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Abstract: Existing bidirectional languages are either state-based or operation-based,
depending on whether they represent updates as mere states or as sequences of edit
operations. In-between both worlds are delta-based frameworks, where updates are
represented using alignment relationships between states. In this paper, we formalize
delta lenses over inductive types using dependent type theory and develop a point-free
delta lens language with an explicit separation of shape and data. In contrast with
the already known issue of data alignment, we identify the new problem of shape
alignment and solve it by lifting standard recursion patterns such as folds and unfolds
to delta lenses that use alignment to infer meaningful shape updates.
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1 Introduction

In software engineering, data transformations are a ubiquitous tool to “bridge the gap” between
technology layers and facilitate the sharing of information among software applications. However,
users generally expect transformations to be bidirectional, in the sense that, if after a (forward)
transformation both source and target instances co-exist and sometimes evolve independently,
another (backward) transformation is able to bring the updated instances back to a consistent state.

One of the most successful approaches to bidirectional transformation (BX) are the so-called
lenses [FGM+07], an instantiation of the well-known view-update problem. A lens S Q V
encompasses a forward transformation get : S→ V that abstracts sources of type S into views
of type V (so that views contain less information than sources), together with a backward
transformation put : V × S→ S that synchronizes a modified view with the original source to
produce a new modified source1. Naturally, such synchronization is non-deterministic in general,
since there may be many possible modified sources that reflect a certain view-update.

The above state-based formulation of the view-update problem, where the backward transfor-
mation receives only the updated view, underpins many BX languages that have been proposed
to various application domains. Although very flexible, this formulation implies that the put
function must somehow align models and recover a high-level description of the update (a delta
describing the relation between elements of the updated and original view), to be then propagated
to the source model. A large part of the non-determinism in the design space of a state-based BX
language concerns precisely the choice of a suitable alignment strategy.
1 Readers unfamiliar with lenses may refer to [PC10] for a mild introduction to lenses over inductive types.
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Delta Lenses over Inductive Types

Some state-based languages [FGM+07, MHN+07, PC10] do not even explicitly consider this
alignment step, and end up aligning values positionally, i.e., elements of the view are always
matched with elements of the source at the same position, even when they are rearranged by
an update. This suffices for in-place updates that only modify data locally without affecting
their order, but produces unsatisfactory results for many other examples. Other state-based
languages [XLH+07, BFP+08] go slightly further and align values by keys rather than by positions.
Nevertheless, this specific alignment strategy is likewise fixed in the language and might not be
suitable for values without natural keys (or for translating updates that modify keys themselves).

On the other hand, operation-based BX languages [MHT04, HHI+10, HPW12] avoid this
potential alignment mismatch by relying on an alternative formulation, where the backward
transformation receives a description of the update as a low-level sequence of edit operations. The
drawback of this approach is that put only considers a fixed update language (typically allowing
just add, delete, and move operations), defined over very specific types, making it harder to
integrate such languages in a legacy application that does not record such edits.

To unify both worlds and benefit from both the loose coupling of state-based approaches and
the more refined updatability of operation-based approaches, Diskin et al [DXC11] formulated an
abstract delta lens framework that encompasses an explicit alignment operation (that computes
view deltas), and where put is an update-based transformation that propagates view deltas into
source deltas. Matching lenses [BCF+10] are the first BX language that we are aware of pro-
moting this separation principle. They generalize dictionary lenses [BFP+08] over strings, by
decomposing values into a rigid structure or shape, a container with “holes” denoting element
placeholders, and a list of data elements that populate such shape. This enables elements to be
freely rearranged according to the delta information. Users can then specify an alignment strategy
that computes the view update delta as a correspondence between element positions.

The main limitation of matching lenses is that they are shape preserving: when recast in the
context of general user-defined data types, their expressivity amounts to a mapping transforma-
tion map l : T A Q T B over a polymorphic data type, being l : A Q B a regular state-based lens
operating on its elements. In this setting, lenses are sensible to data modifications (on the types A
and B of data) but not to shape modifications (on the type T of shapes) and the behavior of put
is rather simple: it just copies the shape of the view, overlapping the original source shape, and
realigns elements using the explicitly computed delta rather than by position.

Consider, as an example, the following Haskell type representing a genealogical tree of persons
and a corresponding transformation that computes a list of names of left ascendants in the tree:

data Tree a = Empty | Node a (Tree a) (Tree a) type Person = (Name,Birth)
data List a = Nil | Cons a (List a) type Name = String type Birth = Int

fathernames : Tree Person Q List Name fatherline : Tree Person Q List Person
fathernames = names◦ fatherline names : List Person Q List Name

This transformation is defined in two steps: first compute the left ascendants with fatherline,
and then select only their names using names. By porting the matching lens approach to this
domain, we could easily define names using a list mapping map : (A→ B)→ (List A→ List B).
Unfortunately, fatherline does not fit the mapping corset imposed by the matching lens framework,
since it reshapes the source tree into a list. Leaving fatherline as a standard state-based (positional)
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(b) A data- and shape-aware putting back function.

Figure 1: A genealogical tree example.

lens would produce less-then-optimal results. For instance, for a source tree containing a person
Peter and his parents Joseph and Mary, if we insert a new person named John at the head
of the view, and infer a suitable view delta relating every name in the updated view but John
to the respective person in the original view, put would behave as depicted in Figure 1a (where
rectangles denote shape holes and dotted arrows represent deltas between shape positions).

Although the order of names in the view changes, the birth years of existing persons are
retrieved correctly due to the improved behavior of mapping modulo deltas (using 2012 as the
default birth year for inserted persons), but the positional shape behavior of fatherline makes
Mary (a parent of the first position in the original tree) an incorrect parent of John (the first
position in the updated tree). With the extra delta information at hand we could have done better
though: fatherline could recognize John as a new person and propagate his insertion to the
source tree (with a default empty tree of right ascendants), as depicted in Figure 1b. It is easy to
justify that this behavior on shapes induces a smaller change and is thus more predictable.

As another example, consider that we have a list of persons sorted by age, discriminating males
and females, from which we filter all the females using the following transformation (where the
shape is modeled by a list of optionals and data elements are either males or females in the list):

data BiList a b = BiNil | ConsL a (BiList a b) | ConsR b (BiList a b) type Male = (Name,Birth)

females : BiList Male Female Q List Female type Female = (Name,Birth)

Again, this lens is not a mapping, as it changes the shape of the source by dropping some source
elements. If we consider that it behaves positionally, inserting a new female Jane in the view list
and deleting Mary would produce the source depicted in Figure 2a, where shape alignment is
kept positional: the first female Jane in the updated view is aligned with the first female Anna
in the source and the second female Anna in the updated view is aligned with the second female
Mary in the source, while the male Peter is left in its original position in the source list. In the
picture, rounded boxes denote females and rectangular boxes denote males. A better solution
(Figure 2b) would be to use the deltas to recognize the inserted and deleted females, and propagate
their modifications to the same relative positions: propagate the inserted female Jane to the head
of the source, align Anna in the second position of the updated view with the first position of
the source and delete Mary from the last position of the source. This behavior would induce a
smaller source update that (for this case) would leave the source list sorted by age.

The lesson to learn is that likewise a positional data alignment (the matching of data elements)
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Figure 2: A filtering example.

is only reasonable for in-place updates, a positional behavior on shapes (that ignores the shape
of the original source and overrides it with the shape of the updated view) is innate for mapping
scenarios but again ineffective for shape-changing transformations that restructure source shapes
into different view shapes and for which simple overriding for put is not possible. In this paper,
we focus on the treatment and propagation of generic deltas (independently of the more particular
heuristic techniques that can be used to infer this information for specific application scenarios),
identify the new problem of shape alignment (the matching of new and old shapes) and propose
to answer it with the development of a delta lens language, whose inhabitants are lenses with an
explicit notion of shape and data that can perform both data and shape alignment. Our language is
designed in such a way that many lens programs written in our previous state-based lens language
from [PC10] can be lifted to delta lens programs without significant effort by users.

In the next section (Section 2), we introduce the theoretical concepts required for our develop-
ment, formalize the notion of deltas and present our particular application domain of inductive
types. Section 3 reviews the abstract delta lens framework [DXC11] and proposes a lower-level
variant that is more suitable for the implementation of our BX delta-based language. In Section 4,
we provide a set of primitive delta lens combinators and redefine the point-free lens combinators
from [PC10] as delta lenses over shapes. Section 5 studies the construction of recursive delta
lenses and lifts standard recursion patterns such as folds and unfolds to lenses that propagate
shape updates as inferred from the deltas between data elements. Section 6 compares related work
and Section 7 synthesizes the main contributions and directions for future work.

2 Deltas over Polymorphic Inductive Types

Functors The central requirement for this paper is the existence of types with an explicit notion
of shape and data. In functional programming, these are known as polymorphic data types, i.e.,
types parameterized by type variables like the trees and lists in our introduction. A polymorphic
type T is a functor T :∗ → ∗ (in categorical terms, a functor between the same category ∗ with
types as objects and functions as arrows) that applied to every type A returns a type T A, possessing
a mapping between data elements T f : T A→ T B, for a given function f : A→ B. All the functors
underlying data type declarations support a sums ⊕ of products ⊗ representation [PCH12]. A
transformation f between functors F and G applied to data elements of type A and B (i.e., a
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function with a notion of domain and target shapes) is denoted by f : F A→ G B, or to emphasize
the shape, f : FA → GB. Whenever a transformation η is polymorphic it is called a natural
transformation, denoted by η : F →̇ G, satisfying the naturality property η ◦F f = G f ◦η , for any
function on data elements f : A→ B.

Positions Polymorphic inductive data types can be seen as instances of container types [AAG05].
A container type S .P consists of a type of shapes S together with a family P of position types
indexed by values of type S. The extension of a container is a functor JS.PK that when applied to
a type A (the type of the content) yields the dependent product2 Σs : S. (P s→ A). A value of type
JS.PK A is thus a pair (s, f ) where s : S is a shape and f : P s→ A is a total function from positions
to data elements. A polymorphic data type T A is isomorphic to the extension JT 1.PK A, where
the dependent type of positions can be inductively defined over functor representations [AAG05],
for each value v :T A. Note that the type of positions for a value of type T A is the same as the type
of positions for its shape of type T 1. For our tree and list types, positions are modeled as follows:

P :∀{T :∗→ ∗},v : T A.∗
P {Tree} Empty = 0
P {Tree} (Node x l r) = 1+P {Tree} l+P {Tree} r
P {List} Nil = 0
P {List} (Cons x t) = 1+P {List} t
P {BiList B} BiNil = 0
P {BiList B} (ConsL x t) = P {BiList B} t
P {BiList B} (ConsR y t) = 1+P {BiList B} t

For the BiList type, we consider only positions on its second polymorphic argument, by fixing
its first argument to the type B. The general definition for arbitrary polymorphic types is given
in an accompanying technical report [PCH12]. Here, 0 is the empty type with no values and 1
is the unity type with a single value. The idea is that the (dependent) type of positions P is a
tree resembling the structure of the value on which it depends, but considering only polymorphic
elements. This tree representation ensures that each placeholder in the shape of a value is
referenced by an unique position. Remember also that the type of positions is dependently defined
for each value, and not for its shape. For example, for a list value with length n, the type of
position is equivalent to the natural number n denoting the exact number of elements in the list.

Inspired by shapely types [Jay95] notation, a polymorphic type T A can be characterized by
three functions: shape :T A→ T 1 that extracts the shape, data :∀v :T A. (P v→A) that extracts the
data, and recover : JT 1.PK A→ T A that rebuilds a value. For lists, the shape List 1 is isomorphic
to naturals Nat = {0,1, ...}, and thus we have shape l = length l, P l = {0 . . length l− 1}, and
data l = λn→ l !! n, where !! is a function that returns the element at position n in the list l.

2 A dependent type may depend on values. The dependent function space ∀a : A. B a denotes functions that, given a
value a : A emits values of the dependent type B a. When B does not depend on a, this degenerates into the normal
function space A→ B. The dependent cartesian product Σa :A. B a models pairs where the type of the second component
depends on the first. Again, when B does not depend on a, it models the cartesian product A × B. To simplify the
presentation, we will often mark some arguments of a dependent function space as implicit using curly braces, as
found in Agda [Nor09]. In principle, these parameters can be omitted and their value inferred from the context.
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(◦) : (B ∼ C)→ (A ∼ B)→ (A ∼ C) id : A ∼ A ⊥ : A ∼ A
(∪) : (A ∼ B)→ (A ∼ B)→ (A ∼ B) (∩) : (A ∼ B)→ (A ∼ B)→ (A ∼ B)
(−) : (A ∼ B)→ (A ∼ B)→ (A ∼ B) ·◦ : (A ∼ B)→ (B ∼ A)
〈·, ·〉 : (A ∼ B)→ (A ∼ C)→ (A ∼ B × C) π1 : A × B ∼ A
(×) : (A ∼ B)→ (C ∼ D)→ (A × C ∼ B × D) π2 : A × B ∼ B
[·, ·] : (A ∼ C)→ (B ∼ C)→ (A+B ∼ C) i1 : A ∼ A+B
(+) : (A ∼ B)→ (C ∼ D)→ (A+C ∼ B+D) i2 : B ∼ A+B

Figure 3: Point-free relational combinators

Deltas In our work, we model a delta b∆a between a target value b and a source value a as a
correspondence relation P b ∼ P a from positions in the target value to positions in the source
value. We will also distinguish vertical deltas that model updates between values of the same
type, from horizontal deltas that establish correspondences between values of different (view and
source) types [Dis11]. In our setting, this correspondence relation must be simple, i.e., each target
position has non-ambiguous provenance and is related to at most one source position. In practice,
this assumption does not seriously restrict the kind of supported correspondences. For example,
when constructing views every view element must necessarily be uniquely related to a source
element and when performing an update we can still insert, delete and duplicate elements. The
only implication is that elements must be considered atomically, this is, we can not express for
example that an element in the view is the combination of two elements in the source.

To describe deltas we will use a standard set of point-free relational combinators (Figure 3),
whose behavior can be intuitively inferred from their signatures. Our combinators include
relational composition (◦) and regular set operations such as union (∪), intersection (∩) and
difference (−). The converse of a relation R is given by R◦, ⊥ denotes the empty relation, and
the other combinators handle products and sums3. The domain and range of a relation r : A ∼ B
are coreflexive relations denoted by δR ⊆ id : A ∼ A and ρR ⊆ id : B ∼ B, respectively. By
resorting to this language, we can reason about deltas using the powerful algebraic laws ruling its
combinators. More details on this point-free relational calculus can be found in [Oli07].

3 Laying Down Delta Lenses

In Diskin’s et al [DXC11] delta-based framework, updates are encoded as triples (s,u,s′) where
s,s′ are the source and target values and u is a delta between elements of s and s′, and transforma-
tions are arrows that simultaneously translate states and deltas. In our presentation, we choose
to separate the state-based and delta-based components of the lenses. This, together with the
dependent type notation, leads to a simpler formulation of delta lenses for polymorphic inductive
data types: operationally, the delta-based components required for defining composite delta lens
can be ignored by end users, which are only required to understand the more intuitive interface
of the state-based components. Also, transformations are no longer partially defined modulo

3 To preserve simplicity, some combinators are only used in controlled situations. For example, if a relation R is
injective and simple (like getM presented further on), then R◦ is also simple.
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additional properties entailing preservation of the incidence between values and deltas. Instead,
our precise characterization of deltas as relations between positions of specific values makes the
difference and ensures that the domains and targets of the updates coincide with the old and new
values. It also allows us to use the relational calculus to concisely express the delta-based laws.
We adapt the definition of [DXC11] for our domain of polymorphic inductive types as follows:

Definition 1 (Delta lens) A delta lens l (d-lens for short), denoted by l : S A QN V B, is a
bidirectional transformation that comprises four total functions:

get : S A→ V B getN :∀{s′ : S A,s : S A}. s′∆s→ get s′∆get s
put :∀(v,s) : V B × S A. v∆get s→ S A putN :∀{(v,s) : V B × S A},d : v∆get s. put (v,s) d ∆s

The d-lens is called well-behaved iff it satisfies the following properties:

get (put (v,s) d) = v PUTGET

put (get s,s) id = s GETPUT

getN (putN d) = d PUTGETN

putN id = id PUTIDN

In the above definition, the state-based component of the d-lens is given by the functions get,
that computes a view of a source value, and put, that takes a pair containing a modified view and
an original source, together with a delta from the modified view to the original view, and returns
a new modified value. The fact that we require our transformations to be total, together with
the state-based laws, also implies that the lenses defined with our language actually constitute
views, i.e., view values always contain less information than source values. The delta-based
function getN translates a source delta into a delta between views produced by get, and putN
receives a view delta and computes a delta from the new source produced by put to the original
source. Properties PUTGET and GETPUT are the traditional state-based ones: view-to-view
roundtrips preserve view modifications; and put must preserve the original source for identity
updates. PUTGETN and PUTIDN denote similar laws on deltas: view-to-view roundtrips preserve
view updates; and putN must preserve identity updates. It is easy to see that our formulation is
equivalent to the well-behaved d-lenses from [DXC11]. For example, their GETID property is a
consequence of our axiomatization.

We can convert a d-lens l : S A QN V B into a state-based lens blcdiff : S A Q V B, that receives
an alignment function diff :∀v′ : V B,v : V B. v′∆v estimating a delta from the pre- and post-states
of view updates, but forgets shape and alignment for further compositions. We omit its definition
and properties, but they have already been studied in [DXC11] and put to practice in [BCF+10].

Abstractly, d-lenses are simple to understand since they transform updates (vertical deltas) into
updates. However, to propagate view updates, putN must somehow recover an horizontal delta
between the non-modified view and the original source that provides the required traceability
information to calculate a new source update [HHI+10]. From an implementation perspective, an
alternative formulation of d-lenses that compute and process these horizontal deltas explicitly is
preferable (instead of, for instance, having to infer them at run-time for specific executions). As
such, we will define our delta lens language in an alternative framework of horizontal d-lenses,
whose delta-based functions explicitly return the horizontal deltas induced by the state-based
transformations. Moreover, it is convenient to include in this less abstract framework a create
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function [BFP+08] that reconstructs a default source value from a view value for situations where
the original source is not available.

Definition 2 (Horizontal d-lens) An horizontal d-lens l (hd-lens for short), denoted by l : S A QM

V B, comprises three total functions get, put, and create : V B→ S A, plus three horizontal deltas:

getM :∀{s : S A}. get s∆s
putM :∀{(v,s) : V B × S A},d : v∆get s. put (v,s) d ∆(v,s)
createM :∀{v : V B}. create v∆v

It is called well-behaved iff it satisfies PUTGET, GETPUT and the following properties:

get (create v) = v CREATEGET

createM ◦getM = id CREATEGETM

putM d ◦getM = i1 PUTGETM

[getM, id ]◦ putM id = id GETPUTM

P (get s′)

getM
��

getN d

��

P (put (v,s) d)

putM d
��

putN d

��

P s′

d
��

P v+P s

d+id
��

P s

get◦M
��

P (get s)+P s

[get◦M,id]
��

P (get s) P s

Figure 4: Illustration of the delta-level trans-
formations from Definition 3.

The horizontal deltas are duals of the state-
based functions that explicitly record the trace-
ability of their execution: getM denotes a delta
from the original view to the original source and
createM conversely denotes a delta from the up-
dated source to the updated view, while putM is
a delta from the new source to the input view-
source pair. In practice, this will mean that the
deltas of most of our lens combinators can be de-
rived by construction by reversing their behaviors
on states. The delta-based laws also dualize the
state-based laws, with the insight that the type
of positions of a view-source pair P (v,s) is the
disjoint sum of the positions in the view and in
the source P v+P s [PCH12]. For example, while the CREATEGET law states that abstracting a
created source must yield the original view, the CREATEGETM law evidences that the delta on
views must preserve all view elements (identity). The PUTGETM law states that the delta induced
by a view-to-view roundtrip relates all elements in the updated view (that must be the same as the
input view through PUTGET) to left elements in the input view-source pair.

We now show that hd-lenses implement the abstract framework of d-lenses:

Definition 3 An hd-lens l : S A QM V B can be lifted to a d-lens lN : S A QN V B by defining
getN d = get◦M ◦d ◦getM and putN d = [getM ◦d, id ]◦ putM d.

To demonstrate that these deltas are composable in respect to the dependent types, their
definitions are illustrated in Figure 4. The delta transformation getN is defined for a source update
d : s′∆s, and putN for a view update d : v∆get s.

Theorem 1 If an hd-lens l : S A QM V B is well-behaved, then the d-lens lN is well-behaved.

Proof. The state-based laws dismiss proofs. The delta-based laws can be proved by resorting
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to the delta-based hd-lens laws [PCH12]. In particular, PUTGETM and CREATEGETM entail that
getM is a total and injective relation (see [Oli07]), from what we can derive that get◦M ◦getM = id,
what constitutes the crucial part of the proof.

4 Combinators for Horizontal Delta Lenses

In this section, we introduce two primitive hd-lens combinators for mapping and reshaping
transformations and define liftings of our point-free lens combinators from [PC10] to hd-lens
combinators that can be used to define more complex transformations in a compositional way.

Mapping A state-based lens can be lifted to a mapping hd-lens as follows:

∀l : A Q B. S l : SA QM SB

get s = S getl s getM = id
put (v,s) d = recover (shape v,dput ∪ dcreate) putM d = i1

where dput = putl ◦ 〈data v,data s◦d〉
dcreate = (createl ◦data v)◦ (id−δdput)

create v = S createl v createM = id

Likewise the state-based functor mapping lens from [PC10], the get and create functions simply
map the components of the basic lens over the data elements, producing trivial deltas (all positions
are preserved). Instead of aligning elements by their positions, put now performs global data
alignment based on the view update delta: for each view element ve, if it relates to a source
element se, put (ve,se) is applied4; otherwise a default source is generated with createl ve. The
putM delta is also trivial, since all elements in the new source come from elements in the view.

Reshaping Given a natural lens that only transforms shapes (a lens whose get, put and create
functions are natural transformations), denoted by F Q̇G, we can lift it to a reshaping hd-lens:

∀η : S Q̇V. η : S Q̇M V
get s = getη s getM {s} =

←−−getη s
put (v,s) d = putη (v,s) putM {(v,s)} d =

←−−putη (v,s)
create v = createη v createM {v} =

←−−−−createη v
∀η : F →̇ G.

←−
η :∀s : F A. η s∆s

←−
η = data (η (recover (shape s, id)))

Although this combinator permits defining hd-lenses that transform the shape of the source, it
just infers suitable horizontal deltas for an existing state-based lens. Therefore, the state-based
components of the hd-lens are determined by the value-level functions of the argument lens. The
horizontal deltas are calculated using a semantic approach inspired in [Voi09], by running the

4 Here, dput ∪ dcreate builds a (total) function from view positions to source elements as a relation P v ∼ A. The
relation dput matches view elements with existing source elements and dcreate creates fresh source elements for the
remaining unmatched view elements. The filter (id − δdput) guarantees that the relational union is simple.
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value-level functions against sources with the data elements replaced by the respective positions,
thus inferring the correspondences in the view. This is performed by the auxiliary function←−· .
Many useful examples of these natural hd-lens transformations are polymorphic versions of the
usual isomorphisms handling the associativity and commutativity of sums and products, such
as swap : (F⊗G)A QM (G⊗F)A. Another primitive combinator that falls under this category is
the identity hd-lens id : FA QM FA. Nevertheless, this combinator is only interesting to lift lenses
that already have a reasonable behavior, as is the case of isomorphisms. Since the behavior of
the lifted d-lens is completely determined by the argument lens, using this combinator to define
the fatherline and females examples from the introduction (which indeed are natural lenses) as
hd-lenses would not perform proper alignment.

Composition We now show that the point-free combinators from our previous state-based lens
language [PC10, PC11] are also valid hd-lenses. Two fundamental point-free combinators are
identity (trivial to define) and composition. The latter can be lifted to hd-lenses as follows:

∀f : VB QM UC,g : SA QM VB. (f ◦g) : SA QM UC

get s = getf (getg s) getM = getMg ◦getMf

put (v,s) dU = putg (putf ,s) dV putM dU = [putfM, i2]◦ putMg dV

where putf = putf (v,getg s) dU where putfM = (id+getMg)◦ putMf dU

dV = [getMf ◦dU , id]◦ putMf dU dV = [getMf ◦dU , id]◦ putMf dU

create v = createg (createf v) createM = createMf ◦ createMg

In the put direction, the intermediate delta dV passed to putg maps elements in the result of
putf (v,getg s) dU to elements in gets s. To demonstrate that our design is robust, composition of
d-lenses subsumes composition of hd-lenses: (f ◦g)N = fN ◦gN. A more liberal kind of forgetful
composition for d-lenses not matching on their intermediate shapes is also possible, by first
converting them into normal lenses, as used in [BCF+10]. However, this composition is deemed
ill-formed in [DXC11], since the resulting lenses may identify and align updates differently.

Product Lifting the binary product type × into a binary functor ⊗ :∗→ ∗→ ∗, we can define
the following product projection hd-lenses:

∀f : FA→ GA. π1
f : (F⊗G)A QM FA

get (x,y) = x getM = i1
put (z,(x,y)) d = (z,y) putM d = [i1, i2 ◦ i2]
create z = (z, f z) createM = i1◦

∀f : GA→ FA. π2
f : (F⊗G)A QM GA

get (x,y) = y getM = i2
put (w,(x,y)) d = (x,w) putM d = [i2 ◦ i1, i1]
create w = (f w,w) createM = i2◦

The lifted product combinator × applies two hd-lenses in parallel, and is defined as follows:

∀f : FA QM HB,g : GA QM IB. f×g : (F⊗G)A QM (H⊗ I)B
get (x,y) = (getf x,getg y) getM = getMf +getMg

put ((z,w),(x,y)) d = (putf (z,x) d1,putg (w,y) d2) putM d = dists◦ (putMf d1 + putMg d2)

where d1 = i1◦ ◦d ◦ i1 where d1 = i1◦ ◦d ◦ i1
d2 = i2◦ ◦d ◦ i2 d2 = i2◦ ◦d ◦ i2

create (z,w) = (createf z,createg w) createM = createMf + createMg
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When computing put, the product combinator splits the view delta in two deltas mapping only left
or only right elements, to be passed to putf and putg, respectively. The dists combinator is an alias
for the isomorphism (A+B)+(C+D) ∼ (A+C)+(B+D). By halving the deltas, the puts of
the argument lenses will loose the delta correspondences for view elements that were swapped
to a different side of the view pair. For example, the d-lens π1×π1 : ((F⊗G)⊗(F⊗G)) A QM

(F⊗F) A would only be able to restore left/right information for left/right elements. Given the
polymorphic nature of this combinator, which is agnostic to the concrete instantiations of the
functors F and G, this is the only reasonable behavior.

Similar definitions for other point-free combinators, such as sums, can be found in [PCH12].

5 Recursion Patterns as Horizontal Delta Lenses

Although useful for a combinatorial language, the previous hd-lens combinators only propagate
deltas over rigid shapes (in the sense that they only process shapes polymorphically without
further detail) and do not perform any sort of shape alignment. For mappings, updates may change
the cardinality of the data (a container structure such as a list may increase or decrease in length),
but alignment can be reduced to the special case of data alignment, with the shape of the update
being copied to the result. This problem becomes more general whenever lenses are allowed to
restructure the types, in particular recursive ones whose values have a more elastic shape: by
changing the number of recursive steps, an update can alter the shape of the view (and thus the
number of placeholders for data elements), requiring a non-trivial matching with the original
source shape. If this shape alignment problem is not addressed, then the tendency of a positional
shape alignment is to reflect these view modifications at the “leaves” of the source shape, causing
the precise positions at which the modifications occur in the view shape to be ignored.

The goal of this section is to understand how we can use the delta information to infer
meaningful shape updates. However, propagating shape updates requires knowing the behavior
of the transformation, in order to establish correspondences between source and view shapes.
Instead of considering arbitrary reshaping lenses, we introduce two regular structural recursion
combinators that perform shape alignment: catamorphisms (folds) that consume recursive sources,
and anamorphisms (unfolds) that produce recursive views.

5.1 Identifying and Propagating Shape Updates

Our general idea for shape alignment is to identify insertions and deletions at the “head” of the
view shape, and propagate them to corresponding insertions and deletions at the “head” source
shape. Consider, as an example, the forward transformation for the fatherline lens:

getfatherline : Tree a→ List a
getfatherline Empty = Nil
getfatherline (Node x l r) = Cons x (getfatherline l)

This function traverses the input tree and, for each non-empty node, builds a list whose head is
the root element and whose tail is computed by recursively applying the transformation to the
left child of the tree. The “head” of a value of an arbitrary recursive type can be considered as

11 / 17 Volume 49 (2012)



Delta Lenses over Inductive Types

everything in its type constructors besides recursive invocations, i.e., something with the same
top-level shape but with the recursive occurrences erased. For non-empty trees and lists, these
heads coincide with top-level elements of a value.

A suitable state-based putfatherline (v,s) d would then recursively match the view list v and the
source tree s, consuming their respective heads at each recursive step, but disregarding the view
delta d. To avoid this positional behavior, we propose to offset such default matching for insertions
and deletions, using the view delta to infer shape modifications. In general, when executing put,
if none of the elements at the “head” of the new view are related to elements in the original
view, then we are confident that they were created with the update and shall be propagated as an
insertion to the source. Conversely, if none of the elements at the “head” of the original view are
related to elements in the new view, then such “head” shall be deleted from the original source
before proceeding. Otherwise, we proceed positionally.

For the fatherline example, since each Cons in the original list came from a Node in the original
tree, if we insert a new Cons at the head of the new list, then we must insert a new Node at the head
of the new tree, with any default right child since it will be ignored by getfatherline. For insertions,
we can define putfatherline (Cons h t) (Node x l r) = Node h (putfatherline t (Node x l r)) Empty,
with Empty as a default right child. If we delete a Cons from the original view, then we must
delete the corresponding Node from the original tree, leaving an additional choice on how
to merge the children of deleted source node into a single tree. Proceeding recursively, the
left spine of the new source tree will be copied from the view list and right children will be
recovered from the merged tree. For deletions, we can define putfatherline (Cons h t) (Node x l r) =
putfatherline (Cons h t) (plus l r), where plus is any function that merges the left and right trees.

Next, we show how to generalize this mechanism for arbitrary folds and unfolds5.

5.2 Generalizing Shape Alignment for Folds and Unfolds

Higher-order functors A recursive polymorphic data type T can be represented as the fixed
point µ F of a higher-order base functor F : (∗ → ∗)→ ∗ → ∗, together with the functions
outF : T →̇ F T and inF : F T →̇ T that unpack and pack recursive values. In Haskell, the higher-
order base functors for lists, trees and lists of optional elements can be defined as polymorphic
types parameterized by a functor argument and a type argument:

data List list a = Nil | Cons a (list a) List a = (µList) a
data Tree tree a = Empty | Node a (tree a) (tree a) Tree a = (µTree) a
data BiList a blist b = BiNil | ConsL a (blist b) | ConsR b (blist b) BiList a b = (µ(BiList a)) b

The functor arguments list and tree mark recursive invocations and the the last type variable
denotes data elements. For the BiList type, we consider only right data elements by fixing the
first parameter a. For a particular class of regular higher-order functors [PCH12], we can define a
hd-lens combinator ∀f : FA QM GA. F f : F FA QM F GA that maps a functor transformation over
the functor argument of an higher-order functor. Note that, unlike our primitive hd-lens functor
mapping combinator, this time the transformation occurs at the level of shapes and not at the data
level (the type A of elements is preserved).

5 The next section assumes a background in the Algebra of Programming approach to functional programming [BM97].
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µF A F µF A
inFoo

F (G A × µF A)

F put(|f |)F
OO

G A × µF A
createf×id

//

grow

OO

F G A × µF A

σF

OO

Figure 5: Specification of grow for folds.

µF A G A × µF A
put(|f |)Foo

G A × µF A

shrink

OO

id×outF

// G A × F µF A

id×reduceF

OO

Figure 6: Specification of shrink for folds.

Catamorphism Given a hd-lens algebra f : F GA QM GA, the catamorphism (|f |)F : µF A QM GA

can be defined as the unique hd-lens that satisfies the following equation:

∀f : F GA QM GA. (|f |)F : µF A QM GA

(|f |)F = f ◦F (|f |)F ◦outF

Although this definition receives and propagates deltas, it will use them to perform shape alignment.
A catamorphism recursively consumes source values, and at each iteration generates a target
value for each consumed head. For recursive source values, the head can be computed generically
by the expression F !◦outF : µF A→ F 1 A. where ! : F A→ 1 A is a function that erases the
functorial structure of the argument value by replacing it with the unit type lifted as a constant
functor 1. However, the view type is not recursive in general and the notion of head of the view
induced by the fold is a bit more tricky. To identify modifications at the head of the view, what
we need to compare are the elements of the view that would be necessary to build a head in the
source. These can be computed by issuing a create and then erasing the recursive occurrences as
before: F !◦ createf : G A→ F 1 A. Formally, we specify the put of the catamorphism as follows:

put(| f |)F
(v,s)d =


grow(v,s) if V 6=⊥∧ (ρV ∩δd) =⊥ where V = createM f ◦getMF !

shrink (v,s) if S 6=⊥∧ (ρS∩ρd) =⊥ where S = get◦M(| f |)F
◦getMF !

put f◦F (| f |)F ◦outF
(v,s)d otherwise

Here, the V and S relations are the corresponding deltas that dualize the functions used to calculate
the head of the view and the source, respectively. A more detailed explanation is given in [PCH12].

Insertion To check for an insertion, we test if none of the elements at the head of the modified
view is related to the original view. To propagate a newly created head, we need a way to pair each
sub-view of type G A inside F G A with the original source of type µF A, to which we can apply
put(|f |)F

recursively. In category theory, a functor is said strong if it is equipped with a function
σF : F A × B→ F (A × B), denoted strength, that pairs the B with each A inside the functor. This
function can easily be lifted and defined polytypically for regular higher-order functors [PCH12].
Not taking deltas into account, the grow procedure can be specified as depicted in Figure 5. Note
that if the source functor F contains more than one recursive occurrence (for trees for example),
then σF will duplicate the original source for each recursive invocation of put. This is because,
when invoking σF at a recursive step, the catamorphism does not know how to split the source so
that each piece is related to the respective recursive view. Instead, the duplicated sources will be
later aligned recursively. For example, unrelated source elements will be deleted by shrink.
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Deletion To check for a deletion, we test if none of the elements at the head of the original
view (computed from the head of the original source) is related to the modified view. To
propagate the deletion, we unfold the original source to expose its head to be erased by a function
reduceF : F F A→ F A (defined in [PCH12]), and then apply put(|f |)F

recursively to the modified
view and the reduced source. Again not taking deltas into account, the shrink procedure can
be specified as depicted in Figure 6. In order to erase the head, function reduceF shall merge
all recursive occurrences into a single value. If the source type is a monoid, i.e., has an empty
value zero : µF A and a binary concatenation operation plus : µF A × µF A→ µF A, then we
can polytypically define reduceF just by folding the sequence of recursive occurrences using the
monoid operations. For types other than lists, there could be more than one possible monoid
implementation. We provide default instances for many types, but the user is free to provide his
own implementation. We only require that monoid operations are natural transformations so that
we can automatically compute deltas using the semantic technique presented before.

Examples We can now encode the examples from the introduction as hd-lenses. For example,
the fatherline and names steps of the composite fathernames lens can be defined as follows:

fatherline : Tree Person QM List Person names : List Person QM List Name

fatherline = (|inList ◦ (id+ id×π1
const Nil)|)Tree names = map π1

const 2012

plusTree : Tree⊗Tree →̇ Tree zeroTree :∀A. Tree A
plusTree Empty r = r zeroTree = Empty
plusTree l r = l

When ran against the introductory example from Figure 1, the composed lens produces the
desired result. Note that for inserted persons, putnames will create a default birth year 2012 (due to
const 2012) and putfatherline will generate a default empty list of right ascendants (due to const Nil),
that when aligned with any source tree will always return an empty right tree. For deletions,
the given monoid selects one of the child trees if the other is empty, or discards the right child
otherwise. Also for the fathernames example, we know that an insertion followed by a deletion
(of a person John for instance) would lead to no effect on the source.

The females example from the introduction can also be encoded as a fold:

females : (BiList Male) Female QM List Female
females = (|(inList •∇π2)◦ coassoc◦ (id+ coswap◦distl)|)BiList Male

By running this lens against the example from Figure 2, males are now restored properly.
The either hd-lens •∇ is defined in [PCH12] and coassoc : (F⊕(G⊕H))A QM ((F⊕G)⊕H)A,
coswap : (F⊕G)A QM (G⊕F)A and distl : ((F⊕G)⊗H)A QM ((F⊗H)⊕(G⊗H))A are hd-lens
isomorphisms. The lifting of unfolds or anamorphisms into a hd-lens combinator ∀f : FA QM

G FA. bd(f )ceG : FA QM µGA can be done analogously to folds, and is presented in [PCH12].

6 Related Work

This paper builds on the work first presented in [PC10, PC11], describing a point-free lens lan-
guage and corresponding algebraic laws. Like other state-based approaches [FGM+07, MHN+07],
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our previous language only considered a simple positional alignment strategy that proves to be
unsatisfactory for insertion, deletion or reordering updates over arbitrary structures.

In [DXC11], Diskin et al discusses the inherent limitations of state-based approaches and
proposed an abstract delta lens framework, whose lenses propagate deltas rather than states. They
also show how delta lenses can be packaged as ordinary state-based lenses by resorting to an align-
ment operation that estimates deltas. Their development of the framework is mostly theoretical,
focusing on the new bidirectional axioms for deltas and the relationship with ordinary lenses, and
their only delta lens combinator is composition. An abstract synchronization framework where
vertical and horizontal deltas are explicitly considered is given in [Dis11].

Matching lenses [BCF+10] extended the Boomerang domain-specific language of bidirectional
string transformations [BFP+08] to consider delta-based alignment. Each matching lens separates
values into a rigid shape and a list of data elements and maps an ordinary lens over the inner
elements. The backward propagation can be computed using the delta associations inferred by the
alignment phase. Since they focus on mappings, matching lenses assume that shape alignment is
kept positional (SKELPUT law) and obey a restrictive premise enforcing the propagation of all
source elements to the view (GETCHUNKS law), thus ruling out our two running examples.

The decoupling between shape and data is also at the heart of Voigtländer’s semantic bidirection-
alization approach [Voi09], that provides an higher-order put interpreter for polymorphic Haskell
get functions. Nevertheless, this choice is motivated by different goals other than alignment,
namely to avoid restricting the syntax of the forward transformations. In fact, mapping lenses
are not definable in this framework, since polymorphic functions can only alter the shape, and
shape alignment is kept positional even in the hybrid approach from [VHMW10], that uses a
syntactically calculated state-based lens between shapes to handle shape updates.

A series of operation-based languages developed by researchers from Tokyo ([MHT04, LHT07,
HHI+10] and more) treat alignment by annotating the view states with internal tags that indicate
edit operations for specific types. Despite this enables put to provide a more refined type-specific
behavior, it must always consider a fixed update language and more complicated updates (typically
reorderings) are not supported natively and must be approximated by less exact updates.

A truly operation-based approach is the symmetric framework of edit lenses [HPW12], that
handles updates as edits that describe the changes rather than whole annotated states. They provide
combinators for inductive products, sums, lists and two mapping and reshaping combinators
over container structures. While mapping is similar to our delta-based variant, their reshaping
combinator requires the positions of the transformed containers to be in bijective correspondence,
meaning that it can not add nor delete elements and thus does not support our running examples.
Additionally, their language of updates over containers classifies edits into insertion and deletion
at the rear positions of containers and reordering of the elements of a container without changing
its shape. This entails that shape alignment is kept positional, as insertions and deletions at
arbitrary positions are always reflected at the end positions of the shape.

7 Conclusion

The “holy grail” of BX approaches is to find solutions that mitigate the ambiguity of view-update
translation, by producing minimal source updates. For the application domain of inductive data
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types, we identify that a smaller update requires not only to align data elements, but also shapes.
In this paper, we have proposed a concrete point-free delta lens language to build lenses with

an explicit notion of shape and data over inductive data types, by lifting a previous state-based
point-free lens language [PC10]. Our delta lens framework instantiates the abstract framework
of delta lenses first introduced in [DXC11], meaning that lenses now propagate deltas to deltas
and preserve additional delta-based bidirectional round-tripping axioms. In particular, we have
instrumented the standard fold and unfold recursion patterns with mechanisms that use deltas to
infer and propagate edit operations on shapes, thus producing smaller source updates that best
reflect a certain view update. Thus far, we only consider insertion and deletion updates on shapes,
that are sufficiently generic to express modifications on a wide range of data types. Nevertheless,
other more refined edit operations (like tree rotations) might make sense for particular types and
application scenarios, and our technique could be instrumented to cover more edits in the future.

The use of dependent types has provided a more concise formalism that simplifies the existing
delta-based BX theory and clarifies the connection between the state- and delta-based components
of the framework. An implementation of our point-free delta lenses, using a simple minimal
edit sequence differencing algorithm [Tic84], in the Haskell non-dependently typed language is
available at the Hackage package repository as part of the pointless-lenses library.

Likewise matching lenses, that incorporate implicit parsing and pretty printing steps to decom-
pose values into shape and data, a more practical implementation of delta lenses should be able to
“deltify” ordinary point-free lenses by using type annotations that make the shape/data distinction
explicit. We leave that extension for future work.
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