement

complexity (it still remains O(|V |) ids for general graphs and

uncoordinated start times), it may be useful in practice. As an

example, for 2D geometrical networks (e.g. a geographically

spread sensor network with links according to inter-node

distance), under synchronized start times, the number of ids

that arrive in a single round (and need to be stored) will

be O(
√

|V |). Notice that these specific configurations also

reduce the required channel bandwidth, and that in other

specific graph topologies, these uppers bounds on stored state

can be even more tight.

The modification to the algorithm is trivial and consists

of replacing state variable I by a pair I, J used as a sliding

window; replacing the test j 6∈ Ii with j 6∈ Ii ∪ Ji and

replacing I ′i = Ii ∪ {j | 〈BFS, j, 〉 ∈ M ′′} with I ′i = Ji and

J ′

i = {j | 〈BFS, j, 〉 ∈ M ′′}. The modification is possible

due to the following property of the original algorithm.

Proposition 3.4: A node j can only receive BFS mes-

sages 〈BFS, i, 〉, originated in a node i activated at round r,

in rounds r + d(i, j), r + d(i, j) + 1 and r + d(i, j) + 2.

Proof: The first round, where node j can receive a

〈BFS, i, 〉 message, is r′ = r + d(i, j), by the shortest path

from i; j rebroadcasts it and at round r′ + 1 it arrives at all

neighbors, if any. Also at round r′ + 1 node j may receive

such a message if there exists a neighbor node u at the

same distance from i (i.e., d(i, u) = d(i, j)); this neighbor,

similarly to j, has received such a message at round r′ and

has rebroadcasted it. At round r′+2 node j can receive such

a message if it has a neighbor u one hop further away from

i (i.e., d(i, u) = d(i, j) + 1); this neighbor has received the

message at round r′ + 1 and has rebroadcasted it at round

r′ + 2. Because any neighbor u of j has stored i in the

respective Iu variable after at most round r′ + 1, it will not

rebroadcast any 〈BFS, i, 〉 message in any round later than

r′ + 2, from which such messages cannot reach j later than

round r′ + 2.

IV. RELATED WORK

As mentioned in the introduction, our algorithm improves

the classic modular approach [8], where BFS trees are first

computed at each node and later reused to perform a global

computation of the network radius and diameter (in at most

4D+2 rounds). By Corollary 3.1, we achieve a speedup of D

rounds for computing the diameter, and since D ≤ 2R ≤ 2D
the speedup for computing the radius varies between 2 and

D + 2 rounds. The maximum speedup occurs, for example,

in path graphs. This improvement is achieved with the same

message complexity of Θ(|V | |E| log |V |) bits, and the same

space complexity of O(|V |) ids and computation complexity

per round of O(|V |
2
) at each node.

The work in [10] computes the diameter under the more

restrictive synchronized start time model, where all nodes are

activated at the first round. This is a fast algorithm since they

5219

also disseminate candidate values for eccentricities before

they converge. However, since they assume that all nodes

are active in the first round the local termination criteria

is much simpler. When restricted to a setting where all

nodes are active in the first round our algorithm outputs the

diameter in the same time bound. Even though we are more

general, we have significant improvements in message and

space complexity.

Related to the computation of the radius and the eccen-

tricity is finding the network center. To the best of our

knowledge, within similar bounds for space and processing

complexity per round, the fastest algorithm so far to find

network center nodes was proposed by Korach, Rotem and

Santoro [6]. This algorithm builds on a simpler algorithm to

find a center of a tree, and the observation that the center of a

general network must also be the center of its own BFS tree:

the initiator node triggers BFS generation at all nodes, picks a

center among all candidates which are centers of their own

BFS, and later disseminates this information to all nodes.

The closest center node c to the initiator node i will receive

the confirmation that it is indeed a center of the network by

round 4 radius(G)+d(i, c)+1, with total message complexity

of Θ(|V | |E| log |V |) bits. Notice that, in contrast to this, our

algorithm is fully symmetrical, not requiring a distinguished

node as initiator (which would have to be chosen in some

way, e.g. by a leader election). Even discounting this factor,

our more general algorithm has no time penalty: in fact, it

can be shown that it even improves this upper bound by at

least one round.

A more general problem than computing the eccentricities,

radius and diameter is that of computing the distance matrix

or all-pairs shortest path matrix in a network. In fact,

relying on this connection, a faster distributed variant of

our algorithm could be designed to compute the radius and

diameter: instead of propagating just the distances, each

node propagates sets of neighbors – at most by round

2 diam(G)+ 2 all nodes would be able to determine the full

topology of the network and run a standard unweighted all-

pairs shortest path algorithm with computation complexity

O(|V | |E|) at the last round. Unfortunately, even assum-

ing that computation complexity per round is negligible,

this algorithm requires Θ(|V |
2
) space complexity at each

node, which is impractical for large networks. Moreover the

message complexity increases to Θ(|E|
2
log |V |) bits, and

requires a bandwidth of O(|E| log |V |) bits per link.

With such large bandwidth it is possible to decrease the

message complexity using more elaborated approaches. For

example, Kanchi and Vineyard [5] propose a distributed

algorithm to compute the all-pairs shortest path matrix with

message complexity of O(|V | |E| log |V |) bits: a spanning

tree is first computed using the algorithm proposed by

Awerbuch [2] and later reused to propagate the topologi-

cal information to a root node that computes the distance

matrix and disseminates it to all nodes. The tradeoff for this

optimization is, unfortunately, a substantial increase in the

number of rounds, although still O(|V |).
Message complexity can also be reduced by trading off

accuracy. For example, Gu and Cheng [4] propose a dis-

tributed algorithm to compute an estimate ˆdiam(G) for the

diameter, such that diam(G) ≤ ˆdiam(G) ≤ diam(G) + 2.

Unfortunately, the bandwidth requirements are slightly worse

than ours and the improvement in message complexity does

not extend to time complexity: although the authors do

not quantify this measure, it is clear from the algorithm

presentation that the number of rounds until completion is

substantially larger than ours. Moreover, this algorithm also

requires a distinguished node as initiator.

V. CONCLUSIONS

In this paper we propose a time efficient algorithm that

computes in all nodes of a network the values of the

node eccentricity, and the network diameter and radius. The

algorithm is very flexible in the sense that it does not require

a distinguished node, one or more nodes can initiate the

computation, and concurrent initiations have no detrimental

impacts on the various bounds and complexities.

Under the same communication, space, and computation

complexity, the presented algorithm significantly improves

existing time bounds for the diameter and radius computa-

tion. It also slightly improves the time bounds for the special

case of finding center nodes, while relaxing the need for a

special initiator.

The key to the improvement was to abandon the tradi-

tional modular approach. Instead, our algorithm relies on

a very early propagation and aggregation of the maximum

and minimum candidate eccentricities, even before these

values have stabilized. Together with adequate convergence

detection criteria, this allowed a simple and fast approach to

the computation of these distances.

REFERENCES

[1] Baruch Awerbuch. Complexity of network synchronization. J. ACM,
32(4):804–823, 1985.

[2] Baruch Awerbuch. Optimal distributed algorithms for minimum
weight spanning tree, counting, leader election and related problems
(detailed summary). In STOC, pages 230–240. ACM, 1987.

[3] Fred Buckley and Frank Harary. Distance in Graphs. Addison-Wesley,
1990.

[4] Qian-Ping Gu and Zixue Cheng. Efficient estimation of diameter
for distributed networks. In Proc. of the 11th Annual International

Symposium on High Performance Computing Systems, pages 261–268,
1997.

[5] Saroja Kanchi and David Vineyard. An optimal distributed algorithm
for all-pairs shortest-path. Information Theories and Applications,
11(2):141–146, 2004.

[6] Ephraim Korach, Doron Rotem, and Nicola Santoro. Distributed
algorithms for finding centers and medians in networks. ACM Trans.

Program. Lang. Syst., 6(3):380–401, 1984.
[7] Sung-Ju Lee, Elizabeth M. Belding-Royer, and Charles E. Perkins.

Scalability study of the ad hoc on-demand distance vector routing
protocol. Int. Journal of Network Management, 13(2):97–114, 2003.

[8] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.
[9] David Peleg. Time-optimal leader election in general networks. J.

Parallel Distrib. Comput., 8(1):96–99, 1990.
[10] Boleslaw K. Szymanski, Yuan Shi, and Noah S. Prywes. Terminating

iterative solution of simultaneous equations in distributed message
passing systems. In PODC, pages 287–292, 1985.

5220

