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Abstract

Functional programs are particularly well suited to formal manipulation by equational
reasoning. In particular, it is straightforward to use calculational methods for program
transformation. Well-known transformation techniques, like tupling or the introduc-
tion of accumulating parameters, can be implemented using calculation through the
use of the fusion (or promotion) strategy. In this paper we revisit this transformation
method, but, unlike most of the previous work on this subject, we adhere to a pure
point-free calculus that emphasizes the advantages of equational reasoning. We focus
on the accumulation strategy initially proposed by Bird, where the transformed pro-
grams are seen as higher-order folds calculated systematically from a specification.
The machinery of the calculus is expanded with higher-order point-free operators that
simplify the calculations. A substantial number of examples (both classic and new)
are fully developed, and we introduce several shortcut optimization rules that capture
typical transformation patterns.



1 Introduction

Functional programming is particularly appropriate for equational reasoning. This
has been known for a long time, at least since Burstall and Darlington [8] introduced
the fold/unfold technique, and Backus [2] proposed his calculational methodology.

In fold/unfold program transformation one applies a number of semantically sound
rules to an initial program, with the aim of arriving at a better, equivalent transformed
program. “Better” here may have different interpretations: time and space complexity
improvements are obvious criteria, but removal of recursion is also a common goal
(allowing to convert programs into purely iterative forms). This is an activity that
involves steps that are not easily automated, and as such typically requires human
intervention. For instance, the transformation rules include the possibility of defining
new auxiliary functions, and then folding them in the body of the program being ma-
nipulated (see section 3.1 for an example). In fact, fold/unfold can be best described
as a framework for program transformation, based on which a number of transforma-
tion strategies and techniques have been studied. Tupling [8] and deforestation [32]
are examples of such techniques.

In this paper we use a different framework for reasoning about functional pro-
grams – by calculation. Some classic strategies for program transformation have been
introduced using this framework, such as Bird’s accumulation strategy [4]. Essentially
a program calculus consists of a collection of equational laws allowing to prove seman-
tic equivalence between programs, or else to derive programs from other programs,
or from their specifications. Quoting Backus [2]:

Associated with the functional style of programming is an algebra of pro-
grams [. . . ] This algebra can be used to transform programs and to solve equa-
tions whose “unknowns” are programs in much the same way one transforms
equations in high-school algebra.

One advantage of the calculational approach is that one can use the programming
language itself to express properties and reason about the programs, rather than
having a different formalism. Although not so general as the fold/unfold technique,
this approach is also easier to mechanize because it only implies a local program
analysis and the application of simple rewrite rules (typically with simple or no side-
conditions to verify), and since it does not require any global analysis it can also be
implemented in a modular way [31].

The program calculus used in this paper is built upon two basic ingredients. The
first is a set of recursion patterns, that allow us to define recursive functions implicitly,
encoded as higher-order operators that encapsulate typical patterns of recursion such
as the well-known fold operator on lists. These operators enjoy a nice set of equa-
tional laws, and their importance to functional programming has been compared to
the abandoning of arbitrary gotos in favour of structured control primitives in the im-
perative setting. The second is a point-free style of programming in which programs
are expressed as combinations of simpler functions, without ever mentioning their
arguments. The calculus uses a reduced set of combinators, derived from standard
categorical constructions, again characterized by a rich set of equational laws.

While recursion patterns are already widely used by functional programmers,
the same cannot be said about point-free programming. Although there are obvious



advantages in using this style – the absence of variables and lambda abstractions
simplifies the presentation and implementation of reduction rules – most authors
still resort to pointwise, both for programming and for calculation, arguing that the
intuitive meaning of point-free programs may be easily lost (it has even been jokingly
called the pointless style). Quoting Jeremy Gibbons on the advantages of calculating
in the point-free style [14]:

This is the point of pointless calculations: when you travel light – discarding
variables that do not contribute to the calculation – you can sometimes step
lightly across the surface of the quagmire.

In this paper we use a purely point-free style only for calculations. Our initial
definitions will be expressed in pointwise Haskell [22]. These definitions must be con-
verted into the language of the calculus (point-free style with recursion patterns)
before being transformed by calculation. At the end of the transformation, the result-
ing functions will be converted back into the original domain. A useful comparison
here is that of mathematical transforms such as the Fourier transform or the Laplace
transform, which allow to express functions in different domains in which certain
manipulations are easier to perform.

The main goal of this paper is to revisit some classic work in the area of pro-
gram transformation using pure point-free calculations. The paper is focused on the
transformation of programs by introducing new accumulating parameters, according
to the strategy initially proposed by Bird [4], where the transformed programs are
seen as higher-order folds calculated systematically from a specification. We present
a systematic approach to this program transformation technique, together with a
substantial number of examples. This systematization leads to a set of generic trans-
formation schemes, that could be used as shortcut optimization rules in an automatic
program transformation system.

Another goal is the improvement of the machinery that is used to perform point-
free calculations in a higher-order setting. Quoting Jeremy Gibbons again [13],

We are interested in extending what can be calculated precisely because we
are not interested in the calculations themselves [. . . ]

In other words, we aim at extending the calculus with new useful operators that help
reducing the burden of proofs just to the creative parts.

Organization of the paper. Section 2 contains all the necessary background material
on recursion patterns and the point-free program calculus; acquaintance with basic
notions of program semantics is assumed; rudiments of category theory will be helpful
but not essential. This section briefly presents the historic development of the field.
Section 3 introduces the theme of the paper by presenting a classic example fully
worked in three styles: (i) using unfold-fold transformation; (ii) using point-level cal-
culation; (iii) using the point-free calculus. This example also introduces the use of
accumulations and tail-recursion, to be used throughout the paper. In section 4 it is
shown how accumulations can be systematically calculated for programs over lists,
binary trees, and rose trees in a point-free setting. In section 5 we also show how to
calculate functions with two accumulating parameters. Although specifications are



typically folds (the simplest form of structural recursion), this approach can be gen-
eralized to other forms of recursion, as presented in section 6. Section 7 reviews some
related approaches, and section 8 concludes the paper.

2 Point-free Programming with Recursion Patterns

In his 1977 ACM Turing Award lecture, John Backus proposed a new functional style
of programming whose main features were the absence of variables and the use of
functional forms to combine existing functions into new functions [2]. The main idea
was to develop a calculus of programs that could be used for program transformation.
The choice of the functional forms was based not only on their programming power,
but also on the power of the associated algebraic laws. Most of the now standard
point-free combinators (presented later in this section) were already introduced by
Backus.

This approach was later endorsed by Bird and Meertens, who popularized a style
of programming (the so-called “Bird-Meertens formalism”) where final programs were
derived from their specifications (typically, an inefficient combination of easy to un-
derstand functions) through a set of equational laws [4, 5, 25]. The now well-known
notions of folding and fusion (or promotion) over lists were presented in this work,
enabling for the first time the effective use of the calculational approach in program
transformation. The main difference with respect to the initial Backus approach was
the occasional use of the pointwise style. As Backhouse pointed out [1], the impor-
tance of the Bird-Meertens formalism lies not on the foundational concepts per se (at
the time already known), but on their application to develop a concise calculational
method for program transformation.

Malcolm [24] later showed that the concepts introduced by Bird and Meertens
arise naturally for any data type when viewed in a categorical setting. The categorical
approach to data types and functional programming in general had been previously
clarified by Hagino [18]; category theory turned out to be a natural setting for defin-
ing the basic building blocks of data types (including sophisticated concepts such as
mutually recursive data types, types defined using other parameterized data types,
and infinite data types). As will be shown below, the definition of most of the com-
binators used in the point-free style of programming are immediate from standard
categorical constructions.

The generalization proposed by Malcolm was done in the context of total func-
tions and totally defined elements, but later Meijer, Fokkinga, and Paterson [12, 26]
extended it to the domain of partial functions and elements, thus enabling the power
of full recursion, and providing a more appropriate semantic domain to modern lazy
programming languages, like Haskell.

There are many introductory texts to this style of programming, covering the
subject of this section [26, 7, 16].

2.1 Basic Combinators and Functors

The semantic characterization of modern lazy programming languages (like Haskell)
is usually based on pointed complete partial orders (sets equipped with a partial
order, a least element denoted ⊥, and closed under limits of ascending chains), and



continuous functions (monotonic functions that preserve limits). We remark however
that most of the research done in program transformation in a calculational setting
uses a less natural semantics based on sets and total functions that makes difficult
the treatment of arbitrary recursion and partiality.

The study of algebraic programming in this setting was pioneered by Meijer,
Fokkinga and Paterson [26], and the presentation of the material in this section (based
on a categorical account of the denotational semantics, with functions modeled by
arrows in the Cpo category, and types by objects in that category) is strongly influ-
enced by their work.

Functors. A functor F is a mapping between categories (it maps objects to objects
and arrows to arrows) such that

F f : F A → F B ⇐ f : A → B functor-Type

F (f ◦ g) = F f ◦ F g functor-Compose

F idA = idFA functor-Id

For our purposes (and in general in the context of programming language semantics),
endofunctors in Cpo will be used, mapping types to types, and functions to functions.

The simplest functor is the identity functor Id, whose action on types is defined
as Id A = A, and on functions as Id f = f . Also important is the constant functor:
given a type A, the functor A is defined on types as A B = A, and on functions as
A f = idA.

A bifunctor ? is a mapping from a pair of categories to a category; in the present
context a bifunctor maps pairs of types to types, and pairs of functions to functions,
verifying the conditions (we use infix notation):

f ? g : A ? B → C ? D ⇐ f : A → C ∧ g : B → D bifunctor-Type

(f ◦ g) ? (h ◦ k) = (f ? h) ◦ (g ? k) bifunctor-Compose

idA ? idB = idA?B bifunctor-Id

Given two monofunctors F and G and a bifunctor ?, a new monofunctor F ? G can
be defined by lifting ? as follows:

(F ? G) A = (F A) ? (G A)
(F ? G) f = (F f) ? (G f)

In particular, given a type A, the monofunctor A? is defined by sectioning ? as:

A? = A ? Id

This corresponds to treating as a constant the first parameter of the functor.
A polynomial functor is either the identity functor, the constant functor, or the

lifting of the sum and product bifunctors (defined later in this section). A regular
functor can additionally be built from type functors (defined in section 2.3) and allow
us to define recursive types containing other such type (for instance, rose trees).

In the following we will introduce a number of type constructors (such as products
and coproducts); each comes equipped with its own function combinators and laws for
these combinators. In the categorical setting, type constructors are simply universal
constructions (that can be generalized as functors), and the laws can all be derived
from their universal properties.



Products. The product of two types is defined as the cartesian product:

A×B = {(x, y) |x ∈ A, y ∈ B}

We also define the projection functions and the split function combinator, denoted
〈·, ·〉.

π1 (x, y) = x
π2 (x, y) = y

〈f, g〉 x = (f x, g x)

The fact that the cartesian product is a categorical product in Cpo is justified by
the following uniqueness law.

f = 〈g, h〉 ⇔ π1 ◦ f = g ∧ π2 ◦ f = h ×-Uniq

It is also useful to define a product function combinator as:

f × g = 〈f ◦ π1, g ◦ π2〉 ×-Def

Observe that this definition allows to see product as a bifunctor.

Strictness. From the point of view of program calculation, the major difference be-
tween using Set and Cpo as underlying category is that some of the laws that char-
acterize the basic combinators will have strictness side-conditions. As we will shortly
see, this is due to the fact that the separated sum is not a categorical coproduct in
Cpo. Strictness is defined as follows:

f strict ⇔ f ◦ ⊥ = ⊥ strict-Def

Sometimes the notion of left-strictness will also be required:

f left-strict ⇔ f ◦ (⊥× id) = ⊥ lstrict-Def

f strict ⇐ f left-strict lstrict-Strict

Sums. In lazy functional languages coproducts are typically implemented as separated
sums, with a new bottom element added:

A + B = {0} ×A ∪ {1} ×B ∪ {⊥A+B}

Related to this definition we have the injection functions and the either combinator,
denoted [·, ·].

i1 x = (0, x)
i2 x = (1, x)

[f, g] ⊥ = ⊥
[f, g] (0, x) = f x
[f, g] (1, x) = g x

The separated sum is not a categorical coproduct in Cpo because the uniqueness law
only holds for strict functions:

f = [g, h] ⇔ f ◦ i1 = g ∧ f ◦ i2 = h ∧ f strict +-Uniq

Likewise to products, the separated sum can be turned into a functor by defining its
operation on arrows, which corresponds to introducing the sum function combinator:

f + g = [i1 ◦ f, i2 ◦ g] +-Def



Exponentials. The exponentiation of type B to type A is defined as the set of all
functions with domain A and codomain B:

BA = {f | f : A → B}

Associated to exponentials, are the apply function and the curry combinator (denoted
· ).

ap (f, x) = f x

f x y = f (x, y)

The following uniqueness law guarantees that this notion of exponentiation is a cat-
egorical exponentiation in Cpo:

f = g ⇔ g = ap ◦ (f × id) ∧-Uniq

Finally, the definition of the exponentiation combinator allows to turn this operation
into a functor:

fA = f ◦ ap ∧-Def

Notice that when the type in superscript is not relevant we will use the symbol •.

Miscellanea. The one element type is denoted by 1, and its unique element also by 1.
An element e : A is isomorphic to the function e : 1 → A. Given a function f : A → B
(possibly an element if A = 1), we define the constant operator that always returns
f as follows.

f : C → BA

f = f ◦ π2
const-Def

Constants enjoy the following fusion property:

f ◦ g = f const-Fusion

To facilitate the point-free treatment of conditional expressions, it is useful to
define the guard combinator associated to a given predicate p : A → Bool. Assuming
that Bool = 1 + 1:

p? : A → A + A
p? = (π1 + π1) ◦ distr ◦ 〈id, p〉 guard-Def

Note that if p returns ⊥ for some input, then p? will also return ⊥. The function distr
distributes a value with respect to a sum, and has type A×(B+C) → A×B+A×C.
It is defined in appendix B, together with other useful functions used in the paper.

Remark. Appendix A contains an extended set of laws (derived from the above defi-
nitions and uniqueness laws) allowing to reason equationally about expressions con-
taining the combinators defined.



2.2 Recursive Data Types

In a typed functional programming language a new data type is defined by declaring
its constructors and the respective types. Theoretically, a data type is defined as
the fixed point of a pattern (or base functor) that captures the signature of the
constructors.

For example, suppose that the base functor of a data type T is F1 + . . .+Fn, such
that

T = µ(F1 + . . . + Fn)

This means that T has n constructors, each with type Ci : Fi T → T . For instance,
lists of type A can be defined by

List A = µ(1 + A× Id)

that captures the two typical constructors of this data type (recall that a function of
type 1 → List A corresponds to an element of type List A).

nil : List A

cons : A× List A → List A

Since the functor of lists will be used many times during the paper, we will denote
it just by FA for lists of type A. The action of this functor on types is given by
FA B = 1 + A×B, and on functions by FA f = id + id× f . As a second example of
a recursive type, we present the definition of binary leaf trees:

LTree A = µ(A + Id× Id)
leaf : A → LTree A

branch : LTree A× LTree A → LTree A

In Haskell these data types can be implemented as follows (we use the standard
Haskell definition of lists).

data [a] = [] | a : [a]

data LTree a = Leaf a | Branch (LTree a) (LTree a)

Reynolds proved that in Cpo, given a locally continuous and strictness-preserving
base functor F , there exists a unique data type µF and two unique strict functions
inF : F (µF ) → µF and outF : µF → F (µF ) that are each other’s inverse. Fokkinga
and Meijer [12] showed that all polynomial, and even all regular functors, are locally
continuous and strictness-preserving. This guarantees that, for example, all the above
data types are well defined.

Notice that inF is defined as the “either” of all constructors of µF . For example,
for lists we have

in : 1 + A× List A → List A
in = [nil, cons]



2.3 Catamorphisms and Maps

Each regular data type is characterized by a number of standard ways of traversing it
recursively in order to produce a result. The most basic of these recursion patterns is
iteration, which computes the result by replacing the constructors of the input data
type by other functions. Such functions are called folds or catamorphisms, and can
be written (without explicit recursion) using a higher-order operator that is written
once and for all.

Given a function g : F A → A (sometimes called a gene), the catamorphism
generated by g is generically defined as follows.

(|g|)F : µF → A
(|g|)F = µ(λf · g ◦ Ff ◦ outF )

cata-Def

This function obeys the following uniqueness law, proved in [12] using fixpoint induc-
tion.

f = (|g|)F ∧ g strict ⇔ f ◦ inF = g ◦ Ff ∧ f strict cata-Uniq

Instantiating the catamorphism definition to the particular case of lists results in
the well known foldr operator on lists. To see that this is so, let us assume g = [z, f ] :
1 + A × B → B where z : B and f : A × B → B, and proceed with the following
calculation. For simplicity, we omit the strictness conditions.2666666666666666666664

foldr = (|[z, f ]|)FA

= { cata-Uniq }
foldr ◦ inFA = [z, f ] ◦ FA foldr

= {definitions of F and inF }
foldr ◦ [nil, cons] = [z, f ] ◦ (id + id × foldr)

= {+-Fusion,+-Absor,×-Functor }
[foldr ◦ nil, foldr ◦ cons] = [z, f ◦ (id × foldr)]

= {+-Equal }
foldr ◦ nil = z ∧ foldr ◦ cons = f ◦ (id × foldr)

= { η-expansion }
(foldr ◦ nil) x = z x ∧ (foldr ◦ cons) (x, xs) = (f ◦ (id × foldr)) (x, xs)

= {definition of composition, product, and constants }
foldr nil = z ∧ foldr (cons (x, xs)) = f (x, foldr xs)

These two equations are the same that define the Haskell function foldr: the constant
z is returned when the list is empty, and f is used to combine the head of the list
with the result of recursively processing the tail. The only difference is that foldr
uses curried parameters.

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr f z [] = z

foldr f z (x:xs) = f x (foldr f z xs)

An example of a very simple catamorphism is the function that, given a list of naturals,
returns the sum of all the elements in the list (zero : Int denotes the natural 0 and
plus : Int× Int → Int the sum function).

sum : List Int → Int
sum = (|[zero, plus]|)



Catamorphisms obey the following fusion law (easily derived from the uniqueness
law), very useful in program transformation, and which forms the basis for all the
techniques presented in this paper.

f ◦ (|g|)F = (|h|)F ⇐ f strict ∧ f ◦ g = h ◦ Ff cata-Fusion

The following strictness property can be derived from cata-Uniq.

(|f |)F strict ⇐ f strict cata-Strict

Type Functors. The base functor of a parameterized data type can be seen as the
sectioning of a bifunctor. For instance for lists we have the bifunctor defined by

A L B = 1 + A×B

f L g = id + f × g

allowing to define List A = µ(A L) = µ(1 + A× Id).
This also defines, for each parameterized type, a new functor, in general called a

type functor. Its action on objects is given by the previous definition, and its action
on functions corresponds to the standard map function of the type. Given a bifunctor
?, this map function can be defined generically using a catamorphism:

mapT f = (|in ◦ (f ? id)|)A? ⇐ T A = µ(A?) map-Def

As expected, the map function for lists can be defined as follows (obtained after
applying +-Absor).

mapList f = (|[nil, cons ◦ (f × id)]|)

To exemplify the use of the fusion law in program transformation let us prove
the following law about folds and maps. Note that the strictness condition is not
necessary for this law [12]; it is however required in the proof given here using fusion.

(|f |)A? ◦mapT g = (|f ◦ (g ? id)|)A?

⇐
T A = µ(A?) ∧ f strict

fold-map-Fusion

Proof. 2666666666666664

(|f |)A? ◦ mapT g
= { map-Def, T A = µ(A?) }

(|f |)A? ◦ (|in ◦ (g ? id)|)A?

= { cata-Fusion, cata-Strict, f strict }266664
(|f |) ◦ in ◦ (g ? id)

= { cata-Uniq }
f ◦ (id ? (|f |)) ◦ (g ? id)

= {bifunctor-Compose }
f ◦ (g ? id) ◦ (id ? (|f |))

(|f ◦ (g ? id)|)A?



This law can be used, for instance, to optimize (by calculation) the following
two-pass function for computing the sum of the squares of a list. In the following
sq = mult ◦ 〈id, id〉, where mult : Int × Int → Int is the function that implements the
integer product.

sumsq : List Int → Int
sumsq = sum ◦mapList sq

Applying the fold-map-Fusion and +-Absor we get the following single pass imple-
mentation.

sumsq : List Int → Int
sumsq = (|[zero, plus ◦ (sq× id)]|)

This example in itself is well-known in the program transformation community. It can
be achieved for instance using fold/unfold transformation.

3 A Motivating Example

Consider the reverse function on lists. Obtaining the accumulator-based linear time
version of this function from the single-argument quadratic time version is a classic
example of a program transformation.

In this section we use this example to briefly review different transformation tech-
niques for optimizing programs by introducing accumulating parameters. The result-
ing functions are called accumulations. We also introduce a composition operator,
which enriches the point-free calculus allowing to express certain properties (such as
the associativity of a binary operator) in a higher-order setting.

3.1 Transformation with Fold/Unfold Rules

Our initial definition of reverse in Haskell is

reverse :: [a] -> [a]

reverse [] = []

reverse (x:xs) = (reverse xs) ++ [x]

We will now apply fold/unfold rule-based transformation (see for instance [28] for a
review) in order to obtain the efficient version.26666666666666666666666664

reverse l

= {definition of reverse (using conditionals instead of pattern-matching) }
if (l == []) then [] else reverse (tail l) ++ [head l]

= {unfold }
if (l == []) then []

else (if (tail l == []) then []

else reverse (tail (tail l)) ++ [head (tail l)]) ++ [head l]

= {distributing (++ [head l]) over the conditional }
if (l == []) then []

else if (tail l == []) then [] ++ [head l]

else (reverse (tail (tail l)) ++ [head (tail l)]) ++ [head l]

= { associativity of ++ }
if (l == []) then []

else if (tail l == []) then [] ++ [head l]

else reverse (tail (tail l)) ++ ([head (tail l)] ++ [head l])



These transformation steps are oriented by the so-called forced folding (or need-for-
folding) principle [9], which states that after the unfold step, the program should
be manipulated so that a folding step can be applied to a different sub-expression.
Hopefully these manipulations will lead to improvements at all levels of the recursion
tree.

Continuing with our example, at this point one would like to be able to fold the
expression

if (tail l == []) then [] ++ [head l]
else reverse (tail (tail l)) ++ ([head (tail l)] ++ [head l])

using the definition of reverse; however, the presence of the expression [head l] in
both cases of the conditional expression prevents this step. We must appeal to the
generalization strategy [8], according to which we introduce a new function definition

aux (l,y) = (reverse l) ++ y

This definition can indeed be transformed until a fold step is performed.266666666666666664

aux (l,y)

= {definition of aux }
(reverse l) ++ y

= {unfold }
(if (l == []) then [] else (reverse (tail l) ++ [head l])) ++ y

= {distributing ++ y over the conditional }
if (l == []) then [] ++ y else (reverse (tail l) ++ [head l]) ++ y

= { associativity of ++ }
if (l == []) then [] ++ y else reverse (tail l) ++ ([head l] ++ y)

= { fold }
if (l == []) then [] ++ y else aux (tail l, [head l] ++ y)

Next we use the definition of ++ to simplify the above expression, yielding the defi-
nition

aux (l,y) = if (l == []) then y else aux (tail l, (head l):y)

Finally, we notice that the ++ operator has a right-identity, allowing to write266664
reverse l

= { right-identity of ++ }
(reverse l) ++ []

= {definition of aux }
aux (l,[])

The definition of aux, together with this last equation, is the final result of the
transformation. In Haskell one would write

reverse :: [a] -> [a]

reverse l = aux (l, [])

aux :: ([a], [a]) -> [a]

aux ([], y) = y

aux (x:xs, y) = aux (xs, x:y)



Remark. Notice that the transformed program is tail-recursive, i.e. the result of the
recursive call is passed directly as the result of the invoking call. Linear tail-recursive
functions can be converted into iterative code (i.e. with recursion totally removed)
using a straightforward transformation scheme. Removal of recursion is a major goal
of program transformation, even when it can be only partially achieved, as is the case
with functions over trees. In section 4.4 it will be seen, for the case of binary trees,
that only one of the two recursive calls is made tail-recursive.

The asymptotic improvement in the execution time is a somewhat casual side-
effect of the transformation – it is a consequence of the associativity property of the
append operator, and the fact that it runs in linear time on the size of its first argu-
ment. In section 4.1 we consider the transformation of the function which calculates
the product of the numbers in a list. Since arithmetic product is calculated in con-
stant time, this transformation does not alter the asymptotic execution time; it is
however still a useful transformation since it produces a tail-recursive definition.

3.2 Transformation by Calculation

The first application of the calculational approach to program transformation, as
popularized by Richard Bird and Lambert Meertens in the mid-80s, was precisely the
derivation of functions with accumulations from inefficient specifications [4]. In this
seminal paper, Bird introduced the fundamental idea behind this method for transfor-
mation: first the recursive functions are specified using a standard recursion pattern;
then fusion is used together with the generalization strategy (as used in fold/unfold
transformation), in order to derive a hopefully more efficient implementation with an
accumulating parameter. We remark that fusion was here called promotion and the
fold recursion pattern had not yet been isolated in a higher-order operator such as
foldr.

The functions resulting from such transformations have two arguments (the second
of which is the accumulator). In order to be able to write them using the fold recursion
pattern, Bird resorted to currying: accumulations are written as higher-order folds,
returning a function as result. Apart from some refinements in the basic laws and
notation, this technique was later used by several authors [26, 20, 10, 11]. However, in
none of these works the calculations were done in pure point-free style, and in some of
them the generic fusion law for catamorphisms presented in section 2.3 was not used.
Instead, they use the pointwise specialization of this law for particular data types,
such as the following for the foldr operator on lists.

f (foldr g e l) = foldr h c l
⇐

f strict ∧ f e = c ∧ ∀x, r · f (g x r) = h x (f r)
foldr-Fusion

Turning now to our running example, we will start from where the application
of the generalization strategy led us in the previous section (except that the new
function is in curried style). Notice that in the remaining of the paper the name
ft will be used to denote the accumulation obtained by transforming f , and that
we will also use an uncurried prefix version of the concatenation operator denoted
cat : List A× List A → List A.

reverset l y = cat (reverse l) y



Following the approach just described, to obtain the desired accumulation we
must now fuse the concatenation operator with the reverse function, using law foldr-
Fusion. In order to do that it is necessary to redefine reverse using the foldr operator
(notice that wrap = cons ◦ 〈id, nil〉):

reverse : List A → List A
reverse = foldr (λxr. cat r (wrap x)) nil

Dropping the accumulating parameter from our specification we get:

reverset l = cat (foldr (λxr. cat r (wrap x)) nil l)

This is a suitable expression to apply foldr-Fusion, where f is the curried version of
the concatenation operator. Given that cat is a strict function since cat is left-strict,
according to ∧-Strict, there remain two premises of this law to verify, which will in
turn allow to determine c and h:

cat nil = c

λxr. cat (cat r (wrap x)) = λxr. h x (cat r)

where λ-abstraction has been used to encode universal quantification.
Since nil is a left-identity of concatenation, then c = id. In order to determine h

we calculate: 

λxr. cat (cat r (wrap x))
= { η-expansion }

λxr.λy. cat (cat r (wrap x)) y
= { associativity of cat }

λxr.λy. cat r (cat (wrap x) y)
= {definitions of cat, wrap }

λxr.λy. cat r (cons(x, y))

It is now clear that h can be defined as

h x z = λy. z (cons(x, y))

The result of applying the fusion law is thus the following higher-order fold:

reverset : List A → List A → List A
reverset = foldr (λxzy. z (cons(x, y))) id

After expanding the definition of foldr we obtain the curried version of the function
in the previous section, to be invoked as reverse l = reverse_t l []:

reverse_t :: [a] -> [a] -> [a]

reverse_t [] y = y

reverse_t (x:xs) y = reverse_t xs (x:y)

To sum up, the creative step involved in this technique is exactly the same as when
using fold/unfold transformations – writing the specification corresponds to using the
generalization strategy. However, for the particular technique of accumulations, any
experienced functional programmer should have no problem in writing them directly.
A major advantage of the calculational approach is that by structuring recursion in
fixed patterns, it is possible, as will be largely exemplified in this paper, to define
laws that combine in a single shortcut step whole sequences of transformation steps.



3.3 Transformation in the Point-free Style

The third method, which will be used extensively in the remaining of the paper,
consists in applying the same transformation principle as in the previous section,
except that all the calculations are done in the point-free style. Before this can be
done, the initial specification needs to be written according to the principles exposed
in section 2. Programmers with experience in the point-free style may be able to
write this definition directly. In the following we present (using our running example)
a systematic method for converting recursive functions into the point-free style.

First, we state the pointwise equations implicit in the Haskell definition.

reverse nil = nil
reverse (cons(x, xs)) = cat (reverse xs, wrap x)

The next step is to eliminate the variables in order to obtain a point-free specifica-
tion. This is the most creative step, and usually implies the (sometimes not so trivial)
introduction of “housekeeping” functions, since the parameters must be equally struc-
tured in both sides of each equation. In this particular case we use swap to get the
following definition (remember that a constant can be seen as a function with domain
1).

(reverse ◦ nil) 1 = nil 1
(reverse ◦ cons) (x, xs) = (cat ◦ swap ◦ (wrap× reverse)) (x, xs)

After eliminating the arguments we proceed with standard point-free calculations
until we get a specification with the form reverse ◦ inFA

= g ◦FA reverse, which by the
uniqueness law of catamorphisms allows us to define reverse = (|g|).26666666666664

reverse ◦ nil = nil ∧ reverse ◦ cons = cat ◦ swap ◦ (wrap × reverse)
= {+-Equal }

[reverse ◦ nil, reverse ◦ cons] = [nil, cat ◦ swap ◦ (wrap × reverse)]
= {+-Fusion, ×-Functor }

reverse ◦ [nil, cons] = [nil, cat ◦ swap ◦ (wrap × id) ◦ (id × reverse)]
= {+-Absor }

reverse ◦ [nil, cons] = [nil, cat ◦ swap ◦ (wrap × id)] ◦ (id + id × reverse)
= {definitions of F and inF }

reverse ◦ inF = [nil, cat ◦ swap ◦ (wrap × id)] ◦ F reverse

Now, since reverse is a strict function, cata-Uniq can be applied to produce the
desired point-free definition.

reverse : List A → List A
reverse = (|[nil, cat ◦ swap ◦ (wrap× id)]|)1+A×Id

Turning to the specification that will allow to derive the accumulation, it can now
be written in point-free style as

reverset = cat ◦ reverse

The derivation will be based on the generic fusion law cata-Fusion. According to
this law (and since cat is strict), in order to obtain the desired definition of reverset

as a catamorphism reverset = (|h|)F, we must find a function h such that

cat ◦ [nil, cat ◦ swap ◦ (wrap× id)] = h ◦ F cat = h ◦ (id + id× cat)



In both fold/unfold and the pointwise calculational transformations seen in the
previous sections, one of the major steps was the application of the associativity prop-
erty of cat (this is in general the case for all transformations involving accumulations).
So the question arises of how to express this property in point-free style.

Consider an arbitrary operator ⊕. One possibility for expressing its associativity
is to use the equation

⊕ ◦ (id×⊕) ◦ assocr = ⊕ ◦ (⊕× id)

This formulation is not very practical because the operator that will be fused is in
curried form. Bearing in mind that it is our goal in this paper to enrich the calculus
so as to simplify the derivations as much as possible, we need to introduce operators
particularly tailored to express properties in a higher-order setting. For the particular
case of associativity, it suffices to introduce an uncurried composition operator defined
as

comp (f, g) = f ◦ g

or in point-free style (using, as expected, the exponential combinators):

comp : (CB ×BA) → CA

comp = ap ◦ (id× ap) ◦ assocr
comp-Def

Using this combinator, associativity of ⊕ can be expressed more usefully by the
following equation.

⊕ ◦ ⊕ = comp ◦ (⊕×⊕)

The following calculation shows that the latter formulation is a consequence of
the former. 26666666666666666666666666666664

@ ⊕ ◦ (id ×⊕) ◦ assocr = ⊕ ◦ (⊕× id)

⊕ ◦ ⊕
= {∧-Fusion }

⊕ ◦ (⊕× id)
= {@ }

⊕ ◦ (id ×⊕) ◦ assocr
= {∧-Cancel, ×-Functor }

ap ◦ (⊕× id) ◦ (id × ap) ◦ (id × (⊕× id)) ◦ assocr
= {×-Functor }

ap ◦ (id × ap) ◦ (⊕× (⊕× id)) ◦ assocr
= { assocr-Nat }

ap ◦ (id × ap) ◦ assocr ◦ ((⊕×⊕) × id)
= {∧-Fusion }

ap ◦ (id × ap) ◦ assocr ◦ (⊕×⊕)
= { comp-Def }

comp ◦ (⊕×⊕)

Equipped with this formulation of associativity, calculating the accumulation be-
comes very simple.



266666666666666666666666666664

@ cat ◦ cat = comp ◦ (cat × cat)
† cat ◦ nil = id
‡ cat ◦ wrap = cons

cat ◦ [nil, cat ◦ swap ◦ (wrap × id)]
= {+-Fusion }

[cat ◦ nil, cat ◦ cat ◦ swap ◦ (wrap × id)]
= { † }

[id, cat ◦ cat ◦ swap ◦ (wrap × id)]
= {@ }

[id, comp ◦ (cat × cat) ◦ swap ◦ (wrap × id)]
= { swap-Nat, ×-Functor }

[id, comp ◦ swap ◦ (cat ◦ wrap × cat)]
= { ‡,×-Functor }

[id, comp ◦ swap ◦ (cons × id) ◦ (id × cat)]
= {+-Absor }

[id, comp ◦ swap ◦ (cons × id)] ◦ (id + id × cat)

The result of the transformation is thus

reverset : List A → (List A → List A)
reverset = (|[id, comp ◦ swap ◦ (cons× id)]|)1+A×Id

To see that this is the expected point-free definition of reverset, we convert it back to
pointwise. The calculation is similar to the one concerning foldr in section 2.3.2666666666666666666664

reverset = (|[id, comp ◦ swap ◦ (cons × id)]|)F

= { cata-Uniq }
reverset ◦ inF = [id, comp ◦ swap ◦ (cons × id)] ◦ F reverset

= {definitions of F and inF }
reverset ◦ [nil, cons] = [id, comp ◦ swap ◦ (cons × id)] ◦ (id + id × reverset)

= {+-Fusion, ×-Functor }
[reverset ◦ nil, reverset ◦ cons] = [id, comp ◦ swap ◦ (cons × reverset)]

= {+-Equal }
reverset ◦ nil = id ∧ reverset ◦ cons = comp ◦ swap ◦ (cons × reverset)

= { η-expansion, definitions of the basic combinators }
reverset nil = id ∧ reverset (cons (x, xs)) = (reverset xs) ◦ (cons x)

= { η-expansion, definitions of the basic combinators }
reverset nil y = id y ∧ reverset (cons (x, xs)) y = reverset xs (cons (x, y))

Remark. This solution to the premises of the cata-Fusion law is not unique, as the
following calculation shows.2666666666666666666664

† cat ◦ nil = id

cat ◦ [nil, cat ◦ swap ◦ (wrap × id)]
= {+-Fusion }

[cat ◦ nil, cat ◦ cat ◦ swap ◦ (wrap × id)]
= { † }

[id, cat ◦ cat ◦ swap ◦ (wrap × id)]
= {∧-Cancel }

[id, cat ◦ ap ◦ (cat × id) ◦ swap ◦ (wrap × id)]
= { swap-Nat, ×-Functor }

[id, cat ◦ ap ◦ swap ◦ (wrap × cat)]
= {×-Functor, +-Absor }

[id, cat ◦ ap ◦ swap ◦ (wrap × id)] ◦ (id + id × cat)



This leads to the following definition of the accumulation.

reverset : List A → (List A → List A)
reverset = (|[id, cat ◦ ap ◦ swap ◦ (wrap× id)]|)

and in pointwise:

reverse_t :: [a] -> [a] -> [a]

reverse_t [] y = y

reverse_t (x:xs) y = (reverse_t xs [x]) ++ y

This is of course a useless transformation – the resulting function runs in quadratic
time and is not tail-recursive. This shows that some notion of a strategy is necessary
for the calculations to be relevant for our goals. The distinctive feature of a useful
transformation in this particular case is its use of the associativity property of append,
not used in the latter transformation.

4 Calculating Accumulations in the Point-free Style

The presented methodology for deriving accumulations using the point-free style is
still not very amenable for mechanization: the calculations require human interven-
tion, not only to decide which law to apply at each point, but also to identify a good
target to guide the derivation. As we have seen, it is possible to derive accumulations
that are not “better” than the original functions. As such, in this section we will
present a set of transformation schemes, categorized by data type, whose derivation
is performed once and for all, and that guarantee the usefulness of the transforma-
tion. To apply these transformation schemes one has to prove very few side conditions
(typically, just the associativity of some operator), and thus could be used as shortcut
optimization rules in an automatic transformation system. We also demonstrate the
application of these rules in a substantial number of examples.

We start by presenting a transformation scheme that encapsulates the methodol-
ogy for deriving accumulations in the calculational style using fusion. Among others,
it is presented also in [7, 20]. We adapt it here to the Cpo setting. This scheme is
to general to be useful, but will later be instantiated to more concrete rules, to be
applied in specific data types.

Proposition 1. Let ⊕ : A×B → B be a left-strict operator with right-identity e : B;
then for all x

(|f |)F x = (|g|)F x e ⇐ ⊕ ◦ f = g ◦ F ⊕

Proof. First notice that (|g|) = ⊕ ◦ (|f |) (a direct consequence of the hypothesis,
using cata-Fusion; strictness of ⊕ results from the left-strictness of ⊕ and ∧-Strict).
In the following calculation, the law † expresses (point-free) the fact that e is a right-
identity of ⊕.
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† ⊕ ◦ 〈id, e〉 = id

(|f |)
= { † }

⊕ ◦ 〈id, e〉 ◦ (|f |)
= {×-Fusion, const-Fusion }

⊕ ◦ 〈(|f |), e〉
= {∧-Cancel }

ap ◦ (⊕× id) ◦ 〈(|f |), e〉
= {×-Absor }

ap ◦ 〈⊕ ◦ (|f |), e〉
= { (|g|) = ⊕ ◦ (|f |) }

ap ◦ 〈(|g|), e〉

Finally going pointwise we have, using the result of the previous calculation and
the definitions of composition, split, constant function and ap:

(|f |) x = (|g|) x e

4.1 Tail-recursive Accumulations over Lists: Associative Operators

We start with the most classic example of applying the accumulation strategy: opti-
mize the iteration of an associative operator over a list.

Proposition 2. Given a left-strict associative operator ⊕ : B × B → B with right
identity e, an element c : B, a function f : A → B, and two functions defined over
lists as

h : List A → B
h = (|[c,⊕ ◦ swap ◦ (f × id)]|)

ht : List A → B → B
ht = (|[⊕ ◦ c, comp ◦ swap ◦ (⊕ ◦ f × id)]|)

Then h l = ht l e.
Proof. The following calculation allows to apply proposition 1, with F instantiated
to the base functor of lists.2666666666666666666664

@ ⊕ ◦ ⊕ = comp ◦ (⊕×⊕)

⊕ ◦ [c,⊕ ◦ swap ◦ (f × id)]
= {+-Fusion, ⊕ left-strict, ∧-Strict }

[⊕ ◦ c,⊕ ◦ ⊕ ◦ swap ◦ (f × id)]
= {@ }

[⊕ ◦ c, comp ◦ (⊕×⊕) ◦ swap ◦ (f × id)]
= { swap-Nat }

[⊕ ◦ c, comp ◦ swap ◦ (⊕×⊕) ◦ (f × id)]
= {×-Functor }

[⊕ ◦ c, comp ◦ swap ◦ (⊕ ◦ f ×⊕)]
= {×-Functor, +-Absor }

[⊕ ◦ c, comp ◦ swap ◦ (⊕ ◦ f × id)] ◦ (id + id ×⊕)

In pointwise this proposition allows to transform the function

h nil = c
h (cons(x, xs)) = (h xs)⊕ (f x)

into the tail-recursive
ht nil y = c⊕ y
ht (cons(x, xs)) y = ht xs ((f x)⊕ y)



Remark. This proposition is strongly related to the first duality theorem of [6] that
states the conditions under which a foldr can be converted into a foldl. The latter
function is well known in the functional programming community, and encodes pre-
cisely a (restricted) notion of tail-recursive accumulations over lists. It is defined in
the standard libraries of Haskell as follows.

foldl :: (b -> a -> b) -> b -> [a] -> b

foldl f z [] = z

foldl f z (x:xs) = foldl f (f z x) xs

In the point-free calculus it is easier to write the following version of foldl that takes
its two last arguments in the reverse order, and where ⊕ is an operator of type
A×B → B (we also swapped the order of the arguments in f, so that this operator
has the same type as the one in foldr).

foldl ⊕ : List A → B → B
foldl ⊕ = (|[id, comp ◦ swap ◦ (⊕× id)]|)

Given this definition, and the definition of foldr of section 2.3, the first duality
theorem says that, given an associative operator ⊕ with unit e, we have

foldr (⊕ ◦ swap) e = foldl ⊕ e

From this theorem and some facts about maps, we could easily derive the following
alternative formulation of proposition 2.

foldr (⊕ ◦ swap) c (mapList f l) = c⊕ (foldl⊕ (mapList f l) e)

Example 1 (Reverse). It is immediate to see that the reverse function of section 3.3
can be transformed directly by applying proposition 2, with the expected result.

Example 2 (Product). We now want to apply proposition 2 to derive a tail-recursive
implementation of the function that multiplies all the numbers in a list.

product :: [Int] -> Int

product [] = 1

product (x:xs) = x * (product xs)

In point-free style this can be written as

product : List Nat → Nat
product = (|[one,mult]|)

At first examination it seems that proposition 2 cannot be applied; however, since
mult is a commutative operator and idNat × idNat = idNat×Nat the above definition is
equivalent to the following.

product : List Nat → Nat
product = (|[one,mult ◦ swap ◦ (id× id)]|)



Now proposition 2 can be applied straightforwardly, resulting in the following accu-
mulation (notice that since one is the unit of mult then mult ◦ one = id).

productt : List Nat → Nat → Nat

productt = (|[id, comp ◦ swap ◦ (mult× id)]|)

The final tail-recursive implementation in Haskell is

product :: [Int] -> Int

product l = product_t l 1

product_t :: [Int] -> Int -> Int

product_t [] y = y

product_t (x:xs) y = product_t xs (x*y)

Notice that we could also use foldr to define the accumulations. In this case we
would have:

product_t :: [Int] -> Int -> Int

product_t = foldr (\x r y -> r (x*y)) id

This example shows that it is not always immediate to apply the transformation
rule of proposition 2. For many operators (namely for commutative operators) the re-
definition of the initial catamorphism is trivial; the next example presents a situation
where this is not so obvious.

Example 3 (Insertion Sort).
Consider the following definition of insertion sort.

isort :: (Ord a) => [a] -> [a]

isort [] = []

isort (x:xs) = insert x (isort xs)

where insert is the function that performs an ordered insertion in a list. This function
can be written as the catamorphism

isort = (|[nil, insert]|)

where the type of insert is A × List A → List A. This is clearly not an associative
operator (nor would it be with the a different order of the arguments). In order
to apply the transformation scheme, the definition has to be considerably modified.
First, we notice that

insert = merge ◦ (wrap× id)

where merge is the (associative) merge function on sorted lists, which has the empty
list as its right identity. Taking into account that merge is also commutative, insertion
sort can be redefined as follows.

isort = (|[nil,merge ◦ swap ◦ (wrap× id)]|)



This definition is suitable for transformation using proposition 2, with the result
(notice that insert = merge ◦ wrap)

isortt = (|[id, comp ◦ swap ◦ (insert× id)]|)

Thus the tail-recursive definition:

isort :: (Ord a) => [a] -> [a]

isort l = isort_t l []

isort_t :: (Ord a) => [a] -> [a] -> [a]

isort_t [] y = y

isort_t (x:xs) y = isort_t xs (insert x y)

This example illustrates that the application of proposition 2 may require the intro-
duction of new functions (as in the generalization strategy) with which to write the
initial catamorphism. These may possibly be later eliminated after the shortcut is
performed.

4.2 Tail-recursive Accumulations over Lists: Associative Dual Operators

The previous result can be generalized in order to be applicable to a slightly more
general class of programs. A binary operator ⊕ is said to have an associative dual
operator � [3] if

(x⊕ y)⊕ z = x⊕ (y � z)

In point-free notation the above equality can be written as

⊕ ◦ ⊕ = comp ◦ (⊕×�)

Proposition 3. Given a left-strict operator ⊕ : B×C → B with right identity e and
associative dual operator � : C × C → C, an element c : B, a function f : A → C,
and two functions defined as

h : List A → B
h = (|[c,⊕ ◦ swap ◦ (f × id)]|)

ht : List A → C → B
ht = (|[⊕ ◦ c, comp ◦ swap ◦ (� ◦ f × id)]|)

Then h l = ht l e.

Proof. Similar to proposition 2 (the associative dual law has a similar formulation to
associativity).

Example 4 (Tree Sorts). Consider again the definition of insertion sort from exam-
ple 3:

isort = (|[nil,merge ◦ swap ◦ (wrap× id)]|)
There is no reason why an accumulator of a different type cannot be used, such as
a binary tree. Without looking at the details of how such trees are implemented, we
consider an abstract data type Tree A to be used as accumulator. This type comes
equipped with the following functions.

treeToList : Tree A → List A (obtains a sorted list of the elements stored in the tree)
mkTree : A → Tree A (produces a tree from a single element)
mergeTree : Tree A× Tree A → Tree A (merges two trees)



Using these we define the function that inserts an element in a tree as

insertTree : A× Tree A → Tree A
insertTree = mergeTree ◦ (mkTree× id)

In order to use trees as accumulators, we now simply try to rewrite the defini-
tion of isort such that wrap can be replaced by mkTree. The following calculation
uses as hypothesis a property that we can reasonably expect to be verified by our
implementation of trees.26666666666664

† treeToList ◦ mkTree = wrap

merge ◦ swap ◦ (wrap × id)
= { † }

merge ◦ swap ◦ (treeToList ◦ mkTree × id)
= {×-Functor }

merge ◦ swap ◦ (treeToList × id) ◦ (mkTree × id)
= { swap-Nat }

merge ◦ (id × treeToList) ◦ swap ◦ (mkTree × id)

If we define ⊕ = merge ◦ (id× treeToList) we may then write

isort = (|[nil,⊕ ◦ swap ◦ (mkTree× id)]|)

and moreover the reader will have no difficulty in accepting that the intended imple-
mentation of trees should be such that mergeTree is the associative dual operator of
⊕, i.e.

(l ⊕ t1)⊕ t2 = l ⊕ (mergeTree t1 t2)

The conditions of proposition 3 are then verified, yielding the tail-recursive function:

sortt = (|[⊕ ◦ nil, comp ◦ swap ◦ (mergeTree ◦mkTree× id)]|)

This definition may be further simplified taking into account the definition of insertTree
and that ⊕ ◦ nil = treeToList

sortt = (|[treeToList, comp ◦ swap ◦ (insertTree× id)]|)

In Haskell we have

sort_t :: (Ord a) => [a] -> Tree a -> [a]

sort_t [] y = treeToList y

sort_t (x:xs) y = sort_t xs (insertTree x y)

Possible implementations of trees include ordinary binary search trees (with the
obvious ordered insertion operation and treeToList implemented by an inorder traver-
sal) and leaf trees (with treeToList implemented as a fold that for each node converts
both left and right sub-trees to sorted lists and then merges them together). In both
cases, if insertion operations are designed to preserve a balanced shape, O(n lg n)
sorting algorithms result.



4.3 Other Accumulations over Lists

We will now further generalize our transformation scheme, to allow for transforma-
tions that, while still based on compositions with associative operators (or having an
associative dual), do not result in tail-recursive functions.

Proposition 4. Given a left-strict operator ⊕ : B×C → B with right identity e and
associative dual operator � : C × C → C, an element c : B, a function f : A → C,
and two functions defined as

h : List A → B
h = (|[c,⊕ ◦ swap ◦ (f × g)]|)

ht : List A → C → B
ht = (|[⊕ ◦ c, comp ◦ swap ◦ (� ◦ f × k)]|)

where g and k are functions such that ⊕ ◦ g = k ◦ ⊕, then h l = ht l e.

Proof. Again, this is a similar proof to proposition 2, where the equality ⊕◦g = k ◦⊕
is used .

The next example illustrates the application of this shortcut law; it also introduces
a new higher-order point-free operator (in the same spirit as comp). Again, it be-
comes clear that enriching the calculus with such operators simplifies the calculations
considerably.

Example 5 (Initial Sums). Consider the following function (a slight variation of an
example from [20]) that computes the initial sums of a list.

isums :: [Int] -> [Int]

isums [] = []

isums (x:xs) = map (x+) (0 : isums xs)

This definition can be optimized by introducing an accumulating parameter that at
each point will store the sum of all previous elements in the list. This accumulation
can be calculated by fusion from the equation

isumst = ⊕ ◦ isums

where
⊕ : List Int× Int → List Int

⊕ (l, x) = mapList (plus x) l

Instead of applying fusion directly, we will use proposition 4. We begin by defining
isums in the point-free style as a catamorphism using the operator ⊕.

isums : List Int → List Int
isums = (|[nil,⊕ ◦ swap ◦ (id× cons ◦ 〈zero, id〉)]|)

In order to apply the transformation we must identify the right identity of ⊕ and
its associative dual. The former is obviously zero; the latter is � = plus since the
following property holds.

(l⊕x)⊕y = mapList (plus y) (mapList (plus x) l) = mapList (plus (plus (x, y))) l = l⊕(x�y)



To keep the presentation short, rather than expressing the operator ⊕ in the point-free
style and proving certain obvious properties about it, we will take these for granted
and concentrate on the part of the point-free proof that is of interest to us. We must
identify a function k such that

k ◦ ⊕ = ⊕ ◦ cons ◦ 〈zero, id〉

For that we need to express the following fact about ⊕ in the point-free calculus.

(cons (x, l))⊕ y = cons (plus (x, y), l ⊕ y)

The obvious choice is to express this as ⊕ ◦ (cons × id) = cons ◦ (plus × ⊕) ◦ 〈π1 ×
id, π2× id〉. However, likewise to associativity, a formulation of this property involving
the curried version of the operator will ease the burden of the calculations. This
implies introducing a new split combinator defined pointwise as split (f, g) = 〈f, g〉,
and in point-free by the following equation.

split : (BA × CA) → (B × C)A

split = (ap× ap) ◦ 〈π1 × id, π2 × id〉 split-Def

Using this combinator, the above property can be expressed by the equation

⊕ ◦ cons = cons• ◦ split ◦ (plus×⊕)

as the following calculation shows.

26666666666666666666666666666664

† ⊕ ◦ (cons × id) = cons ◦ (plus ×⊕) ◦ 〈π1 × id, π2 × id〉

⊕ ◦ cons
= {∧-Fusion }

⊕ ◦ (cons × id)
= { † }

cons ◦ (plus ×⊕) ◦ 〈π1 × id, π2 × id〉
= {∧-Cancel, ×-Functor, ×-Absor }

cons ◦ (ap × ap) ◦ 〈plus ◦ π1 × id,⊕ ◦ π2 × id〉
= {×-Cancel, ×-Def }

cons ◦ (ap × ap) ◦ 〈π1 ◦ (plus ×⊕) × id, π2 ◦ (plus ×⊕) × id〉
= {×-Functor×-Fusion }

cons ◦ (ap × ap) ◦ 〈π1 × id, π2 × id〉 ◦ ((plus ×⊕) × id)
= {∧-Fusion, ∧-Absor }

cons• ◦ (ap × ap) ◦ 〈π1 × id, π2 × id〉 ◦ (plus ×⊕)
= { split-Def }

cons• ◦ split ◦ (plus ×⊕)



We can now show very easily that k = cons• ◦ split ◦ 〈id, id〉.266666666666666666666664

† ⊕ ◦ cons = cons• ◦ split ◦ (plus ×⊕)

§ plus ◦ zero = id

⊕ ◦ cons ◦ 〈zero, id〉
= { † }

cons• ◦ split ◦ (plus ×⊕) ◦ 〈zero, id〉
= {×-Absor }

cons• ◦ split ◦ 〈plus ◦ zero,⊕〉
= { § }

cons• ◦ split ◦ 〈id,⊕〉
= { const-Fusion }

cons• ◦ split ◦ 〈id ◦ ⊕,⊕〉
= {×-Fusion }

cons• ◦ split ◦ 〈id, id〉 ◦ ⊕

Finally we can apply proposition 4 in order to get the desired accumulation (notice
that ⊕ ◦ nil = nil).

isumst : List Int → Int → List Int

isumst = (|[nil, comp ◦ swap ◦ (plus× cons• ◦ split ◦ 〈id, id〉)]|)

After converting this definition to pointwise Haskell we get the following implemen-
tation.

isums :: [Int] -> [Int]

isums l = isums_t l 0

isums_t :: [Int] -> Int -> [Int]

isums_t [] y = []

isums_t (x:xs) y = (x+y) : isums_t xs (x+y)

Although this is not a tail-recursive function, it runs in linear time rather than
quadratic time as was the case for the initial specification.

4.4 Accumulations over Leaf-labelled Trees

We now turn to a different inductive type, that of leaf-labeled binary trees. In general,
folds over this type (functions whose result on a node is a function of the results
on both left and right sub-trees) cannot be made fully tail-recursive; however one
of the two recursive invocations can in certain circumstances be tail-recursive, if
an accumulator is used. The current value of the accumulator is passed unchanged
to one of the recursive calls, and the result of this call is then used as the new
accumulator value for the second call. The next proposition shows how this pattern
of computation can be calculated in the point-free calculus, and introduces a shortcut
rule for introducing it.

Proposition 5. Given a left-strict associative operator ⊕ : B × B → B with right
identity e, a function f : A → B, and two functions defined on leaf trees as

h : LTree A → B
h = (|[f,⊕]|)

ht : LTree A → B → B
ht = (|[⊕ ◦ f, comp]|)

Then h t = ht t e.



Proof. Direct consequence of proposition 1, with F instantiated to the base functor
of leaf trees (F ⊕ = id +⊕×⊕), and the following calculation.26666666666664

@ ⊕ ◦ ⊕ = comp ◦ (⊕×⊕)

⊕ ◦ [f,⊕]
= {+-Fusion, ⊕ left-strict, ∧-Strict }

[⊕ ◦ f,⊕ ◦ ⊕]
= {@ }

[⊕ ◦ f, comp ◦ (⊕×⊕)]
= {+-Absor }

[⊕ ◦ f, comp] ◦ (id + ⊕×⊕)

Example 6 (Leaves). Proposition 5 can be used to optimize the definition of the O(n2)
left-to-right traversal function.

leaves :: LTree a -> [a]

leaves (Leaf x) = [x]

leaves (Branch l r) = (leaves l) ++ (leaves r)

This function can be defined in the point-free style as follows.

leaves : LTree A → List A
leaves = (|[wrap, cat]|)

Considering that cat ◦ wrap = cons we obtain the following faster O(n) version with
accumulations.

leavest : LTree A → List A → List A
leavest = (|[cons, comp]|)

The implementation of this optimized version with explicit recursion is

leaves :: LTree a -> [a]

leaves t = leaves_t t []

leaves_t :: LTree a -> [a] -> [a]

leaves_t (Leaf x) m = x:m

leaves_t (Branch l r) m = leaves_t l (leaves_t r m)

Remark. This example had already been presented by Bird and de Moor using exactly
the same point-free definitions in [7]. However, their derivation is mainly done in
pointwise style because the comp combinator was defined using this style, which
prevented them to reason about associativity using point-free calculations.

4.5 Accumulations over Rose Trees

A different variety of binary trees is that in which the nodes, rather than the leaves,
are labeled. Rather than considering that type here, we turn to a node-labeled type
that allows for a variable branch factor. This type can be generated by the following
regular functor, defined using the type functor of lists.

Rose A = µ(A× List )
node : A× List (Rose A) → Rose A



This data type has a single constructor and can represent non-empty trees only. It
can be implemented in Haskell as follows.

data Rose a = Node a [Rose a]

We remark that folds over this type are functions that at each node combine the
contents of the node with the list of results obtained by recursively applying the
function to each sub-tree.

Proposition 6. Given a left-strict associative operator ⊕ : B × B → B with right
identity e, an element c : B, a function f : A → B, and two functions defined on rose
trees as

h : Rose A → B
h = (| ⊕ ◦swap ◦ (f × (|[c,⊕]|))|)

ht : Rose A → B → B
ht = (|comp ◦ swap ◦ (⊕ ◦ f × (|[⊕ ◦ c, comp]|))|)

Then h t = ht t e. Notice that, in both functions, the outer catamorphism traverses a
rose tree (functor A× List ), while the inner one traverses a list (functor 1 + A× Id).

Proof. Direct consequence of proposition 1 and the following calculation, with F
instantiated to the base functor of rose trees (F ⊕ = id×mapList ⊕).2666666666666666666666666666666666666664

@ ⊕ ◦ ⊕ = comp ◦ (⊕×⊕)

⊕ ◦ ⊕ ◦ swap ◦ (f × (|[c,⊕]|))
= {@ }

comp ◦ (⊕×⊕) ◦ swap ◦ (f × (|[c,⊕]|))
= { swap-Nat, ×-Functor }

comp ◦ swap ◦ (⊕ ◦ f ×⊕ ◦ (|[c,⊕]|))
= { cata-Fusion, ⊕ left-strict, ∧-Strict }2666666664

⊕ ◦ [c,⊕]
= {+-Fusion, ⊕ left-strict, ∧-Strict }

[⊕ ◦ c,⊕ ◦ ⊕]
= {@ }

[⊕ ◦ c, comp ◦ (⊕×⊕)]
= {×-Functor, +-Absor }

[⊕ ◦ c, comp ◦ (⊕× id)] ◦ (id + id ×⊕)
comp ◦ swap ◦ (⊕ ◦ f × (|[⊕ ◦ c, comp ◦ (⊕× id)]|))

= {+-Absor }
comp ◦ swap ◦ (⊕ ◦ f × (|[⊕ ◦ c, comp] ◦ (id + ⊕× id)|))

= { fold-map-Fusion }
comp ◦ swap ◦ (⊕ ◦ f × (|[⊕ ◦ c, comp]|) ◦ mapList ⊕)

= {×-Functor }
comp ◦ swap ◦ (⊕ ◦ f × (|[⊕ ◦ c, comp]|)) ◦ (id × mapList ⊕)

Example 7 (Postorder). Consider the following Haskell function that performs a pos-
torder traversal of a rose tree.

post :: Rose a -> [a]

post (Node x l) = (aux l) ++ [x]

where aux [] = []

aux (x:xs) = (post x) ++ (aux xs)



This function can be expressed in point-free style as

post : Rose A → List A
post = (|cat ◦ swap ◦ (wrap× (|[nil, cat]|))|)

where a catamorphism is used to process the list of results of recursive calls. Propo-
sition 6 then allows to transform this into the following linear time accumulation (we
also use some obvious facts about cat to further simplify the result).

postt : Rose A → List A → List A
postt = (|comp ◦ swap ◦ (cons× (|[id, comp]|))|)

The optimized version can be implemented in Haskell as follows.

post :: Rose a -> [a]

post r = post_t r []

post_t :: Rose a -> [a] -> [a]

post_t (Node x l) m = aux l (x:m)

where aux [] m = m

aux (x:xs) m = post_t x (aux xs m)

5 Functions with more than one accumulator

We now get back to the accumulation pattern seen in section 4.4 for leaf-trees. Recall
that the value of the accumulator received when processing a node was passed directly
to one of the recursive calls, and the result of this call used as the accumulator value
for the second call. This is not however the only possibility; certain functions require
that the value of the accumulator at the root be received also by the second recursive
call. In this situation two accumulators have to be used.

This section presents a concrete example of such a derivation, for the function
that determines the height of a binary tree. The example requires the introduction
of another point-free operator in the calculus; this is an alternative exponentiation
operator that implements a post composition: in addition to fA g = f ◦ g we will also
define Af g = g ◦ f .

Given f : B → C, this combinator has the following point-free definition.

Af : AC → AB

Af = ap ◦ (id× f)
pexp-Def

Likewise to the normal exponentiation we will use • for the superscript when the
information about the type is not relevant. Some laws involving this operator are
listed and proved in appendix A

Example 8 (Height). We begin with the following straightforward implementation.

height :: LTree a -> Int

height (Leaf x) = 0

height (Branch l r) = 1 + max (height l) (height r)



This can be written as the catamorphism

height : LTree A → Int
height = (|[zero, succ ◦max]|)

The specification of ht uses two accumulators: the first, d, will store the depth
of the current node while traversing the tree; the second, m, will store the maxi-
mum depth so far. The specification for fusion is thus, in pointwise and point-free
respectively,

heightt t d m = max (plus (height t, d),m)

heightt = max• ◦ plus ◦ height

This specification allows to apply fusion in two steps: first we fuse height with plus
to introduce the first accumulating parameter, and then we fuse the result with max•

for the second. For the first calculation the following properties about curried plus,
max, and succ need to be expressed in point-free style.

plus (max (x, y), z) = max (plus (x, z), plus (y, z))
plus (succ x, y) = plus (x, succ y)

The first is similar to the one that motivated the introduction of the split combinator
in example 3; the second can be written using the new exponentiation combinator
– a simple proof allows to obtain this as a consequence of the straightforward plus ◦
(succ× id) = plus ◦ (id× succ).

plus ◦max = max• ◦ split ◦ (plus× plus)

plus ◦ succ = •succ ◦ plus

For the fusion of plus we proceed with the following calculation. Notice that this
operator is strict due to ∧-Strict and the left strictness of plus.26666666666666666666664

† plus ◦ succ = •succ ◦ plus

‡ plus ◦ max = max• ◦ split ◦ (plus × plus)

§ plus ◦ zero = id

plus ◦ [zero, succ ◦ max]

= {+-Fusion, plus strict }
[plus ◦ zero, plus ◦ succ ◦ max]

= { §, † }
[id, •succ ◦ plus ◦ max]

= { ‡ }
[id, •succ ◦ max• ◦ split ◦ (plus × plus)]

= {+-Absor }
[id, •succ ◦ max• ◦ split] ◦ (id + plus × plus)

The result of the first fusion is then

heightt = max• ◦ (|[id, •succ ◦max• ◦ split]|)



The second derivation makes use of the associativity of max and laws about the
new exponentiation combinator. Notice that max• is strict due to the left-strictness
of max, ∧-Strict, and the definition of the exponentiation operator.266666666666666666666666666664

@ max ◦ max = comp ◦ (max × max)

max• ◦ [id, •succ ◦ max• ◦ split]
= {+-Fusion, max• strict }

[max• ◦ id, max• ◦ •succ ◦ max• ◦ split]
= { const-Exp, pexp-Exp }

[max, •succ ◦ max• ◦ max• ◦ split]
= {∧-Functor }

[max, •succ ◦ (max ◦ max)• ◦ split]
= {@ }

[max, •succ ◦ (comp ◦ (max × max))• ◦ split]
= {∧-Functor }

[max, •succ ◦ comp• ◦ (max × max)• ◦ split]
= { split-Exp }

[max, •succ ◦ comp• ◦ split ◦ (max• × max•)]
= {+-Absor }

[max, •succ ◦ comp• ◦ split] ◦ (id + max• × max•)

This calculation yields and accumulation defined as follows.

heightt : LTree A → Int → Int → Int
heightt = (|[max, •succ ◦ comp• ◦ split]|)

After expanding the definitions of the combinators we get the following implementa-
tion, where one of the recursive calls has been made tail-recursive.

height :: LTree a -> Int

height t = height_t t 0 0

height_t :: LTree a -> Int -> Int -> Int

height_t (Leaf x) d m = max d m

height_t (Branch l r) d m = height_t l (d+1) (height_t r (d+1) m)

Remark. The notion of post composition already appeared in [14] as a mean to express
some properties about higher-order functions. Similarly to comp in [7], it was defined
in pointwise style.

6 Transforming Hylomorphisms into Accumulations

The goal of this section is to show that the application of the techniques presented in
this paper is not restricted to catamorphisms. In fact, almost every recursive definition
can be expressed as a hylomorphism [26], a recursion pattern that corresponds to the
composition of a catamorphism with an instance of another recursion pattern we have
not yet mentioned: anamorphisms.

Anamorphisms. Although already known for a long time, anamorphisms are still not
very popular among programmers [17]. They correspond to the dual construction of
catamorphisms, in the sense that they encode the simplest way of producing values of



a recursive type. Given a function of type g : B → F B, the anamorphism generated
by g (denoted bd(g)ce) is defined as follows.

bd(g)ceF : B → µF
bd(g)ceF = µ(λf · inF ◦ Ff ◦ g)

ana-Def

Function g (sometimes called the gene of the pattern) is used to control the generation
of values of type µF . As was the case for catamorphisms, a standard Haskell function
(called unfoldr) exists that encodes this recursion pattern for the particular case of
lists.

unfoldr :: (b -> Maybe (a,b)) -> b -> [a]

unfoldr f b = case f b of Nothing -> []

Just (a,b) -> a : unfoldr f b

Notice that the type of the first parameter is isomorphic to the expected B → 1 +
A×B, since the Maybe data type is declared in the standard Haskell libraries as data
Maybe a = Nothing | Just a. When g returns Nothing the generation of the list
stops; otherwise g returns a pair with a value for the head of the list and a seed used
to recursively generate the tail of the list.

As an example of an anamorphism we give the following function that produces
the list of all values from a given input n down to 1.

from : Int → List Int
from = bd((id + 〈id, pred〉) ◦ iszero?)ce

where pred : Int → Int gives the predecessor of an integer, and iszero : Int → Bool tests
if its input is zero.

Hylomorphisms. By constructing an intermediate data-structure with an anamor-
phism and then processing it with a catamorphism, much more complex forms of
recursion can be captured than with simple catamorphisms. The following equiva-
lence ensures that a single recursive definition results from such a composition.

(|g|)F ◦ bd(h)ceF = µ(λf · g ◦ Ff ◦ h) hylo-Fusion

More precisely, this law states that the catamorphism and the anamorphism can be
fused together in a single definition, avoiding the construction of the intermediate
data structure. We remark that it is possible to automatically derive a (pointwise)
hylomorphism from an explicitly recursive definition, as shown in [19] for the par-
ticular case of definitions whose recursion tree can be generated by a polynomial
functor.

From the above law it is clear that the computations after and before recursion
are performed, respectively, by the parameters of the catamorphism and the anamor-
phism. A consequence of this fact is that if, by using an accumulation parameter,
the catamorphism can be transformed into a tail recursive definition, the resulting
hylomorphism will also necessarily be tail recursive. The next example shows how a
function that does not fit the simple fold recursion pattern can be transformed, after
it is written as a hylomorphism.



Example 9 (Factorial). To exemplify the application of the accumulation technique to
a function that can not be directly defined as a catamorphism, consider the standard
definition of factorial.

fact :: Int -> Int

fact 0 = 1

fact (n+1) = (fact n) * (n+1)

This function can be expressed as the hylomorphism

fact : Int → Int
fact = product ◦ from

where product is the catamorphism of example 2, which can be transformed into a tail
recursive function productt by introducing an accumulating parameter. By defining
factt = productt◦from, then applying hylo-Fusion and unfolding the fixpoint operator,
we get the following equation.

factt = [id, comp ◦ swap ◦ (mult× id)] ◦ (id + id× factt) ◦ (id + 〈id, pred〉) ◦ iszero?

This can be simplified to

factt = [id, comp ◦ swap ◦ 〈mult, factt ◦ pred〉] ◦ iszero?

The factorial function can then be rewritten as fact n = factt n one, bearing in mind
that one is the unit of mult . In pointwise Haskell, this corresponds, as expected, to
the following tail-recursive implementation.

fact :: Int -> Int

fact n = fact_t n 1

fact_t :: Int -> Int -> Int

fact_t 0 y = y

fact_t n y = fact_t (n-1) (n * y)

7 Related Work

There have been some attempts to develop automatic systems for program transfor-
mation using shortcut fusion in pointwise style. One of the most successful is the
MAG system developed by Sittampalam and de Moor [10, 11]. This system is not
fully automatic, but relies on the notion of active source, that is, the original (inef-
ficient) definitions are stored together with sufficient hints (namely, the specification
that results from the generalization strategy, and the creative steps of the derivation)
that enable the system to derive the efficient version. It has been applied to perform
transformations using both the accumulation and tupling strategies.

At the core of this system lies a term rewriting mechanism that, given a set of
transformation rules, tries to apply them from left to right in the order in which
they appear in the active source, repeating this process until no rule can be applied.
The use of a shortcut fusion rule instead of fold/unfold transformations makes it



unnecessary to apply equations in more than one direction. In order to cope with the
side-conditions of the fusion rule, this mechanism includes a higher-order matching
algorithm that is capable of deriving mechanically new function definitions (like the h
function in foldr-Fusion). MAG does not require the original functions to be defined
directly as catamorphisms, since such definitions can be derived automatically. The
technique that allows to do this was introduced in [23], and basically consists in trying
to fuse the original definition with the identity fold (defined as foldr cons nil for lists).

Among the drawbacks of this system we have the fact that it does not include
a strictness analyzer, leaving to the user the manual verification of part of the side-
conditions of the fusion rule. Another drawback is that the rewriting system is quite
limited; the user must be careful about the order in which the transformation rules
are stated in the active source, in order for the transformation to succeed. The same
foresight applies to the definitions themselves. As the authors say [11]

. . . to use MAG to mechanize a fusion derivation, one must first have some
idea of what the derivation will be – what MAG does for the programmer is
to deal with the details of the derivation, and to make it repeatable without
needing to store it with the program.

Hu, Iwasaki, and Takeichi have used a calculational approach to several program
transformation techniques, including deforestation [19], tupling [21], and accumula-
tions [20]. In this latter work, the authors present a methodology for deriving accumu-
lations using fusion, where the expected structure of the catamorphisms parameter
is used in order to facilitate the derivation. Unlike in the MAG system, the generic
definition of catamorphisms (and fusion) is used, but most of the expressions are still
defined in the pointwise style. Although the authors suggest that their method is
amenable to automation, they present no hints on how to do it. Due to the generality
of the transformation laws and the use of pointwise definitions, it is likely that it
would also require some form of higher-order matching, similar to that used in MAG.

Meijer, Fokkinga, and Paterson have introduced in [26] a transformation rule quite
similar to proposition 2, for deriving accumulations from functions defined over lists.
Besides dealing with associative operators, it also covers operators with associative
duals. This generality complicates the formalization of the rule by not making the
associativity properties explicit, and introducing side-conditions whose mechanical
verification is not trivial: to apply the rule one needs to discover new operators, which
again implies the use of a higher-order matching algorithm. The rule is expressed in
a mixed style that includes both point-free and pointwise definitions: the former is
used for writing the catamorphisms, and the latter for defining the (associativity-like)
properties of the operators.

The work of Sheard and Fegaras on the derivation of accumulations [29] also
bears some similarities to ours (even though no fusion or point-free style are used). A
syntactic transformation algorithm is defined for recognizing folds that are amenable
to be implemented as accumulations, and automatically converts them into the higher-
order folds that define them. For the particular case of lists, the transformation is
similar to the one defined by proposition 2, with the occurrences of the associative
operator being replaced by composition. The authors also acknowledge similarities
between this transformation and the classic continuation-passing style transformation.
The main advantage of this approach is that the transformation algorithm can be



generically applied to folds over any data-type, as long as the involved operator is
associative. As such it also covers for instance, proposition 5 for transformation of
functions over leaf trees.

Accumulations are usually defined as higher-order catamorphisms. However, other
approaches have been proposed using different recursion patterns. For instance, it is
known that some accumulations can be expressed as regular first order anamorphisms.
That is the case of the so-called downwards accumulations, functions that label each
node of a data structure by applying a function to its ancestors (i.e. information
flows in a top-down fashion). Malcolm used anamorphisms to define this kind of
accumulations for infinite lists [24], and later, Gibbons presented a generic definition
that works for any regular data type [15]. Given a binary operator ⊕ : B × A → A,
we could slightly change Malcolm’s definition to work on finite lists as follows.

da ⊕ : List B ×A → List A
da ⊕ = bd((π1 + 〈π2, (id×⊕) ◦ assocr ◦ (swap× id)〉) ◦ distl ◦ (out× id))ce

This function can be implemented in Haskell as follows (notice that it is very similar
to the standard Haskell function scanl).

da :: ((b, a) -> a) -> ([b], a) -> [a]

da op ([], b) = []

da op (x:xs, b) = b:(da op (xs, op (x, b)))

With da we can define the function that computes the initial (reversed) segments of
a list as follows.

inits : List A → List List A
inits = da cons ◦ 〈id, nil〉

Using these definitions, Malcolm proves the following shortcut fusion rule, that
can be used to improve the efficiency of a function of type List B → List A. The
operator ⊕ has type B×A → A and e : A. Gibbons also generalized this rule to work
with any regular data type.

(mapList (|[e,⊕]|) ◦ inits) l = da⊕ (l, e)

Notice that this rule does not have side conditions (not even the associativity of
⊕ is required). The left side of the equation can be seen as a clear specification of
downwards accumulations for the particular case of lists, while the right side is the
expected efficient implementation. As an example, this rule can be used to transform
the following (very easy to understand) specification of a function very similar to
isums of example 5

isums′ : List Int → List Int
isums′ = mapList sum ◦ inits

into the efficient implementation: isums′ l = da plus (l, zero).
Without resorting to higher-order, it is still possible to express a wide range of ac-

cumulations using the hylomorphism recursion pattern. Pardo followed this approach
in order to define a generic accumulation operator that supersedes the one proposed
by Gibbons [27]. Although no further specialization was carried out, he defines a gen-
eral transformation rule similar to proposition 1 using the new operator. Although



powerful, this definition of accumulations is not as expressive as the one used in this
paper – for example, it is not possible to define the accumulation of example 6.

There is some research work in program transformation with accumulations that
is not concerned with deriving accumulations from recursive definitions, but rather
with studying fusion of functions already defined as accumulations [20, 15, 27, 30].
This work aims at developing the calculus in order to allow to prove facts like the
following.

product (reverset l nil) = productt l one

8 Conclusions

In this paper we have shown how the classic accumulation strategy can be applied
using calculation in a pure point-free style. We have briefly compared this approach
with the standard fold/unfold transformations, and pointwise calculation. The main
similarity between all these techniques is the need for a creative step for writing the
initial specification that will be transformed (the generalization step of fold/unfold
transformations). Our emphasis was on finding generic transformation schemes for
various data types, that can be used as shortcut optimization rules in an automatic
transformation system. We have also presented a point-free derivation of a function
with two accumulating parameters, that evidenced the modularity of the calculational
approach – the accumulating arguments were introduced in separate, simpler fusion
steps. Although we have focused on a specific transformation strategy, it is our belief
that exactly the same approach can be followed for other transformation techniques,
such as tupling or deforestation.

In order to cope with calculations in a higher-order setting, we have felt the
need to internalize uncurried versions of some of the basic combinators as point-free
definitions. This was the case for the composition and split combinators. Fundamental
properties, like the associativity of curried operators, can be succinctly expressed
using these definitions, leading to a major simplification in the calculations. We have
also introduced a new point-free exponentiation operator, equivalent to the right-
sectioning of the composition combinator.

Other contributions of the paper include the generalization of the approach to a
broader class of recursive definitions (by using hylomorphisms), and a clarification
of the strictness side-conditions that characterize the accumulation strategy in the
Cpo domain. As was shown, strictness analysis can also be made by calculation –
the strictness side-conditions were derived from a basic set of laws concerning the
strictness properties of the basic combinators and recursion patterns.

There are some limitations in our methodology: first, it is still not clear how
to automatically derive point-free expressions from the typical pointwise definitions
most programmers use; second, as shown in example 3, it is sometimes necessary to
(non-trivially) change the initial definition of a program to enable the application of
the transformation rules.

In the near future we intend to develop a transformation system for point-free
programs, based on a term-rewriting approach. By using a pure point-free style,
we will not need a higher-order matching algorithm to find the “unknowns” in the
transformation rules. This means that we can follow a simpler approach, has in Bird’s



functional calculator [6]. With this system we hope to provide practical evidence of
the advantages of using a point-free style for program transformation by calculation.
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A Some Laws About Products, Coproducts, and Exponentials

〈π1, π2〉 = id ×-Reflex

π1 ◦ 〈f, g〉 = f ∧ π2 ◦ 〈f, g〉 = g ×-Cancel

〈f, g〉 ◦ h = 〈f ◦ h, g ◦ h〉 ×-Fusion

(f × g) ◦ 〈h, i〉 = 〈f ◦ h, g ◦ i〉 ×-Absor

(f × g) ◦ (h× i) = f ◦ h× g ◦ i ×-Functor

〈f, g〉 = 〈h, i〉 ⇔ f = h ∧ g = i ×-Equal

〈f, g〉 strict ⇔ f strict ∧ g strict ×-Strict

[i1, i2] = id +-Reflex

[f, g] ◦ i1 = f ∧ [f, g] ◦ i2 = g +-Cancel

f ◦ [g, h] = [f ◦ g, f ◦ h] ⇐ f strict +-Fusion

[f, g] ◦ (h + i) = [f ◦ h, g ◦ i] +-Absor

(f + g) ◦ (h + i) = f ◦ h + g ◦ i +-Functor

[f, g] = [h, i] ⇔ f = h ∧ g = i +-Equal

∀f, g · [f, g] strict +-Strict



ap = id ∧-Reflex

f = ap ◦ (f × id) ∧-Cancel

f ◦ (g × id) = f ◦ g ∧-Fusion

fA ◦ g = f ◦ g ∧-Absor

(f ◦ g)A = fA ◦ gA ∧-Functor

f = g ⇔ f = g ∧-Equal

f strict ⇔ f left-strict ∧-Strict

f• ◦ g = f ◦ g const-Exp

Proof. 2666666666666666664

f• ◦ g

= {∧-Def }
f ◦ ap ◦ g

= {∧-Fusion }
f ◦ ap ◦ (g × id)

= { const-Def }
f ◦ ap ◦ (g ◦ π2 × id)

= {∧-Cancel }
f ◦ g ◦ π2

= { const-Def }
f ◦ g

f• ◦ •g = •g ◦ f• pexp-Exp

Proof. 26666666666666666666664

f• ◦ •g
= {pexp-Def }

f• ◦ ap ◦ (id × g)
= {∧-Absor }

f ◦ ap ◦ (id × g)
= {∧-Cancel }

ap ◦ (f ◦ ap × id) ◦ (id × g)
= {×-Functor,∧-Def }

ap ◦ (id × g) ◦ (f• × id)
= {∧-Fusion }

ap ◦ (id × g) ◦ f•

= {pexp-Def }
•g ◦ f•

split ◦ (f• × g•) = (f × g)• ◦ split split-Exp



Proof. 2666666666666666666666666664

split ◦ (f• × g•)
= { split-Def }

(ap × ap) ◦ 〈π1 × id, π2 × id〉 ◦ (f• × g•)
= {∧-Fusion }

(ap × ap) ◦ 〈π1 × id, π2 × id〉 ◦ ((f• × g•) × id)
= {×-Fusion, ×-Functor }

(ap × ap) ◦ 〈π1 ◦ (f• × g•) × id, π2 ◦ (f• × g•) × id〉
= {×-Def, ×-Cancel }

(ap × ap) ◦ 〈f• ◦ π1 × id, g• ◦ π2 × id〉
= {×-Functor, ×-Cancel, ∧-Def }

(ap × ap) ◦ ((f ◦ ap × id) × (g ◦ ap × id)) ◦ 〈π1 × id, π2 × id〉
= {×-Functor, ∧-Cancel }

(f ◦ ap × g ◦ ap) ◦ 〈π1 × id, π2 × id〉
= {×-Functor, ∧-Absor, split-Def }

(f × g)• ◦ split

B Auxiliary Function Definitions

swap : A×B → B ×A
swap = 〈π2, π1〉

(f × g) ◦ swap = swap ◦ (g × f) swap-Nat

assocr : (A×B)× C → A× (B × C)
assocr = 〈π1 ◦ π1, π2 × id〉

(f × (g × h)) ◦ assocr = assocr ◦ ((f × g)× h) assocr-Nat

distl : (A + B)× C → A× C + B × C
distl = ap ◦ ([i1, i2]× id)

distr : A× (B + C) → A×B + A× C
distr = (swap + swap) ◦ distl ◦ swap


