
Algebraic and Coalgebraic Structures
(Lecture Notes for Álgebra de Processos)

Mestrado em Matemática Computacional

Lúıs Soares Barbosa

lsb@di.uminho.pt

Departamento de Informática
Universidade do Minho

Março 2005

1 Observation & Construction

1. Functions. One of the most elementary models of a computational process is that of
a function

f : I −→ O

which specifies a transformation rule between two structures I and O. The behaviour of
a function is captured by the output it produces, which is completely determined by the
supplied input. In a (metaphorical) sense, this may be dubbed as the ‘engineer’s view’ of
reality: here is a recipe (a tool, a technology) to build gnus from gnats.

Often, however, reality is not so simple. For example, one may know how to produce ‘gnus’
from ‘gnats’ but not in all cases. This is expressed by observing the output of f in a more
refined context: O is replaced by O + 1 and f is said to be a partial function. In other
situations one may recognise that there is some environmental (or context) information
about ‘gnats’ that, for some reason, should be hidden from input. It may be the case that
such information is too extensive to be supplied to f by its user, or that it is shared by other
functions as well. It might also be the case that building gnus would eventually modify the
environment, thus influencing latter production of more ‘gnus’. For U a denotation of such
context information, the signature of f becomes

f : I −→ (O × U)U

In both cases f can be typed as
f : I −→ T O

for T = Id + 1 and T = (Id × U)U , respectively. Informally, T can be thought of as a
type transformer providing a shape for the output of f . Technically, T is a functor which,
to facilitate composition and manipulation of such functions, is often required to be a
monad. In this way, the ‘universe’ in which f : I −→ T O lives and is reasoned about
is the Kleisli category for T. In fact, monads in functional programming offer a general
technique to smoothly incorporate, and delimit, ‘computational effects’ of this kind without

0

compromising the purely functional semantics of such languages, in particular, referential
transparency.

2. State. A function computed within a context is often referred to as ‘state-based’, in
the sense the word ‘state’ has in automaton theory — the internal memory of the automaton
which both constraints and is constrained by the execution of actions. In fact, the ‘nature’
of f : I −→ (O × U)U as a ‘state-based function’ is made more explicit by rewriting its
signature as

f : U −→ (O × U)I

This, in turn, may suggest an alternative model for computations, which (again in a meta-
phorical sense) one may dub as the ‘natural scientist’s view’. Instead of a recipe to build
‘gnus’ from ‘gnats’, the simple awareness that there exist gnus and gnats and that their
evolution can be observed. That observation may entail some form of interference is well
known, even from Physics, and thus the underlying notion of computation is not necessarily
a passive one.

The able ‘natural scientist’ will equip herself with the right ‘lens’ — that is, a tool to ob-
serve with, which necessarily entails a particular shape for observation. Also note that the
emphasis is now placed on the state itself: the input and output parameters may or may not
become relevant, depending on the particular kind of observation one may want to perform.
In other words, one’s focus becomes the ‘nature’, or the ‘universe’ or, more pragmatically,
the state space. That we can observe ‘gnus’ being produced out of ‘gnats’ is just one, among
other possible observations. The basic ingredients required to support an ‘observational’,
or ‘state-based’, view of computational processes may be summarised as follows:

a lens: ©_© a functor T

an observation structure: universe
p−→ ©_© universe a T-coalgebra

Formally, in Set, a coalgebra for a functor T is a set U , which corresponds to the object
being observed (the ‘universe’), and a function p : U −→ T U . Such a function is often
referred to as the coalgebra dynamics.

3. Colours. There is, of course, a great diversity of ‘lenses’ and, for the same ‘lens’,
a variety of observation structures, i.e., of coalgebras. Moreover, such structures can be
related and compared. For this one only needs what in Universal Algebra is known as a
homomorphism, i.e., a structure-preserving map. In our case the structure to be preserved is
the shape of T as an observation tool. Therefore, a T-coalgebra morphism (or comorphism,
as abbreviated in the sequel) h between, say, coalgebras p and q is just a function between the
respective carriers (‘universes’ or ‘state-spaces’) making the following diagram to commute:

U
p //

h

��

T U

T h

��
V q

// T V

1

Let us consider some possible lenses. An extreme case is the opaque lens: no matter what
we try to observe through it, the outcome is always the same. Formally, such a lens is the
constant functor 1 which maps every object to 1 and every morphism to the identity on 1.
Since 1 is the final object in Set, all 1-coalgebras reduce to !.

A slightly more interesting lens is 2, which allows states to be classified into two different
classes: black or white. This makes it possible to identify subsets of the ‘universe’ U under
observation, as an observation structure p for this functor will map elements of U to one or
another element of 2.

Should an arbitrary set O be chosen to colour one’s lens, the possible observations become
more discriminating. A coalgebra for O is a ‘colouring’ device in the sense that elements of
the universe are classified (i.e., regarded as distinct) by being assigned to different elements
of O. Of course, a map h between such two observation structures p and q should be a
colour-preserving function, i.e., equation

q · h = p

must hold. This means that if two elements of the universe are grouped together by p, their
images under h remain together when compared by q.

4. Interfaces. A ‘colour set’ as 1, 2 or O above, can be regarded as a classifier of the state
space. Coalgebras, for such constant functors, are pure observers providing a limited access
to the state space by mapping into the ‘colour set’. In object-oriented programming they
are known as attributes. Naturally, the same ‘universe’ can be observed through different
attributes and, furthermore, such observations can be carried out on parallel. Thus, the
shape of a ‘multi-attribute’ lens is

©_© U =
∏
k∈K

Ok

where K is a finite set of attribute names. The corresponding observation structure, a
function mapping U to a (finite) product, is defined as a K-indexed split

〈ok〉k∈K : U −→
∏
k∈K

Ok

of attributes ok from U to Ok.

A very common assumption in state-based computations is that the state itself is a ‘black
box’: it may evolve either internally or as a reaction to external stimuli, but the only way
one has to become aware of such an evolution is by observing the values of its attributes.
The product of their types forms the output interface of the coalgebra. No direct access to
the state space is possible. Under this assumption the ‘transparent’ lens is not particularly
useful. Technically, this lens corresponds to the identity functor Id. An observation structure
for Id amounts to a function

p : U −→ U

This means that, by using p, the state U can indeed be modified, an ability we hadn’t
before. But, on the other hand, the absence of attributes makes any meaningful observation
impossible. The best we can say, if no direct access to U is allowed, is just that things
happen.

2

A better alternative is to combine attributes with such state modifiers, or update operations,
to model the ‘universe’ evolution. The latter will be called actions here; in the object
paradigm they are known as methods. Such a combination leads to a richer stock of lens.
We might consider, for example, that

1. things happen and disappear or stop, i.e.

©_© U = U + 1

The observation structures for this functor are the partial functions. Accordingly,
morphisms between them consist of functions that preserve partiality.

2. things happen and, in doing so, some of their attributes become visible, i.e., (non
trivial) output is produced:

©_© U = U ×O

3. the evolution of things is triggered by some external stimulus, i.e., additional input is
accepted:

©_© U = U I

4. we are not completely sure about what has happened, in the sense that the evolution
of the system being observed may be nondeterministic. In this case, the lens above
can be combined with

©_© U = PU

where PU is the finite powerset of U .

In the third example, the action also has an input interface. Typically, actions over the same
state space cannot happen simultaneously and, therefore, if more than one is specified in a
particular structure, in each execution the input supplied will also select the action to be
activated. In some cases, the input is there only for selection purposes: actions with trivial
input (i.e., I = 1) correspond to buttons that can be pressed. Then the input interface
organises itself as a coproduct. A possible shape for a sophisticated lens with both attributes
and actions is

©_© U =
∏
k∈K

Ok × U
P

j∈J Ij

whose coalgebras are
〈〈ok〉k∈K ,menu〉 : U −→©_© U

where menu can be specified as

menu = [aj]j∈J · drJ

where drJ is the suitable distribution law and each aj : U×Ij −→ U is an elementary action.
There are, of course, other alternatives to combine actions and attributes into sophisticated
observation structures.

5. Combining Lenses. The tree below depicts several combinations of three of the basic
alternative lenses of §4 (nondeterministic observations are left aside for the moment):

3

(O × Id)I // (O × Id)I + 1 (a)

O × Id

88rrrrrrrrrr

&&LLLLLLLLLL

(O × Id) + 1 // ((O × Id) + 1)I (b)

O × (Id + 1) // (O × (Id + 1))I (c)

Id //

DD

��4
44

44
44

44
44

44
44

44
44

44
44

44
Id + 1

88rrrrrrrrrr

&&LLLLLLLLLL

(Id + 1)I // O × (Id + 1)I (d)

O × IdI // (O × IdI) + 1 (e)

IdI

88rrrrrrrrrrr

&&LLLLLLLLLLL

IdI + 1 // O × (IdI + 1) (f)

It is instructive to see what happens in each case if the state space ‘collapses’, i.e., if the
‘universe’ becomes trivial or, formally, if U is identified with 1:

(a) (b) (c) (d) (e) (f)

OI + 1 (O + 1)I (O × 2)I O × 2I O + 1 O × 2

We conclude that (b) as a set is isomorphic to the space of partial functions, (e) is just a
pointed set and (a) a pointed function space. On the other hand, (d) is a set and a predicate
and in (f) the structure has boiled down simply to a set and a Boolean flag.

6. Interaction. Another way of regarding observation structures is as transition systems
over the state space. For example, coalgebras over both IdI and Id×O can be described in
terms of transitions of the form

u
x−→ u′

where u, u′ ∈ U and x ∈ I or x ∈ O in, respectively, the former and the latter case.
Depending on how this transition relation is interpreted, we may classify the system as
reactive or active, respectively.

4

• In the first case u
x−→ u′ means that, for a coalgebra p, (p u) x = u′. Therefore

p models a reactive system in which the transition can be read as state u is able to
accept x and move into state u′.

• In the second case, the transition relation reads as generate x in state u and then
become u′. Rather than a stimulus, x is an outcome and such a system is called
active.

This distinction may not be intrinsic to the system being observed. It is essentially a distinc-
tion on the shape of observation. The lenses of the two examples complement each other.
Recall that, similarly, finite automaton theory deals with automata accepting (recognising)
or generating a particular language.

7. Observation Equivalence. Given a particular lens T and a T-observation structure
p, when can two states be taken as ‘equivalent’? If it is not possible to access their internal
structure, all we can say is that they should be identified if all the observations that can
be made over one and the other exhibit the same outcome and this remains true along the
whole evolution of the system. Thinking of observation structures as transition systems,
the notion of bisimulation [Par81, Mil80] can be recalled as precisely such a relation.

Whatever is observed of a system constitutes its behaviour, i.e., the possible patterns of inter-
action with the observer. Two states are said bisimilar if they have (or generate, or unfold to)
the same behaviour. Thus, equivalence means indistinguishability under observation. What
coalgebra theory offers is a notion of bisimulation parametric on the particular ‘lens’ used.
In other words, bisimilarity acquires a shape. An important fact is that, providing lens T is
‘smooth enough’, there exists a canonical representation embodying all T-behaviours into
a T-coalgebra as well. Canonical in the sense that, from every other observation structure
for the same lens, there is one and just one morphism to it. Technically, such a coalgebra,
usually denoted by ωT : νT −→ T νT, is said to be the final coalgebra. The unique morphism
mapping any other coalgebra p to it, which unfolds p to its behaviour, is represented by
[(p)]T and is called the anamorphism generated by p [MFP91], the coinductive extension of
p [TR98] or, simply, the final semantics of the states of p [RT94].

8. Construction Strikes Back. On the other hand, and returning to our metaphor
, the ‘engineer’s view’ emphasises the possibility of at least some (essentially finite) things
being not only observed, but actually built. In this case, one works not with a ‘lens’ but
with a ‘toolbox’. The assembly process is specified in a similar (but dual) way to the one
used to define observation structures. I.e, the engineer will become equipped with,

a tool box :
eee

a functor T

an assembly process:
eee

artifact d−→ artifact a T-algebra

Notice that in the picture ‘artifact’ has replaced ‘universe’, to stress that one is now dealing
with ‘culture’ (as opposed to ‘nature’) and, which is far more relevant, that the arrow has
been reversed. Formally, an assembly process is a T-algebra. As a function this amounts
to a collection of constructors. Because an artifact cannot be built simultaneously in two

5

different ways (i.e., constructors), the external structure or shape of the toolbox is usually
a coproduct and the algebra arises as an either of constructors. For example, for the binary
tree ‘artifact’, the suitable toolbox will be

emm
D = 1 + Data×D ×D

This means that binary trees can either be built via a constant constructor, yielding the
trivial, empty tree, or via the aggregation of some data to two previously constructed trees,
thus building a larger one. An assembly process arises then as

[empty, node] :
emm

D −→ D

Of course, ‘assembly processes’ can be related and compared. In fact, the notion of an
algebra for a functor generalises the classical concept of an algebra; morphisms of the former
also generalise classical homomorphisms as functions preserving construction. Again, if the
toolbox is smooth enough, there exist a canonical representative of the assembly process:
the initial algebra, which may be regarded as the formal analog to the ‘smallest’ machine

able to produce all possible
eee

-artifacts.

In the next two sections algebraic and coalgebraic structures will be reviewed in deeper
detail. As expected, initial algebras turn out to be inductive data types, i.e., abstract
descriptions of data structures. Dually, final coalgebras entail a notion of behaviour types,
representing the dynamics of systems. Both of these structures, referred to as categorical
data types, may be directly used in programming.

2 Algebraic Structures

9. Functors provide a sensible abstraction for the somewhat more vague notion of a type
of a mathematical structure. And, in particular, for the even vaguer concept of a module
interface in programming. Following the intuitions in the previous section, they specify the
kind of ‘lenses’ available and the contents of ‘toolboxes’. There are two main reasons for
this. First, the type of a structure depends normally on types of other (sub-)structures and
the very definition of a functor conveys this idea of parameterization. Secondly, a functor
characterises, not only the structure itself, but also the transformations which preserve it.
In fact, the action of a functor on a morphism f applies the transformation embodied in
f to all the elements ‘built into’ the structure without changing the shape of the structure
itself.

In this section, we will review structures intended to ‘store’ data elements in particular
configurations. It turns out that the shapes (or types) of such configurations are suitably
described by functors and the structures themselves arise as algebras for such functors.

10. Polynomial Functors. Despite of the wide scope of the previous paragraph, we
shall restrict our attention to a particularly well-behaved class of endofunctors. We start
by considering the so-called polynomial functors. The class is inductively defined as the
least collection of functors containing the identity Id and constant functors K for all objects
K in the category, closed by functor composition and finite application of product and
coproduct functors. The terminology arises from the fact that, in a distributive category,

6

any polynomial functor can be written in the form

T X =
∑

i

Ci ×Xi

for i a natural number and Ci a constant coefficient.

Polynomial functors are standard in presenting algebraic signatures. In the sequel, however,
we will need to extend the inductive definition above to include

T X = XA (the covariant exponential functor)
T X = PX (the finite powerset functor)

Functors in this class will be referred to in the sequel as extended polynomial. A more
general class of functors — called regular — is obtained by further extending the definition
to include type functors (§??).

11. Algebras. Syntactically, a data structure is described by a set of operations which
specify how its values are to be produced. A sequence, for example, is either empty or built
by adding an element to the front of a pre-existing sequence. A binary tree signature includes
an empty constant and a node constructor whereby data and two other trees are aggregated
to become the root node of a new tree, and so on. Notice that these two examples can be
modeled by polynomial (§10) functors, which are basically n-ary sums (of alternatives) of
m-ary products (of information associated to each alternative). For example,

TNat X = 1 + X natural numbers
TSeq X = 1 + Data×X sequences
TBin X = 1 + Data×X ×X binary trees
TLef X = Data + X ×X leaf trees

All constructors of a given type can be grouped together into a single operation. For
example, the constructors of a sequence are

[nil, cons] : 1 + Data×X −→ X

In general, if the shape of one of these structures is specified by a functor T, the structure
itself is given as a map

d : T D −→ D

i.e., as a T-algebra. Concrete structures are, therefore, obtained by specifying both the
carrier set D and map d. Formally, we define,

12. Definition. For a given endofunctor T, a T-algebra is a pair 〈D, d〉 consisting of an
object D, referred to as the carrier of d, and a map d : T D −→ D. A T-algebra morphism,
or simply, a T-morphism, between two T-algebras d and e is a map h between their carriers
such that the following diagram commutes,

T D
d //

T h

��

D

h

��
T E

e // E

7

T-algebras and T-morphisms form a category CT where both composition and identities are
inherited from C. In the sequel, unless explicitly mentioned, we will be working on SetT.

13. Compatible Relations. A basic relation that can be established between two T-
algebras is one that preserves their shape. Formally, given two T-algebras 〈D, d〉 and 〈E, e〉,
a compatible relation R is a relation on D ×E that can itself be extended to a T-algebra ρ
such that the canonical projections become T-algebra morphisms. This may be expressed
by the commutativity of the following diagram:

T D

d

��

T R

ρ

��

T π1oo T π2 // T E

e

��
D R

π1oo π2 // E

It is well known that both the kernel and the graph of a T-algebra morphism are compatible
relations. Conversely, if the graph of a map h between the carriers of two algebras is a
compatible relation, then h is a T-algebra morphism. Should such a relation be also an
equivalence, it would be called a (T-)congruence, a concept which plays a fundamental role
in algebraic specification.

14. Initial Algebras. As we have mentioned in §8, there is a particular T-algebra which
is canonical in the sense that only equally constructed elements can be identified. This is,
of course, the term algebra, which happens to be the initial object in CT. Notice, by the
way, that the final object in this category always exists (if C itself has a final object 1): the
trivial T-algebra 〈1, ! : T 1 −→ 1〉. The initial algebra will be denoted by

αT : T µT −→ µT

Being initial means that there exists a unique T-algebra morphism from αT to each other
T-algebra 〈D, d〉. This morphism depends, of course, on d and is said to be the inductive
extension of d [TR98] or the catamorphism generated by d [MFP91]. It is written as ([d])T
or, simply, ([d]), if the functor is clear from the context. As any other universal construction,
it is unique up to isomorphism, which justifies the particle the used above.

Formally, a catamorphism is characterised as the unique T-morphism making the following
diagram to commute

T D
d // D

T µT
αT //

T ([d])T

OO

µT

([u])T

OO

or, alternatively, by the following universal property:

k = ([d])T ⇔ k · αT = d · T k (1)

15. Cata Laws. From the universal property of catamorphisms (1) the following results

8

are easily derived:

([d]) · αT = d · T ([d]) (2)
([αT]) = idµT

(3)
h · ([d]) = ([e]) if h · d = e · T h (4)

Equations (2), (3) and (4) above are usually referred to as, respectively, the cancellation,
reflection and fusion laws for catamorphisms.

16. Induction. Like any other universal construction, a catamorphism entails an existence
property and an uniqueness one. Existence gives us a definition principle: to define a
(circular) function from an initial algebra amounts to equip the target set with an algebra
structure as well. In other words, a function is defined by providing a specification of its
output for each of the constructors.

Uniqueness, on the other hand, gives a proof principle. Suppose we want to prove a predicate
P over an initial algebra, i.e., that the set defined by P coincides with µT. If it is possible to
prove that the inclusion i : P ↪→ µT is a T-algebra morphism, we are done. In fact, we have
equipped P with a T-algebra structure and, therefore, the composite of the corresponding
catamorphism with i is unique and, necessarily, coincides with idµT

. More simply, this
amounts to prove that P is closed under the algebra constructors, which is easily recognised
as the familiar structural induction principle.

Another way of stating this is to note that initial algebras have no proper sub-algebras,
which again is a direct consequence of initiality. Some intuition on the (quite special)
nature of initial algebras is gathered from the following result:

17. Lemma. The equality relation ∆µT
is the least T-compatible relation definable on the

initial algebra αT. That is, ‘equality equals compatibility’.

Proof. Let 〈R ⊆ µT × µT, ρ〉 be a compatible relation. Its projections are T-morphisms,
but, by initiality,

π1 · ([ρ])T = π2 · ([ρ])T = idµT

Therefore, ∆µT
⊆ R, for any R. The result follows from the (trivial) fact that ∆µT

is itself
a T-compatible relation.

�

18. ‘Algebras’ are algebras. An expected, but fundamental, observation is that the
notion of a T-algebra over Set subsumes the its classical homonym in Universal Algebra.
Classically, an algebra is defined as a set plus a (finite) collection of constructors opi :
X ×X × ...×X −→ X. Denoting by ari the arity of operator opi, this can be described as
an algebra for functor

T X =
∑
i∈I

Xari

which captures its signature. Clearly, a T-morphism is just a classical homomorphism for
the given class of algebras. Then the free term algebra over a set V of variables arises

9

simply as the initial algebra, not for T, but for T′ = T + V . T′-algebras have the form
[d, f] : T D + V −→ D, for any carrier D. Let

〈WV , αT′〉 with αT′ = [σ, iV]

be the initial T′-algebra, where WV is, as usual, the set of terms with variables taken from
V , iV the inclusion of variables from V as terms, and σ : T WV −→WV the term formation
operation, obviously a T-algebra. Given another T-algebra d : T D −→ D and a valuation
function f : V −→ D on the carrier of d, the induced unique morphism from the free algebra
arises as catamorphism h = ([[d, f]])T′ . Therefore,

h = ([[d, f]])T′

≡ { law (1) }

h · αT′ = [d, f] · T′ h

≡ { definitions }

h · [σ, iV] = [d, f] · (T h + id)

≡ { + fusion and absorption }

[h · σ, h · iV] = [d · T h, f]

which (omitting variable injection operators and the superscripts in op
αT′
i , the interpretation

of constructor opi in αT′) can be re-written in the more familiar format:

h opi〈t1, ..., tn〉 = opd
i 〈h t1, ..., h tn〉

h v = f v

where opd
i stands for the interpretation in d of constructor opi. It follows that, for a fixed d,

every valuation function f corresponds bijectively to a T-morphism from 〈WV , σ〉 to 〈D, d〉.
And this for every algebra d. Moreover, this bijection is natural both in V and 〈D, d〉. In
other words, and recalling, the forgetful functor U : CT −→ C, which sends an algebra to its
carrier, has a left adjoint FreeT : C −→ CT mapping each set V into 〈WV , σ〉. That is,

FreeT ` U

As left adjoints preserve colimits, it turns out that, if C has an initial object and FreeT

exists, FreeT ∅ is the initial object in CT, i.e., the initial algebra. In Set, its carrier is, of
course, W∅, the set of closed terms.

3 Coalgebraic Structures

19. From Algebras to Coalgebras. Once known how to build a data structure, one
can reverse its ‘assembly process’. Taking, as in §11, the simple case of sequences, such
a decomposition is performed by the familiar selectors hd and tl, for nonempty sequences,
which can be joined together in

〈hd, tl〉 : X −→ Data×X

10

This reversal of our point of view (recall the introductory discussion in section 1) yields
a different understanding of what X may stand for. First notice that what is structured
in 〈hd, tl〉 is its target, instead of its source as before. Target product Data ×X captures
the fact that both the head and the tail of a sequence may be selected (or accessed, or
observed) simultaneously. The emphasis on observation opens a broader understanding of
the structure being defined. In fact, once one is no longer focused on how to construct X, but
simply on what can be observed from it, finiteness is no longer required. Therefore, X can
be more accurately thought of as a state space of a machine generating an infinite sequence
of values of type Data. Elements of X can no longer be distinguished by construction, but
should rather be identified when generating the same infinite sequence. That is, when it
becomes impossible to distinguish them by the observations allowed by the shape (or ‘lens’)
T.

Infinite sequences are common in programming. In practice they are represented by a
particular state in a particular state machine. Formally, by an element of the carrier of a
particular coalgebra, as described next.

20. Definition. Given an endofunctor T, a T-coalgebra is a pair 〈U, p〉 consisting of an
object U , referred to as the carrier of p, and a map p : U −→ T U . A T-coalgebra morphism,
or simply, a T-comorphism between two T-coalgebras, 〈U, p〉 and 〈V, q〉, is a map h between
carriers U and V such that the following diagram commutes:

U
p //

h

��

T U

T h

��
V

q // T V

T-coalgebras and T-comorphisms form a category CT where both composition and identities
are inherited from C.

21. Universal Coalgebra. The study of coalgebras along the lines of Universal Algebra,
initiated by J. Rutten in [Rut95] and [Rut96] (of which a revised version [Rut00] appeared
recently), assumes coalgebra carriers’ are sets, and, therefore, constitutes an exploration of
SetT, for different Set endofunctors T. It should be mentioned, however, that both the study
of concrete coalgebras over different base categories [TR98, Mon00] and the development
of Set-independent, i.e., purely categorical, presentations of coalgebra theory (see, among
others [TR98, PW98, GS98] and chapter 1 in A. Kurz thesis [Kur01]) have emerged as active
research areas.

22. Bisimulation. The role of bisimulations in coalgebra theory is similar to that of
compatible relations (§13) in algebras. Informally, two states of a T-coalgebra (or of two
different T-coalgebras) are related by a bisimulation if their observation produces equal
results and this is maintained along all possible transitions. I. e., each one can mimic the
other’s evolution. The notion was introduced in process calculi by [Par81] and [Mil80]
to capture a particular kind of observational equivalence. Later [AM88] gave a categorical
definition of bisimulation which applies, not only to the kind of transition systems underlying
the operational semantics of process calculi, but also to arbitrary coalgebras. As anticipated
in §7, bisimulation acquired a shape. Formally,

23. Definition. Given two T-coalgebras 〈U, p〉 and 〈V, q〉, for a Set endofunctor T, a
T-bisimulation is a relation R ⊆ U × V which can be extended to a coalgebra ρ such that

11

projections π1 and π2 lift to T-comorphisms, as expressed by the commutativity of the
following diagram:

U

p

��

R

ρ

��

π1oo π2 // V

q

��
T U T R

T π1oo T π2 // T V

The definition generalises to an arbitrary base category C, replacing relation R by a monic
span 〈R, r1, r2〉 in C whose legs lift to T-coalgebra morphisms, or, in other words, such that
there is a T-coalgebra structure ρ : R −→ TR making the diagram below to commute:

R
r2

""EEEEEEEE
r1

||yyyyyyyy

ρ

��

U

p

��

V

q

��

TR
Tr2

""EE
EE

EE
EE

Tr1

||zz
zz

zz
zz

TU TV

Notice that a span 〈R, r1, r2〉 is monic iff, for any arrows f, g : X −→ R, r1 · f = r1 · g and
r2 · f = r2 · g implies f = g. Should C have binary products, being a monic span equivales
to require split 〈r1, r2〉 : X −→ U × V to be monic as well.

24. Bisimulations And Comorphisms. Bisimulations provide a ‘relational’ view of
comorphisms. In fact, the graph — graphh — of a T-comorphism h : p −→ q is a T-
bisimulation [Rut00]. An immediate, but fundamental, corollary of this result is the fact
that, in every coalgebra 〈U, p〉, the diagonal ∆U is a bisimulation. This follows from ∆U =
graph idU , the identity idU being trivially a comorphism.

25. Properties. [Rut00] proves several results on bisimulations in SetT. In particular,
it is shown that the converse of a bisimulation and, if T preserves weak pullbacks, the
composition of two bisimulations are still bisimulations. As a corollary, the (relational)
direct and inverse images of a bisimulation, as well as the kernel of a comorphism, are
bisimulations as well. To see this, it is enough to look at their definitions, where ◦ denotes
relational composition,

h [R] = (graphh)◦ ◦ R ◦ graphh

h◦ [R] = graph h ◦ R ◦ (graphh)◦

ker h = graph h ◦ (graphh)◦

and conclude by the property above and §24. Moreover, as ker h is transitive, it gives rise
to an equivalence bisimulation.

26. Remark. Some constructions in CT depend on extra properties of functor T. As just
mentioned, preservation of weak pullbacks is one of them. Recall that a weak universal is a
construction which shares all the properties of the standard one but uniqueness. Its role is
crucial namely in the proofs that composition of bisimulations and kernels of comorphisms

12

are still bisimulations as well as to state the existence of a greatest bisimulation (§28). Also
notice its use in the proof of the ‘full abstraction lemma’ in §35.

Another important property, in SetT, is boundedness. This essentially means that there
exists a set B such that, for any coalgebra 〈U, p〉, the size of any sub-coalgebra (§30) of p
generated by any single element u ∈ U , is bounded by the size of B. This is a rather technical
condition to avoid cardinality problems, namely, when discussing existence conditions for
final coalgebras (§33). Both conditions hold for the extended polynomial functors defined
in §10 [Rut00].

27. A Category of Bisimulations. Bisimulations on coalgebras 〈U, p〉 and 〈V, q〉 form
a category Bs(p, q) whose arrows m : 〈R, r1, r2〉 −→ 〈S, s1, s2〉 are morphisms m : R −→ S,
in the base category C, such that r1 = s1 · m and r2 = s2 · m, i.e., the following diagram
commutes:

R
r2

��@
@@

@@
@@

r1

��~~
~~

~~
~

m

��

U V

S

s2

??~~~~~~~
s1

__@@@@@@@

28. T-Bisimilarity. Clearly, every morphism m in Bs(p, q) is a monic in C.

Proof. Let m as in §27 and f , g stand for two arbitrary C morphisms with codomain R.
Then,

m · f = m · g

= { Leibniz }
s1 · m · f = s1 · m · g and s2 · m · f = s2 · m · g

= { m is a Bs(p, q) morphism }
r1 · f = r1 · g and r2 · f = r2 · g

⇒ { 〈R, r1, r2〉 is a monic span }
f = g

�

That bisimulations are ordered by C-monics, as proved above, implies the existence of at
most one arrow between any two bisimulations and generalises the well known fact that Set
bisimulations are partially ordered by inclusion.

In Set the union of two bisimulations is also a bisimulation. Furthermore the set of all
bisimulations between two coalgebras forms a complete lattice. The greatest bisimulation
on, say, coalgebras p and q, is an equivalence relation, written as

∼〈p,q〉

13

or simply, ∼ if the context is clear. Whenever the dependence on functor T is to be stressed,
the notation ∼T

〈p,q〉 (or ∼T) will be adopted.

29. Remark In general, coalgebra ρ in the definition of bisimulation (§23) is not uniquely
determined — a counter example for the finite powerset functor is given in [Rut00]. Unique-
ness is achieved, however, for polynomial endofunctors in Set and, more generally, for func-
tors preserving pullbacks (which, therefore, preserve monic spans). Such a lack of uniqueness
makes difficult the definition of constructions like the union of bisimulations or the greatest
bisimulation: some conditions on either C or T are needed to show the existence of not
uniquely defined structures. For example, to obtain greatest bisimulations one may recur
to either the above mentioned preservation of weak pullbacks by T or the fact that all epis
are split in C (see [Rut00, Kur01]).

This explains why, in more generic approaches to coalgebra theory, some alternatives to
the notion of a bisimulation have been proposed. A beautiful one consists of replacing,
in the definition of bisimulation, ‘monic spans’ by ‘epi cospans’, a cospan being simply a
pair of arrows with a common codomain. This leads to the definition of what is called
a cocongruence in [Kur01] or a compatible correlation in [Wol00] between two coalgebras
〈U, p〉 and 〈V, q〉. It is given by an epi copsan 〈R, r1, r2〉 in C whose legs lift to comorphisms
as expressed by the commutativity of

R

ρ

��

U

p

��

r1

<<yyyyyyyy
V

q

��

r2

bbEEEEEEEE

TR

TU

Tr1

<<zzzzzzzz
TV

Tr2

bbEEEEEEEE

The interest of this definition is that ρ above is uniquely determined and, moreover, the
greatest cocongruence on two coalgebras exists under rather general conditions [Kur01].
Intuitively, cocongruences capture behavioural equivalence because, given two states u ∈ U
and v ∈ V , r1 u = r2 v only if the behaviour they unfold to is the same, as comorphisms
preserve behaviour (§24).

Such a relation E on U × V determined by a particular cocongruence (i.e., 〈u, v〉 ∈ E iff
r1 u = r2 v) is a bisimulation if T preserves weak pullbacks, but seems more appropriate
to capture behavioural equivalence on more general situations — see [AM88] and, mainly,
[Kur01] for a full discussion.

As we shall restrict ourselves to a particularly well behaved class of Set endofunctors (§10),
bisimulations provide all we need and this paragraph can be taken just as a curiosity. We
would like to stress, however, the ‘beauty’ of the definition above which is the true dual
of that of compatible relations on algebras mentioned in §13 (compare the diagrams!). As
[Kur01] notes, the two crucial tools in algebra and coalgebra — compatible relations and
correlations — can be simply and dually defined as, respectively, monic spans in CT and epi
cospans in CT.

30. Sub-coalgebra. Let 〈U, p〉 be a T-coalgebra. A subset i : U ′ ↪→ U generates a
sub-coalgebra of p, if the inclusion i lifts to a T-comorphism. Note that the coalgebraic

14

structure associated to i is uniquely determined.

Proof. Consider the following diagram:

U
p // T U

U ′ q //?�

i

OO

T U ′?�

T i

OO

Note that T i is either the empty map, if U ′ = ∅, and we are done as q arises as the
initial coalgebra, or a mono in all other cases, because functors preserve split monos with
non empty domain (incidentally, they also preserve split epis). Now notice that q, as a
Set-arrow, factorizes p · i through a mono (i.e., T i). The result follows from the fact that,
in such conditions, the factorisation is unique.

�

Sub-coalgebras are related to bisimulations through the following result: a subset U ′ of U
generates a sub-coalgebra iff ∆U ′ is a bisimulation. Note also the following characterisation
of monos and epis in Set:

31. Epis, Monos, Isos. Both epi and monomorphisms in Set lift to epi and monomorph-
isms in SetT. Consequently, isomorphisms lift as well. The converse holds for epis, but
for monomorphisms in SetT to be also monomorphisms as Set-arrows, it is required that T
preserves weak pullbacks (see [Rut00] for a proof).

32. Natural transformations. Given endofunctors T and R, any natural transforma-
tion σ : T =⇒ R provides a way to ‘translate’ T to R-coalgebras [Rut00]. In fact, σ induces
a functor from CT to CR which maps a T-coalgebra 〈U, p〉 into a R-coalgebra 〈U, σU ·p〉, and
is the identity on morphisms. Moreover, this functor preserves bisimulation, i.e.,

u ∼T
p u′ ≡ u ∼R

σU ·p u′ (5)

33. Final Coalgebras. Successive observations of (or experiments with) a T-coalgebra
p reveals its behavioural patterns. These are defined in terms of the results of the observers
as recorded in the shape T. Then, just as the initial algebra is canonnically defined over
the terms generated by successive application of constructors, it is also possible to define a
canonical coalgebra in terms of such ‘pure’ observations. Such a coalgebra is the final object
in CT, if it exists, and will be denoted by ωT.

Being final means that there exists a unique T-comorphism to ωT from each other coalgebra
〈U, p〉. This is called the coinductive extension of p [TR98] or the anamorphism generated
by p [MFP91], and written as [(p)]T or, simply, [(p)], if the functor is clear from context. In
other words, an anamorphism is defined as the unique comorphism making the following
diagram to commute:

νT
ωT // T νT

U
p //

[(p)]T

OO

T U

T [(p)]T

OO

15

or, alternatively, by the following universal law:

k = [(p)]T ⇔ ωT · k = T k · p (6)

For each u ∈ U , [(p)]T u can be thought of as the (observable) behaviour of a sequence of
p transitions starting at state u. This explains yet another alternative designation for an
anamorphism: unfold. On its turn, u in [(p)]T u, is called the seed of the anamorphism.

As in the algebraic case, the existence part of the universal property provides a definition
principle for (circular) functions to the final coalgebra which amounts to equip their source
with a coalgebraic structure specifying the ‘one-step’ dynamics. Then the corresponding
anamorphism gives the rest. In other words, such functions are defined by specifying their
output under all different observers. The uniqueness part, on the other hand, offers a
powerful proof principle — coinduction — discussed in §36.

34. Ana Laws. The following laws follow from the universal property of anamorphisms —
equation (6). Comparing with §15, one easily recognises them as the cancellation, reflection
and fusion result for anamorphisms, respectively.

ωT · [(p)] = T [(p)] · p (7)
[(ωT)] = idνT

(8)
[(p)] · h = [(q)] if p · h = T h · q (9)

35. Lemma. We are ready to state and prove the fundamental characterisation result on
final coalgebras, referred to, in [TR98], as the full abstraction theorem for final semantics.
Let T preserve weak pullbacks. Given two T-coalgebras 〈U, p〉 and 〈V, q〉, any two states
u ∈ U and v ∈ V satisfy

u ∼T
〈p,q〉 v ≡ [(p)]T u = [(q)]T v (10)

Proof.

⇒

Let 〈R ⊆ U × V, ρ〉 be a bisimulation such that 〈u, v〉 ∈ R. Then, projections π1 and π2 lift
to T-comorphisms, i.e., π1 : 〈R, ρ〉 −→ 〈U, p〉 and π2 : 〈R, ρ〉 −→ 〈V, q〉. Now, composites
[(p)]T · π1 and [(q)]T · π2 are comorphisms to the final coalgebra with identical source. By
finality, they coincide.

⇐

We begin by defining relation R = {〈u, v〉 ∈ U × V | [(p)]T u = [(q)]T v}. All we have to do is
to prove that R lifts to a bisimulation, i.e., we have to equip R with a coalgebraic structure
ρ such that projections lift to comorphisms. Relation R is, in fact, the pullback (in Set) of
[(p)]T and [(q)]T. As T preserves weak pullbacks (§31), the following diagram is also, at least,
a weak pullback:

T R
T π1 //

T π2

��

T U

T [(p)]T
��

T V
T [(q)]T // T νT

16

Now notice that R can be made a cone over the diagram for which T R is a weak pullback:

R
p·π1

%%

q·π2

��

ρ

!!
T R

T π1 //

T π2

��

T U

T [(p)]T
��

T V
T [(q)]T // T νT

Here ρ plays the role of a mediating morphism to the weak pullback. It is, of course, not
necessarily unique, but this is not required in the definition of a bisimulation. Moreover,
combining this with the first part of the theorem, we conclude that 〈R, ρ〉 is, not only, a
bisimulation, but the greatest one, i.e., it coincides with ∼T

〈p,,q〉.

�

Finally notice that, although the proof was presented in Set, the argument extends to an
arbitrary category C. It suffices to recall that, in general, a T-bisimulation is defined as
a span whose legs lift to comorphisms (§23) and define R directly as the pullback of the
two anamorphisms. The general result stating that if T preserves weak pullbacks, then any
pullback in C lifts to a bisimulation, is due to Aczel and Mendler [AM88].

36. Coinduction. The previous result shows that the final coalgebra ωT acts as a state
classifier for any other T-coalgebra and, moreover, that bisimulation provides a local proof
theory for behavioural equality. This is exactly the core of the coinduction principle which
may be stated, for every bisimulation R on a coalgebra 〈U, p〉 satisfying it,

R ⊆ ∆idU

Therefore, in such a coalgebra, to prove the equality of two states, it is enough to find a
bisimulation containing them. Coalgebras that satisfy the coinduction principle are called
simple. An alternative, equivalent, characterisation stresses the fact that ∆idU

is the greatest
bisimulation in such a coalgebra. This is indeed the case of the final coalgebra, since the
projections of any bisimulation 〈R ⊆ νT × νT, ρ〉 are comorphisms to ωT and, therefore, by
finality, π1 = [(ρ)]T = π2.

37. Cofree Coalgebras. Let us open a parenthesis to investigate the coalgebraic dual
to free algebras discussed in §18. Free algebras are initial algebras with additional terms
to represent variables. Dually, a T-cofree coalgebra [Jac95] is a final T-coalgebra in which
states (thought of as behaviours) are coloured by elements of a set V (recall the informal
discussion on ‘lenses’). Formally, they are final coalgebras for functor T′ = T× V , i.e.,

〈σ, ε〉 : KV −→ T KV × V

where ε : KV −→ V is the state colouring morphism. Suppose, now, we are given a T-
coalgebra p : U −→ T U and a ‘colour assignment’ f : U −→ V from the carrier of p. The
induced unique morphism to the cofree coalgebra is anamorphism h = [(〈p, f〉)]T′ . This is,
in fact, an extension of the ‘colour assignment’ to behaviours generated from p, as a simple
calculation shows,

17

h = [(〈p, f〉)]T′

≡ { ana universal (6) }

ωT′ · h = T′ h · 〈p, f〉

≡ { definitions }

〈σ, ε〉 · h = (h × id) · 〈p, f〉

≡ { ×-fusion and absorption }

〈σ · h, ε · h〉 = 〈h · p, f〉

This can be re-written as a coinductive definition of h:

σ (h u) = h (p u)
ε (h u) = f u

This is an example of definition by coinduction: the function being defined, h, is specified
by analysing its value under each observer. Considering the common case in which the most
external shape of T is a product with n factors, the first clause unfolds to a collection of
equations, one for each observer obi, with i ∈ n,

obi (h u) = h (obi
p u)

Similarly to what happens in the free algebra case, it turns out that there exists a bijective
correspondence between arrows f : U −→ V in C and T-comorphisms from 〈U, p〉 to 〈KV , σ〉,
the last being obviously a T-coalgebra. Being natural both in V and 〈U, p〉, this bijection
witnesses an adjunction

U ` CoFreeT

between the forgetful functor to C and the functor which associates each V to coalgebra
〈KV , σ〉. As right adjoints preserve limits, it turns out that, if C has a final object 1 and
CoFreeT exists, CoFreeT 1 is the final object in CT, i.e., the final coalgebra. This leads us
to the question of existence of final coalgebras.

38. Existence. In most cases being aware of the existence of a final coalgebra is all one
needs to know. In fact, like any other universal, the use of the final coalgebra is completely
determined by the universal property rather than by the internal structure of its carrier.
Note, however, that this may be contrasted with a common and fruitful procedure used in
coalgebraic reasoning which consists of exhibiting the underlying final coalgebra of some
mathematical objects, such as streams or languages, to apply coinduction in the study of
their properties (see, for example, [Jac96a, Rut98] or [Rut01]).

The next few paragraphs discuss briefly existence of final coalgebras, to conclude that they
do exist for all functors considered in this text. Some concrete examples of final coalgebras
are mentioned in §§43 and 44. Prior to that we shall recall a well known result which
characterises both final coalgebras and initial algebras as fixpoints of functors.

39. Lambek Lemma. The final object in CT, if it exists, is an isomorphism.

Proof. Let ωT : νT −→ T νT be the final T-coalgebra. Because T ωT : T νT −→ T T νT is a
T-coalgebra as well anamorphism [(T ωT)]T exists. The composite [(T ωT)]T · ωT : νT −→ νT

18

is also a comorphism and, by finality, coincides with idνT
. So [(T ωT)]T · ωT = idνT

and the
proof is half done. For the other half, note

ωT · [(T ωT)]T
= { comorphism }

T [(T ωT)]T · T ωT

= { T functor }

T ([(T ωT)]T · ωT)

= { just proved }
T idνT

= { T functor }
id(T idνT

)

�

As isomorphisms are self-dual, this also entails that the initial algebra of a functor, if it
exists, is an isomorphism. Such was the original statement of the lemma in [Bar70], where
it is credited to J. Lambek. As a corollary, notice that ω◦T = [(T ωT)]T.

40. Fixpoints. Lambek Lemma characterises both initial algebras and final coalgebras for
a functor T as fixpoints of the equation

X ∼= T X

The initial algebra is said to be the least fixpoint of T, up to isomorphism, and the final
coalgebra the greatest. The terminology arises from an analogy with what happens in a
partial order 〈P,≤〉 seen as a category. A functor, in such a setting, is just a monotone
function and, therefore a coalgebra (respectively, an algebra) is an element x of P such that
x ≤ T x (respectively, T x ≤ x). The final coalgebra is, then, an element m ≤ T m such
that, for all x ∈ P , x ≤ T x ⇒ x ≤ m. By Tarski’s theorem, [Tar55], this is the greatest
fixpoint of T with respect to ≤. Dually, the initial algebra arises as the least fixpoint. By
analogy, least and greatest fixpoints of an endofunctor in an arbitrary category are defined
as the initial algebra and the final coalgebra, respectively. As [MA86] remarks

This defines what we mean by least and greatest in the general case.

There is no pre-established order.

41. Remark. The replacement of isomorphism by strict equality in an universe of sets raises
foundational problems. In particular, the strict greatest fixpoint of most functors T would
violate the foundation axiom of classical set theory which states the well-foundedness of the
membership relation, i.e., the no existence of infinitely descending chains ... ∈ x2 ∈ x1 ∈ x.
This observation lead to the development of non-well-founded set theory [Acz88], in which
the axiom is replaced by an ‘anti-foundation axiom’. Such non standard set theory arose
in the work of P. Aczel to provide a final semantics for Ccs processes as elements of strict

19

final coalgebras for functor P(A× Id) in the category Class of large sets (or classes), where
P stands for the (unrestricted) powerset functor.

From the point of view of category theory, such a ‘foundational shift’ seems avoidable, to
a great extent, as final coalgebras do exist in Set and Class with classical foundations, as
Aczel himself proved in [Acz88, AM88]. M. Barr [Bar92], in a polemic with J. Bairwise,
illustrated this point of view in the following terms:

It is unfortunate that such solutions [resorting to anti-foundation] exist, for

their main effect is to avoid giving serious consideration to the real problem:

the irrelevance of actual elements in mathematics.

The theory of non-well-founded sets has, however, an interest in its own, namely on research
of set theoretic foundations for corecursion; see [BM96] where several modelling applications
are given, in particular in the area of artificial intelligence.

42. Construction of Final Coalgebras. There is, however, a fundamental restriction
which may prevent the existence of final coalgebras: cardinality. In particular, Lambek
lemma implies that a final coalgebra for the unrestricted powerset functor in Set cannot
exist, as it would violate Cantor’s theorem. The problem is avoided by moving to the large
category Class, as [AM88] does, and is, of course, non existent for the finite powerset functor
we have been considering. In general, cardinality restrictions are avoided if we require T to
be bounded (§26). [Rut00] proves that all extended polynomial functors (§10) are indeed
bounded. In this paragraph we shall briefly review the construction of final coalgebras in
Set.

The general method for building final coalgebras for polynomial functors is a generalisation
of Kleene’s theorem for finding fixpoints in complete partial orders. Basically, a fixpoint
arises as the limit of a descending chain

1 !←− T 1 T !←− T2 1 T2 !←− · · ·

where Tn = T · Tn−1. More concretely, this can be seen as the set

{〈x0, x1, x2, · · ·〉| xn ∈ Tn 1 ∧ (Tn !) xn+1 = xn for all n}

This method requires T to preserve limits of descending chains, a condition usually known as
ω-continuity, which is indeed the case of polynomial functors and the covariant exponential
functor. A dual requirement, and a dual procedure, computes initial algebras. Recall that
the original Kleene theorem can also be used to compute both least and greatest fixpoints.
See [SP82] for an early reference and [MA86] for a detailed proof and examples.

43. Examples. For the cases covered by the Kleene method we can obtain concrete de-
scriptions of the final coalgebras. Moreover, they arise as completions of the corresponding
initial algebras. Let us see some examples in Set.

• The trivial example is the final coalgebra for the identity functor Id: it is, as expected,
〈1, id1〉.

20

• For functor T X = O × X the carrier of the final coalgebra is the set Oω of infinite
sequences of O, with 〈hd, tl〉 as the dynamics. This extends to O∞ = O∗ ∪Oω, for the
usual ‘list’ functor T X = 1 + O ×X.

• Functor T X = O×XI , which is the type of (deterministic) systems with an observer
(or attribute) o and a parametrized action a, has as final coalgebra

〈o, a〉 : OI∗ −→ O ×OI∗I

where

o m = m nil

a m = λ i λ s . m (s _ 〈i〉)

which amounts to infinite trees whose branches are labelled by sequences of inputs
and leafs by values of O.

• The final coalgebra for the more general shape

T X =
∏
j

(Oj + Pj ×X)Ij

is constructed in [Jac96b]. Its carrier is the space of functions from
∑

j Ij to (
∑

j Oj +∑
j Pj), subject to an invariant that assures type compatibility (i.e., an input on Ij

will produce output in Oj and Cj) and completion (in the sense that when a node
labelled by an output value of type Oj , for any j, is reached, the tree is completed by
an infinite tree whose nodes are all labelled by that same value). Again branches are
labelled by inputs and nodes by values from

∑
j Oj +

∑
j Pj . The root, however, is

not labelled.

44. Powerset. Kleene’s theorem does not apply to the (finite) powerset functor. In
this case, existence of final coalgebras has been proved by M. Barr [Bar93]. Roughly, the
intuition is to take the coproduct of all T-coalgebras and, then, quotienting it by the greatest
bisimulation. Because such coproduct may not exist, the argument is reformulated in terms
of a set of ‘generators’.

For the common case T X = P(O ×X), this yields, as one would expect from the semantics
of process calculi, the set of rooted finitely branching trees, with branches labelled by O,
quotiented by the greatest bisimulation.

45. The Structure of CT. What M. Barr actually proved in [Bar93] is that the forgetful
functor U : SetP −→ Set has a right adjoint. This is, of course, CoFreeP (§37) and, as Set
has a final object, CoFreeP 1 gives the final coalgebra. Furthermore, the paper unveils much
of the structure of SetT for an arbitrary functor T. In particular, it is shown that coproducts
and coequalizers exist and their carrier coincides with the same construction in Set. [Rut00]
shows a similar result for all limits that are preserved by T. The structure of CT, in the
general case, has been studied by a number of people ([Rut00, GS98, Wor98, PW98, Ada00],
among others).

21

References

[Acz88] P. Aczel. Non-Well-Founded Sets. CSLI Lecture Notes (14), Stanford, 1988.

[Ada00] J. Adamek. Final colagebras as ideal completions of initial algebras. Talk at the
MFIT summer school on algebraic and coalgebraic methods in mathematics of
program construction, Lincoln College, Oxford University, April 2000.

[AM88] P. Aczel and N. Mendler. A final coalgebra theorem. In D. Pitt, D. Rydeheard,
P. Dybjer, A. Pitts, and A. Poigne, editors, Proc. Category Theory and Computer
Science, pages 357–365. Springer Lect. Notes Comp. Sci. (389), 1988.

[Bar70] M. Barr. Coequalizers and cofree cotriples. Mathematische Zeitschrift, 166:307–
322, 1970.

[Bar92] L. S. Barbosa. Sobre a especificação matemática de sistemas concorrentes. PAPCC
Thesis DI-LSB-92:9:1, DI (U. Minho), September 1992. (in portuguese).

[Bar93] M. Barr. Terminal coalgebras in well-founded set theory. Theor. Comp. Sci.,
114(2):299–315, 1993.

[BM96] J. Bairwise and P. Moss. Vicious Circles. CSLI Lecture Notes (59), Stanford,
1996.

[GS98] H. P. Gumm and T. Schroeder. Covarieties and complete covarieties. In B. Jacobs,
L. Moss, H. Reichel, and J. Rutten, editors, CMCS’98, Elect. Notes in Theor.
Comp. Sci., volume 11. Elsevier, March 1998.

[Jac95] B. Jacobs. Mongruences and cofree coalgebras. In V.S. Alagar and M. Nivat,
editors, Algebraic Methodology and Software Technology (AMAST), pages 245–
260. Springer Lect. Notes Comp. Sci. (936), 1995.

[Jac96a] B. Jacobs. Object-oriented hybrid systems of coalgebras plus monoid actions. In
M. Wirsing and M. Nivat, editors, Algebraic Methodology and Software Technology
(AMAST), pages 520–535. Springer Lect. Notes Comp. Sci. (1101), 1996.

[Jac96b] B. Jacobs. Objects and classes, co-algebraically. In C. Lengauer B. Freitag,
C.B. Jones and H.-J. Schek, editors, Object-Orientation with Parallelism and Per-
sistence, pages 83–103. Kluwer Academic Publishers, 1996.

[Kur01] A. Kurz. Logics for Coalgebras and Applications to Computer Science. Ph.D.
Thesis, Fakultat fur Mathematik, Ludwig-Maximilians Univ., Muenchen, 2001.

[MA86] E. Manes and A. Arbib. Algebraic Approaches to Program Semantics. Texts and
Monographs in Computer Science. Springer Verlag, 1986.

[MFP91] E. Meijer, M. Fokkinga, and R. Paterson. Functional programming with bananas,
lenses, envelopes and barbed wire. In J. Hughes, editor, Proceedings of the 1991
ACM Conference on Functional Programming Languages and Computer Architec-
ture, pages 124–144. Springer Lect. Notes Comp. Sci. (523), 1991.

[Mil80] R. Milner. A Calculus of Communicating Systems. Springer Lect. Notes Comp.
Sci. (92), 1980.

[Mon00] L. Monteiro. Observation systems. In H. Reichel, editor, CMCS’00 - Workshop
on Coalgebraic Methods in Computer Science. ENTCS, volume 33, Elsevier, 2000.

22

[Par81] D. Park. Concurrency and automata on infinite sequences. pages 561–572.
Springer Lect. Notes Comp. Sci. (104), 1981.

[PW98] J. Power and H. Watanabe. An axiomatics for categories of coalgebras. In B. Jac-
obs, L. Moss, H. Reichel, and J. Rutten, editors, CMCS’98, Elect. Notes in Theor.
Comp. Sci., volume 11. Elsevier, March 1998.

[RT94] J. Rutten and D. Turi. Initial algebra and final co-algebra semantics for concur-
rency. In Proc. REX School: A Decade of Concurrency, pages 530–582. Springer
Lect. Notes Comp. Sci. (803), 1994.

[Rut95] J. Rutten. A calculus of transition systems (towards universal co-algebra). In
A. Ponse, M. de Rijke, and Y. Venema, editors, Modal Logic and Process Algebra,
A Bisimulation Perspective, CSLI Lecture Notes (53), pages 231–256. CSLI Pub-
lications, Stanford, 1995.

[Rut96] J. Rutten. Universal coalgebra: A theory of systems. Technical report, CWI,
Amsterdam, 1996.

[Rut98] J. Rutten. Automata and coinduction (an exercise in coalgebra). In Proc. CON-
CUR’ 98, pages 194–218. Springer Lect. Notes Comp. Sci. (1466), 1998.

[Rut00] J. Rutten. Universal coalgebra: A theory of systems. Theor. Comp. Sci., 249(1):3–
80, 2000. (Revised version of CWI Techn. Rep. CS-R9652, 1996).

[Rut01] J. Rutten. Elements of stream calculus (an extensive exercise in coinduction).
Technical report, CWI, Amsterdam, 2001.

[SP82] M. Smyth and G. Plotkin. The category theoretic solution of recursive domain
equations. SIAM Journ. Comput., 4(11):761–783, 1982.

[Tar55] A. Tarski. A lattice–theoretic fixpoint theorem and its applications. Pacific
Journal of Mathematics, 5:285–309, 1955.

[TR98] D. Turi and J. Rutten. On the foundations of final coalgebra semantics: non-
well-founded sets, partial orders, metric spaces. Math. Struct. in Comp. Sci.,
8(5):481–540, 1998.

[Wol00] U. Wolter. On corelations, cokernels and coequations. In H. Reichel, editor,
CMCS’00 - Workshop on Coalgebraic Methods in Computer Science, pages 347–
366. ENTCS, volume 33, Elsevier, 2000.

[Wor98] J. Worrell. A topos of hidden algebras. In CMCS’98 - Workshop on Coalgebraic
Methods in Computer Science, Lisbon. ENTCS, volume 11, Elsevier, March 1998.

23

